generic urcu deferral (call_rcu())
[userspace-rcu.git] / tests / api_ppc.h
1 /* MECHANICALLY GENERATED, DO NOT EDIT!!! */
2
3 #define _INCLUDE_API_H
4
5 /*
6 * common.h: Common Linux kernel-isms.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; but version 2 of the License only due
11 * to code included from the Linux kernel.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * Copyright (c) 2006 Paul E. McKenney, IBM.
23 *
24 * Much code taken from the Linux kernel. For such code, the option
25 * to redistribute under later versions of GPL might not be available.
26 */
27
28 #ifndef __always_inline
29 #define __always_inline inline
30 #endif
31
32 #define BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)]))
33 #define BUILD_BUG_ON_ZERO(e) (sizeof(char[1 - 2 * !!(e)]) - 1)
34
35 #ifdef __ASSEMBLY__
36 # define stringify_in_c(...) __VA_ARGS__
37 # define ASM_CONST(x) x
38 #else
39 /* This version of stringify will deal with commas... */
40 # define __stringify_in_c(...) #__VA_ARGS__
41 # define stringify_in_c(...) __stringify_in_c(__VA_ARGS__) " "
42 # define __ASM_CONST(x) x##UL
43 # define ASM_CONST(x) __ASM_CONST(x)
44 #endif
45
46
47 /*
48 * arch-ppc64.h: Expose PowerPC atomic instructions.
49 *
50 * This program is free software; you can redistribute it and/or modify
51 * it under the terms of the GNU General Public License as published by
52 * the Free Software Foundation; but version 2 of the License only due
53 * to code included from the Linux kernel.
54 *
55 * This program is distributed in the hope that it will be useful,
56 * but WITHOUT ANY WARRANTY; without even the implied warranty of
57 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
58 * GNU General Public License for more details.
59 *
60 * You should have received a copy of the GNU General Public License
61 * along with this program; if not, write to the Free Software
62 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
63 *
64 * Copyright (c) 2006 Paul E. McKenney, IBM.
65 *
66 * Much code taken from the Linux kernel. For such code, the option
67 * to redistribute under later versions of GPL might not be available.
68 */
69
70 /*
71 * Machine parameters.
72 */
73
74 #define CONFIG_PPC64
75
76 #define CACHE_LINE_SIZE 128
77 #define ____cacheline_internodealigned_in_smp \
78 __attribute__((__aligned__(1 << 7)))
79
80 /*
81 * Atomic data structure, initialization, and access.
82 */
83
84 typedef struct { volatile int counter; } atomic_t;
85
86 #define ATOMIC_INIT(i) { (i) }
87
88 #define atomic_read(v) ((v)->counter)
89 #define atomic_set(v, i) (((v)->counter) = (i))
90
91 /*
92 * Atomic operations.
93 */
94
95 #define LWSYNC lwsync
96 #define PPC405_ERR77(ra,rb)
97 #ifdef CONFIG_SMP
98 # define LWSYNC_ON_SMP stringify_in_c(LWSYNC) "\n"
99 # define ISYNC_ON_SMP "\n\tisync\n"
100 #else
101 # define LWSYNC_ON_SMP
102 # define ISYNC_ON_SMP
103 #endif
104
105
106 /*
107 * Atomic exchange
108 *
109 * Changes the memory location '*ptr' to be val and returns
110 * the previous value stored there.
111 */
112 static __always_inline unsigned long
113 __xchg_u32(volatile void *p, unsigned long val)
114 {
115 unsigned long prev;
116
117 __asm__ __volatile__(
118 LWSYNC_ON_SMP
119 "1: lwarx %0,0,%2 \n"
120 PPC405_ERR77(0,%2)
121 " stwcx. %3,0,%2 \n\
122 bne- 1b"
123 ISYNC_ON_SMP
124 : "=&r" (prev), "+m" (*(volatile unsigned int *)p)
125 : "r" (p), "r" (val)
126 : "cc", "memory");
127
128 return prev;
129 }
130
131 /*
132 * Atomic exchange
133 *
134 * Changes the memory location '*ptr' to be val and returns
135 * the previous value stored there.
136 */
137 static __always_inline unsigned long
138 __xchg_u32_local(volatile void *p, unsigned long val)
139 {
140 unsigned long prev;
141
142 __asm__ __volatile__(
143 "1: lwarx %0,0,%2 \n"
144 PPC405_ERR77(0,%2)
145 " stwcx. %3,0,%2 \n\
146 bne- 1b"
147 : "=&r" (prev), "+m" (*(volatile unsigned int *)p)
148 : "r" (p), "r" (val)
149 : "cc", "memory");
150
151 return prev;
152 }
153
154 #ifdef CONFIG_PPC64
155 static __always_inline unsigned long
156 __xchg_u64(volatile void *p, unsigned long val)
157 {
158 unsigned long prev;
159
160 __asm__ __volatile__(
161 LWSYNC_ON_SMP
162 "1: ldarx %0,0,%2 \n"
163 PPC405_ERR77(0,%2)
164 " stdcx. %3,0,%2 \n\
165 bne- 1b"
166 ISYNC_ON_SMP
167 : "=&r" (prev), "+m" (*(volatile unsigned long *)p)
168 : "r" (p), "r" (val)
169 : "cc", "memory");
170
171 return prev;
172 }
173
174 static __always_inline unsigned long
175 __xchg_u64_local(volatile void *p, unsigned long val)
176 {
177 unsigned long prev;
178
179 __asm__ __volatile__(
180 "1: ldarx %0,0,%2 \n"
181 PPC405_ERR77(0,%2)
182 " stdcx. %3,0,%2 \n\
183 bne- 1b"
184 : "=&r" (prev), "+m" (*(volatile unsigned long *)p)
185 : "r" (p), "r" (val)
186 : "cc", "memory");
187
188 return prev;
189 }
190 #endif
191
192 /*
193 * This function doesn't exist, so you'll get a linker error
194 * if something tries to do an invalid xchg().
195 */
196 extern void __xchg_called_with_bad_pointer(void);
197
198 static __always_inline unsigned long
199 __xchg(volatile void *ptr, unsigned long x, unsigned int size)
200 {
201 switch (size) {
202 case 4:
203 return __xchg_u32(ptr, x);
204 #ifdef CONFIG_PPC64
205 case 8:
206 return __xchg_u64(ptr, x);
207 #endif
208 }
209 __xchg_called_with_bad_pointer();
210 return x;
211 }
212
213 static __always_inline unsigned long
214 __xchg_local(volatile void *ptr, unsigned long x, unsigned int size)
215 {
216 switch (size) {
217 case 4:
218 return __xchg_u32_local(ptr, x);
219 #ifdef CONFIG_PPC64
220 case 8:
221 return __xchg_u64_local(ptr, x);
222 #endif
223 }
224 __xchg_called_with_bad_pointer();
225 return x;
226 }
227 #define xchg(ptr,x) \
228 ({ \
229 __typeof__(*(ptr)) _x_ = (x); \
230 (__typeof__(*(ptr))) __xchg((ptr), (unsigned long)_x_, sizeof(*(ptr))); \
231 })
232
233 #define xchg_local(ptr,x) \
234 ({ \
235 __typeof__(*(ptr)) _x_ = (x); \
236 (__typeof__(*(ptr))) __xchg_local((ptr), \
237 (unsigned long)_x_, sizeof(*(ptr))); \
238 })
239
240 /*
241 * Compare and exchange - if *p == old, set it to new,
242 * and return the old value of *p.
243 */
244 #define __HAVE_ARCH_CMPXCHG 1
245
246 static __always_inline unsigned long
247 __cmpxchg_u32(volatile unsigned int *p, unsigned long old, unsigned long new)
248 {
249 unsigned int prev;
250
251 __asm__ __volatile__ (
252 LWSYNC_ON_SMP
253 "1: lwarx %0,0,%2 # __cmpxchg_u32\n\
254 cmpw 0,%0,%3\n\
255 bne- 2f\n"
256 PPC405_ERR77(0,%2)
257 " stwcx. %4,0,%2\n\
258 bne- 1b"
259 ISYNC_ON_SMP
260 "\n\
261 2:"
262 : "=&r" (prev), "+m" (*p)
263 : "r" (p), "r" (old), "r" (new)
264 : "cc", "memory");
265
266 return prev;
267 }
268
269 static __always_inline unsigned long
270 __cmpxchg_u32_local(volatile unsigned int *p, unsigned long old,
271 unsigned long new)
272 {
273 unsigned int prev;
274
275 __asm__ __volatile__ (
276 "1: lwarx %0,0,%2 # __cmpxchg_u32\n\
277 cmpw 0,%0,%3\n\
278 bne- 2f\n"
279 PPC405_ERR77(0,%2)
280 " stwcx. %4,0,%2\n\
281 bne- 1b"
282 "\n\
283 2:"
284 : "=&r" (prev), "+m" (*p)
285 : "r" (p), "r" (old), "r" (new)
286 : "cc", "memory");
287
288 return prev;
289 }
290
291 #ifdef CONFIG_PPC64
292 static __always_inline unsigned long
293 __cmpxchg_u64(volatile unsigned long *p, unsigned long old, unsigned long new)
294 {
295 unsigned long prev;
296
297 __asm__ __volatile__ (
298 LWSYNC_ON_SMP
299 "1: ldarx %0,0,%2 # __cmpxchg_u64\n\
300 cmpd 0,%0,%3\n\
301 bne- 2f\n\
302 stdcx. %4,0,%2\n\
303 bne- 1b"
304 ISYNC_ON_SMP
305 "\n\
306 2:"
307 : "=&r" (prev), "+m" (*p)
308 : "r" (p), "r" (old), "r" (new)
309 : "cc", "memory");
310
311 return prev;
312 }
313
314 static __always_inline unsigned long
315 __cmpxchg_u64_local(volatile unsigned long *p, unsigned long old,
316 unsigned long new)
317 {
318 unsigned long prev;
319
320 __asm__ __volatile__ (
321 "1: ldarx %0,0,%2 # __cmpxchg_u64\n\
322 cmpd 0,%0,%3\n\
323 bne- 2f\n\
324 stdcx. %4,0,%2\n\
325 bne- 1b"
326 "\n\
327 2:"
328 : "=&r" (prev), "+m" (*p)
329 : "r" (p), "r" (old), "r" (new)
330 : "cc", "memory");
331
332 return prev;
333 }
334 #endif
335
336 /* This function doesn't exist, so you'll get a linker error
337 if something tries to do an invalid cmpxchg(). */
338 extern void __cmpxchg_called_with_bad_pointer(void);
339
340 static __always_inline unsigned long
341 __cmpxchg(volatile void *ptr, unsigned long old, unsigned long new,
342 unsigned int size)
343 {
344 switch (size) {
345 case 4:
346 return __cmpxchg_u32(ptr, old, new);
347 #ifdef CONFIG_PPC64
348 case 8:
349 return __cmpxchg_u64(ptr, old, new);
350 #endif
351 }
352 __cmpxchg_called_with_bad_pointer();
353 return old;
354 }
355
356 static __always_inline unsigned long
357 __cmpxchg_local(volatile void *ptr, unsigned long old, unsigned long new,
358 unsigned int size)
359 {
360 switch (size) {
361 case 4:
362 return __cmpxchg_u32_local(ptr, old, new);
363 #ifdef CONFIG_PPC64
364 case 8:
365 return __cmpxchg_u64_local(ptr, old, new);
366 #endif
367 }
368 __cmpxchg_called_with_bad_pointer();
369 return old;
370 }
371
372 #define cmpxchg(ptr, o, n) \
373 ({ \
374 __typeof__(*(ptr)) _o_ = (o); \
375 __typeof__(*(ptr)) _n_ = (n); \
376 (__typeof__(*(ptr))) __cmpxchg((ptr), (unsigned long)_o_, \
377 (unsigned long)_n_, sizeof(*(ptr))); \
378 })
379
380
381 #define cmpxchg_local(ptr, o, n) \
382 ({ \
383 __typeof__(*(ptr)) _o_ = (o); \
384 __typeof__(*(ptr)) _n_ = (n); \
385 (__typeof__(*(ptr))) __cmpxchg_local((ptr), (unsigned long)_o_, \
386 (unsigned long)_n_, sizeof(*(ptr))); \
387 })
388
389 #ifdef CONFIG_PPC64
390 /*
391 * We handle most unaligned accesses in hardware. On the other hand
392 * unaligned DMA can be very expensive on some ppc64 IO chips (it does
393 * powers of 2 writes until it reaches sufficient alignment).
394 *
395 * Based on this we disable the IP header alignment in network drivers.
396 * We also modify NET_SKB_PAD to be a cacheline in size, thus maintaining
397 * cacheline alignment of buffers.
398 */
399 #define NET_IP_ALIGN 0
400 #define NET_SKB_PAD L1_CACHE_BYTES
401
402 #define cmpxchg64(ptr, o, n) \
403 ({ \
404 BUILD_BUG_ON(sizeof(*(ptr)) != 8); \
405 cmpxchg((ptr), (o), (n)); \
406 })
407 #define cmpxchg64_local(ptr, o, n) \
408 ({ \
409 BUILD_BUG_ON(sizeof(*(ptr)) != 8); \
410 cmpxchg_local((ptr), (o), (n)); \
411 })
412 #endif
413
414 #define atomic_cmpxchg(v, o, n) (cmpxchg(&((v)->counter), (o), (n)))
415 #define atomic_xchg(v, new) (xchg(&((v)->counter), new))
416
417 /**
418 * atomic_add - add integer to atomic variable
419 * @i: integer value to add
420 * @v: pointer of type atomic_t
421 *
422 * Atomically adds @a to @v.
423 */
424 static __inline__ void atomic_add(int a, atomic_t *v)
425 {
426 int t;
427
428 __asm__ __volatile__(
429 "1: lwarx %0,0,%3 # atomic_add\n\
430 add %0,%2,%0 \n\
431 stwcx. %0,0,%3 \n\
432 bne- 1b"
433 : "=&r" (t), "+m" (v->counter)
434 : "r" (a), "r" (&v->counter)
435 : "cc");
436 }
437
438 /**
439 * atomic_sub - subtract the atomic variable
440 * @i: integer value to subtract
441 * @v: pointer of type atomic_t
442 *
443 * Atomically subtracts @a from @v.
444 */
445 static __inline__ void atomic_sub(int a, atomic_t *v)
446 {
447 int t;
448
449 __asm__ __volatile__(
450 "1: lwarx %0,0,%3 # atomic_sub \n\
451 subf %0,%2,%0 \n\
452 stwcx. %0,0,%3 \n\
453 bne- 1b"
454 : "=&r" (t), "+m" (v->counter)
455 : "r" (a), "r" (&v->counter)
456 : "cc");
457 }
458
459 static __inline__ atomic_sub_return(int a, atomic_t *v)
460 {
461 int t;
462
463 __asm__ __volatile__(
464 "lwsync\n\
465 1: lwarx %0,0,%2 # atomic_sub_return\n\
466 subf %0,%1,%0\n\
467 stwcx. %0,0,%2 \n\
468 bne- 1b \n\
469 isync"
470 : "=&r" (t)
471 : "r" (a), "r" (&v->counter)
472 : "cc", "memory");
473
474 return t;
475 }
476
477 /**
478 * atomic_sub_and_test - subtract value from variable and test result
479 * @i: integer value to subtract
480 * @v: pointer of type atomic_t
481 *
482 * Atomically subtracts @i from @v and returns
483 * true if the result is zero, or false for all
484 * other cases.
485 */
486 static __inline__ int atomic_sub_and_test(int a, atomic_t *v)
487 {
488 return atomic_sub_return(a, v) == 0;
489 }
490
491 /**
492 * atomic_inc - increment atomic variable
493 * @v: pointer of type atomic_t
494 *
495 * Atomically increments @v by 1.
496 */
497 static __inline__ void atomic_inc(atomic_t *v)
498 {
499 atomic_add(1, v);
500 }
501
502 /**
503 * atomic_dec - decrement atomic variable
504 * @v: pointer of type atomic_t
505 *
506 * Atomically decrements @v by 1.
507 */
508 static __inline__ void atomic_dec(atomic_t *v)
509 {
510 atomic_sub(1, v);
511 }
512
513 /**
514 * atomic_dec_and_test - decrement and test
515 * @v: pointer of type atomic_t
516 *
517 * Atomically decrements @v by 1 and
518 * returns true if the result is 0, or false for all other
519 * cases.
520 */
521 static __inline__ int atomic_dec_and_test(atomic_t *v)
522 {
523 return atomic_sub_and_test(1, v);
524 }
525
526 /**
527 * atomic_inc_and_test - increment and test
528 * @v: pointer of type atomic_t
529 *
530 * Atomically increments @v by 1
531 * and returns true if the result is zero, or false for all
532 * other cases.
533 */
534 static __inline__ int atomic_inc_and_test(atomic_t *v)
535 {
536 return atomic_inc_return(v);
537 }
538
539 /**
540 * atomic_add_return - add and return
541 * @v: pointer of type atomic_t
542 * @i: integer value to add
543 *
544 * Atomically adds @i to @v and returns @i + @v
545 */
546 static __inline__ int atomic_add_return(int a, atomic_t *v)
547 {
548 int t;
549
550 __asm__ __volatile__(
551 "lwsync \n\
552 1: lwarx %0,0,%2 # atomic_add_return \n\
553 add %0,%1,%0 \n\
554 stwcx. %0,0,%2 \n\
555 bne- 1b \n\
556 isync"
557 : "=&r" (t)
558 : "r" (a), "r" (&v->counter)
559 : "cc", "memory");
560
561 return t;
562 }
563
564 /**
565 * atomic_add_negative - add and test if negative
566 * @v: pointer of type atomic_t
567 * @i: integer value to add
568 *
569 * Atomically adds @i to @v and returns true
570 * if the result is negative, or false when
571 * result is greater than or equal to zero.
572 */
573 static __inline__ int atomic_add_negative(int a, atomic_t *v)
574 {
575 return atomic_add_return(a, v) < 0;
576 }
577
578 /**
579 * atomic_add_unless - add unless the number is a given value
580 * @v: pointer of type atomic_t
581 * @a: the amount to add to v...
582 * @u: ...unless v is equal to u.
583 *
584 * Atomically adds @a to @v, so long as it was not @u.
585 * Returns non-zero if @v was not @u, and zero otherwise.
586 */
587 static __inline__ int atomic_add_unless(atomic_t *v, int a, int u)
588 {
589 int t;
590
591 __asm__ __volatile__(
592 "lwsync \n\
593 1: lwarx %0,0,%1 # atomic_add_unless\n\
594 cmpd 0,%0,%3 \n\
595 beq- 2f \n\
596 add %0,%2,%0 \n\
597 stwcx. %0,0,%1 \n\
598 bne- 1b \n\
599 isync \n\
600 subf %0,%2,%0 \n\
601 2:"
602 : "=&r" (t)
603 : "r" (&v->counter), "r" (a), "r" (u)
604 : "cc", "memory");
605
606 return t != u;
607 }
608
609 #define atomic_inc_not_zero(v) atomic_add_unless((v), 1, 0)
610
611 #define atomic_inc_return(v) (atomic_add_return(1,v))
612 #define atomic_dec_return(v) (atomic_sub_return(1,v))
613
614 /* Atomic operations are already serializing on x86 */
615 #define smp_mb__before_atomic_dec() smp_mb()
616 #define smp_mb__after_atomic_dec() smp_mb()
617 #define smp_mb__before_atomic_inc() smp_mb()
618 #define smp_mb__after_atomic_inc() smp_mb()
619
620 /*
621 * api_pthreads.h: API mapping to pthreads environment.
622 *
623 * This program is free software; you can redistribute it and/or modify
624 * it under the terms of the GNU General Public License as published by
625 * the Free Software Foundation; either version 2 of the License, or
626 * (at your option) any later version. However, please note that much
627 * of the code in this file derives from the Linux kernel, and that such
628 * code may not be available except under GPLv2.
629 *
630 * This program is distributed in the hope that it will be useful,
631 * but WITHOUT ANY WARRANTY; without even the implied warranty of
632 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
633 * GNU General Public License for more details.
634 *
635 * You should have received a copy of the GNU General Public License
636 * along with this program; if not, write to the Free Software
637 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
638 *
639 * Copyright (c) 2006 Paul E. McKenney, IBM.
640 */
641
642 #include <stdio.h>
643 #include <stdlib.h>
644 #include <errno.h>
645 #include <limits.h>
646 #include <sys/types.h>
647 #define __USE_GNU
648 #include <pthread.h>
649 #include <sched.h>
650 #include <sys/param.h>
651 /* #include "atomic.h" */
652
653 /*
654 * Compiler magic.
655 */
656 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
657 #define container_of(ptr, type, member) ({ \
658 const typeof( ((type *)0)->member ) *__mptr = (ptr); \
659 (type *)( (char *)__mptr - offsetof(type,member) );})
660
661 /*
662 * Default machine parameters.
663 */
664
665 #ifndef CACHE_LINE_SIZE
666 #define CACHE_LINE_SIZE 128
667 #endif /* #ifndef CACHE_LINE_SIZE */
668
669 /*
670 * Exclusive locking primitives.
671 */
672
673 typedef pthread_mutex_t spinlock_t;
674
675 #define DEFINE_SPINLOCK(lock) spinlock_t lock = PTHREAD_MUTEX_INITIALIZER;
676 #define __SPIN_LOCK_UNLOCKED(lockp) PTHREAD_MUTEX_INITIALIZER
677
678 static void spin_lock_init(spinlock_t *sp)
679 {
680 if (pthread_mutex_init(sp, NULL) != 0) {
681 perror("spin_lock_init:pthread_mutex_init");
682 exit(-1);
683 }
684 }
685
686 static void spin_lock(spinlock_t *sp)
687 {
688 if (pthread_mutex_lock(sp) != 0) {
689 perror("spin_lock:pthread_mutex_lock");
690 exit(-1);
691 }
692 }
693
694 static void spin_unlock(spinlock_t *sp)
695 {
696 if (pthread_mutex_unlock(sp) != 0) {
697 perror("spin_unlock:pthread_mutex_unlock");
698 exit(-1);
699 }
700 }
701
702 #define spin_lock_irqsave(l, f) do { f = 1; spin_lock(l); } while (0)
703 #define spin_unlock_irqrestore(l, f) do { f = 0; spin_unlock(l); } while (0)
704
705 /*
706 * Thread creation/destruction primitives.
707 */
708
709 typedef pthread_t thread_id_t;
710
711 #define NR_THREADS 128
712
713 #define __THREAD_ID_MAP_EMPTY 0
714 #define __THREAD_ID_MAP_WAITING 1
715 thread_id_t __thread_id_map[NR_THREADS];
716 spinlock_t __thread_id_map_mutex;
717
718 #define for_each_thread(t) \
719 for (t = 0; t < NR_THREADS; t++)
720
721 #define for_each_running_thread(t) \
722 for (t = 0; t < NR_THREADS; t++) \
723 if ((__thread_id_map[t] != __THREAD_ID_MAP_EMPTY) && \
724 (__thread_id_map[t] != __THREAD_ID_MAP_WAITING))
725
726 #define for_each_tid(t, tid) \
727 for (t = 0; t < NR_THREADS; t++) \
728 if ((((tid) = __thread_id_map[t]) != __THREAD_ID_MAP_EMPTY) && \
729 ((tid) != __THREAD_ID_MAP_WAITING))
730
731 pthread_key_t thread_id_key;
732
733 static int __smp_thread_id(void)
734 {
735 int i;
736 thread_id_t tid = pthread_self();
737
738 for (i = 0; i < NR_THREADS; i++) {
739 if (__thread_id_map[i] == tid) {
740 long v = i + 1; /* must be non-NULL. */
741
742 if (pthread_setspecific(thread_id_key, (void *)v) != 0) {
743 perror("pthread_setspecific");
744 exit(-1);
745 }
746 return i;
747 }
748 }
749 spin_lock(&__thread_id_map_mutex);
750 for (i = 0; i < NR_THREADS; i++) {
751 if (__thread_id_map[i] == tid)
752 spin_unlock(&__thread_id_map_mutex);
753 return i;
754 }
755 spin_unlock(&__thread_id_map_mutex);
756 fprintf(stderr, "smp_thread_id: Rogue thread, id: %d(%#x)\n",
757 (int)tid, (int)tid);
758 exit(-1);
759 }
760
761 static int smp_thread_id(void)
762 {
763 void *id;
764
765 id = pthread_getspecific(thread_id_key);
766 if (id == NULL)
767 return __smp_thread_id();
768 return (long)(id - 1);
769 }
770
771 static thread_id_t create_thread(void *(*func)(void *), void *arg)
772 {
773 thread_id_t tid;
774 int i;
775
776 spin_lock(&__thread_id_map_mutex);
777 for (i = 0; i < NR_THREADS; i++) {
778 if (__thread_id_map[i] == __THREAD_ID_MAP_EMPTY)
779 break;
780 }
781 if (i >= NR_THREADS) {
782 spin_unlock(&__thread_id_map_mutex);
783 fprintf(stderr, "Thread limit of %d exceeded!\n", NR_THREADS);
784 exit(-1);
785 }
786 __thread_id_map[i] = __THREAD_ID_MAP_WAITING;
787 spin_unlock(&__thread_id_map_mutex);
788 if (pthread_create(&tid, NULL, func, arg) != 0) {
789 perror("create_thread:pthread_create");
790 exit(-1);
791 }
792 __thread_id_map[i] = tid;
793 return tid;
794 }
795
796 static void *wait_thread(thread_id_t tid)
797 {
798 int i;
799 void *vp;
800
801 for (i = 0; i < NR_THREADS; i++) {
802 if (__thread_id_map[i] == tid)
803 break;
804 }
805 if (i >= NR_THREADS){
806 fprintf(stderr, "wait_thread: bad tid = %d(%#x)\n",
807 (int)tid, (int)tid);
808 exit(-1);
809 }
810 if (pthread_join(tid, &vp) != 0) {
811 perror("wait_thread:pthread_join");
812 exit(-1);
813 }
814 __thread_id_map[i] = __THREAD_ID_MAP_EMPTY;
815 return vp;
816 }
817
818 static void wait_all_threads(void)
819 {
820 int i;
821 thread_id_t tid;
822
823 for (i = 1; i < NR_THREADS; i++) {
824 tid = __thread_id_map[i];
825 if (tid != __THREAD_ID_MAP_EMPTY &&
826 tid != __THREAD_ID_MAP_WAITING)
827 (void)wait_thread(tid);
828 }
829 }
830
831 static void run_on(int cpu)
832 {
833 cpu_set_t mask;
834
835 CPU_ZERO(&mask);
836 CPU_SET(cpu, &mask);
837 sched_setaffinity(0, sizeof(mask), &mask);
838 }
839
840 /*
841 * timekeeping -- very crude -- should use MONOTONIC...
842 */
843
844 long long get_microseconds(void)
845 {
846 struct timeval tv;
847
848 if (gettimeofday(&tv, NULL) != 0)
849 abort();
850 return ((long long)tv.tv_sec) * 1000000LL + (long long)tv.tv_usec;
851 }
852
853 /*
854 * Per-thread variables.
855 */
856
857 #define DEFINE_PER_THREAD(type, name) \
858 struct { \
859 __typeof__(type) v \
860 __attribute__((__aligned__(CACHE_LINE_SIZE))); \
861 } __per_thread_##name[NR_THREADS];
862 #define DECLARE_PER_THREAD(type, name) extern DEFINE_PER_THREAD(type, name)
863
864 #define per_thread(name, thread) __per_thread_##name[thread].v
865 #define __get_thread_var(name) per_thread(name, smp_thread_id())
866
867 #define init_per_thread(name, v) \
868 do { \
869 int __i_p_t_i; \
870 for (__i_p_t_i = 0; __i_p_t_i < NR_THREADS; __i_p_t_i++) \
871 per_thread(name, __i_p_t_i) = v; \
872 } while (0)
873
874 /*
875 * CPU traversal primitives.
876 */
877
878 #ifndef NR_CPUS
879 #define NR_CPUS 16
880 #endif /* #ifndef NR_CPUS */
881
882 #define for_each_possible_cpu(cpu) \
883 for (cpu = 0; cpu < NR_CPUS; cpu++)
884 #define for_each_online_cpu(cpu) \
885 for (cpu = 0; cpu < NR_CPUS; cpu++)
886
887 /*
888 * Per-CPU variables.
889 */
890
891 #define DEFINE_PER_CPU(type, name) \
892 struct { \
893 __typeof__(type) v \
894 __attribute__((__aligned__(CACHE_LINE_SIZE))); \
895 } __per_cpu_##name[NR_CPUS]
896 #define DECLARE_PER_CPU(type, name) extern DEFINE_PER_CPU(type, name)
897
898 DEFINE_PER_THREAD(int, smp_processor_id);
899
900 #define per_cpu(name, thread) __per_cpu_##name[thread].v
901 #define __get_cpu_var(name) per_cpu(name, smp_processor_id())
902
903 #define init_per_cpu(name, v) \
904 do { \
905 int __i_p_c_i; \
906 for (__i_p_c_i = 0; __i_p_c_i < NR_CPUS; __i_p_c_i++) \
907 per_cpu(name, __i_p_c_i) = v; \
908 } while (0)
909
910 /*
911 * CPU state checking (crowbarred).
912 */
913
914 #define idle_cpu(cpu) 0
915 #define in_softirq() 1
916 #define hardirq_count() 0
917 #define PREEMPT_SHIFT 0
918 #define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS)
919 #define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS)
920 #define PREEMPT_BITS 8
921 #define SOFTIRQ_BITS 8
922
923 /*
924 * CPU hotplug.
925 */
926
927 struct notifier_block {
928 int (*notifier_call)(struct notifier_block *, unsigned long, void *);
929 struct notifier_block *next;
930 int priority;
931 };
932
933 #define CPU_ONLINE 0x0002 /* CPU (unsigned)v is up */
934 #define CPU_UP_PREPARE 0x0003 /* CPU (unsigned)v coming up */
935 #define CPU_UP_CANCELED 0x0004 /* CPU (unsigned)v NOT coming up */
936 #define CPU_DOWN_PREPARE 0x0005 /* CPU (unsigned)v going down */
937 #define CPU_DOWN_FAILED 0x0006 /* CPU (unsigned)v NOT going down */
938 #define CPU_DEAD 0x0007 /* CPU (unsigned)v dead */
939 #define CPU_DYING 0x0008 /* CPU (unsigned)v not running any task,
940 * not handling interrupts, soon dead */
941 #define CPU_POST_DEAD 0x0009 /* CPU (unsigned)v dead, cpu_hotplug
942 * lock is dropped */
943
944 /* Used for CPU hotplug events occuring while tasks are frozen due to a suspend
945 * operation in progress
946 */
947 #define CPU_TASKS_FROZEN 0x0010
948
949 #define CPU_ONLINE_FROZEN (CPU_ONLINE | CPU_TASKS_FROZEN)
950 #define CPU_UP_PREPARE_FROZEN (CPU_UP_PREPARE | CPU_TASKS_FROZEN)
951 #define CPU_UP_CANCELED_FROZEN (CPU_UP_CANCELED | CPU_TASKS_FROZEN)
952 #define CPU_DOWN_PREPARE_FROZEN (CPU_DOWN_PREPARE | CPU_TASKS_FROZEN)
953 #define CPU_DOWN_FAILED_FROZEN (CPU_DOWN_FAILED | CPU_TASKS_FROZEN)
954 #define CPU_DEAD_FROZEN (CPU_DEAD | CPU_TASKS_FROZEN)
955 #define CPU_DYING_FROZEN (CPU_DYING | CPU_TASKS_FROZEN)
956
957 /* Hibernation and suspend events */
958 #define PM_HIBERNATION_PREPARE 0x0001 /* Going to hibernate */
959 #define PM_POST_HIBERNATION 0x0002 /* Hibernation finished */
960 #define PM_SUSPEND_PREPARE 0x0003 /* Going to suspend the system */
961 #define PM_POST_SUSPEND 0x0004 /* Suspend finished */
962 #define PM_RESTORE_PREPARE 0x0005 /* Going to restore a saved image */
963 #define PM_POST_RESTORE 0x0006 /* Restore failed */
964
965 #define NOTIFY_DONE 0x0000 /* Don't care */
966 #define NOTIFY_OK 0x0001 /* Suits me */
967 #define NOTIFY_STOP_MASK 0x8000 /* Don't call further */
968 #define NOTIFY_BAD (NOTIFY_STOP_MASK|0x0002)
969 /* Bad/Veto action */
970 /*
971 * Clean way to return from the notifier and stop further calls.
972 */
973 #define NOTIFY_STOP (NOTIFY_OK|NOTIFY_STOP_MASK)
974
975 /*
976 * Bug checks.
977 */
978
979 #define BUG_ON(c) do { if (!(c)) abort(); } while (0)
980
981 /*
982 * Initialization -- Must be called before calling any primitives.
983 */
984
985 static void smp_init(void)
986 {
987 int i;
988
989 spin_lock_init(&__thread_id_map_mutex);
990 __thread_id_map[0] = pthread_self();
991 for (i = 1; i < NR_THREADS; i++)
992 __thread_id_map[i] = __THREAD_ID_MAP_EMPTY;
993 init_per_thread(smp_processor_id, 0);
994 if (pthread_key_create(&thread_id_key, NULL) != 0) {
995 perror("pthread_key_create");
996 exit(-1);
997 }
998 }
999
1000 /* Taken from the Linux kernel source tree, so GPLv2-only!!! */
1001
1002 #ifndef _LINUX_LIST_H
1003 #define _LINUX_LIST_H
1004
1005 #define LIST_POISON1 ((void *) 0x00100100)
1006 #define LIST_POISON2 ((void *) 0x00200200)
1007
1008 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
1009 #define container_of(ptr, type, member) ({ \
1010 const typeof( ((type *)0)->member ) *__mptr = (ptr); \
1011 (type *)( (char *)__mptr - offsetof(type,member) );})
1012
1013 /*
1014 * Simple doubly linked list implementation.
1015 *
1016 * Some of the internal functions ("__xxx") are useful when
1017 * manipulating whole lists rather than single entries, as
1018 * sometimes we already know the next/prev entries and we can
1019 * generate better code by using them directly rather than
1020 * using the generic single-entry routines.
1021 */
1022
1023 struct list_head {
1024 struct list_head *next, *prev;
1025 };
1026
1027 #define LIST_HEAD_INIT(name) { &(name), &(name) }
1028
1029 #define LIST_HEAD(name) \
1030 struct list_head name = LIST_HEAD_INIT(name)
1031
1032 static inline void INIT_LIST_HEAD(struct list_head *list)
1033 {
1034 list->next = list;
1035 list->prev = list;
1036 }
1037
1038 /*
1039 * Insert a new entry between two known consecutive entries.
1040 *
1041 * This is only for internal list manipulation where we know
1042 * the prev/next entries already!
1043 */
1044 #ifndef CONFIG_DEBUG_LIST
1045 static inline void __list_add(struct list_head *new,
1046 struct list_head *prev,
1047 struct list_head *next)
1048 {
1049 next->prev = new;
1050 new->next = next;
1051 new->prev = prev;
1052 prev->next = new;
1053 }
1054 #else
1055 extern void __list_add(struct list_head *new,
1056 struct list_head *prev,
1057 struct list_head *next);
1058 #endif
1059
1060 /**
1061 * list_add - add a new entry
1062 * @new: new entry to be added
1063 * @head: list head to add it after
1064 *
1065 * Insert a new entry after the specified head.
1066 * This is good for implementing stacks.
1067 */
1068 static inline void list_add(struct list_head *new, struct list_head *head)
1069 {
1070 __list_add(new, head, head->next);
1071 }
1072
1073
1074 /**
1075 * list_add_tail - add a new entry
1076 * @new: new entry to be added
1077 * @head: list head to add it before
1078 *
1079 * Insert a new entry before the specified head.
1080 * This is useful for implementing queues.
1081 */
1082 static inline void list_add_tail(struct list_head *new, struct list_head *head)
1083 {
1084 __list_add(new, head->prev, head);
1085 }
1086
1087 /*
1088 * Delete a list entry by making the prev/next entries
1089 * point to each other.
1090 *
1091 * This is only for internal list manipulation where we know
1092 * the prev/next entries already!
1093 */
1094 static inline void __list_del(struct list_head * prev, struct list_head * next)
1095 {
1096 next->prev = prev;
1097 prev->next = next;
1098 }
1099
1100 /**
1101 * list_del - deletes entry from list.
1102 * @entry: the element to delete from the list.
1103 * Note: list_empty() on entry does not return true after this, the entry is
1104 * in an undefined state.
1105 */
1106 #ifndef CONFIG_DEBUG_LIST
1107 static inline void list_del(struct list_head *entry)
1108 {
1109 __list_del(entry->prev, entry->next);
1110 entry->next = LIST_POISON1;
1111 entry->prev = LIST_POISON2;
1112 }
1113 #else
1114 extern void list_del(struct list_head *entry);
1115 #endif
1116
1117 /**
1118 * list_replace - replace old entry by new one
1119 * @old : the element to be replaced
1120 * @new : the new element to insert
1121 *
1122 * If @old was empty, it will be overwritten.
1123 */
1124 static inline void list_replace(struct list_head *old,
1125 struct list_head *new)
1126 {
1127 new->next = old->next;
1128 new->next->prev = new;
1129 new->prev = old->prev;
1130 new->prev->next = new;
1131 }
1132
1133 static inline void list_replace_init(struct list_head *old,
1134 struct list_head *new)
1135 {
1136 list_replace(old, new);
1137 INIT_LIST_HEAD(old);
1138 }
1139
1140 /**
1141 * list_del_init - deletes entry from list and reinitialize it.
1142 * @entry: the element to delete from the list.
1143 */
1144 static inline void list_del_init(struct list_head *entry)
1145 {
1146 __list_del(entry->prev, entry->next);
1147 INIT_LIST_HEAD(entry);
1148 }
1149
1150 /**
1151 * list_move - delete from one list and add as another's head
1152 * @list: the entry to move
1153 * @head: the head that will precede our entry
1154 */
1155 static inline void list_move(struct list_head *list, struct list_head *head)
1156 {
1157 __list_del(list->prev, list->next);
1158 list_add(list, head);
1159 }
1160
1161 /**
1162 * list_move_tail - delete from one list and add as another's tail
1163 * @list: the entry to move
1164 * @head: the head that will follow our entry
1165 */
1166 static inline void list_move_tail(struct list_head *list,
1167 struct list_head *head)
1168 {
1169 __list_del(list->prev, list->next);
1170 list_add_tail(list, head);
1171 }
1172
1173 /**
1174 * list_is_last - tests whether @list is the last entry in list @head
1175 * @list: the entry to test
1176 * @head: the head of the list
1177 */
1178 static inline int list_is_last(const struct list_head *list,
1179 const struct list_head *head)
1180 {
1181 return list->next == head;
1182 }
1183
1184 /**
1185 * list_empty - tests whether a list is empty
1186 * @head: the list to test.
1187 */
1188 static inline int list_empty(const struct list_head *head)
1189 {
1190 return head->next == head;
1191 }
1192
1193 /**
1194 * list_empty_careful - tests whether a list is empty and not being modified
1195 * @head: the list to test
1196 *
1197 * Description:
1198 * tests whether a list is empty _and_ checks that no other CPU might be
1199 * in the process of modifying either member (next or prev)
1200 *
1201 * NOTE: using list_empty_careful() without synchronization
1202 * can only be safe if the only activity that can happen
1203 * to the list entry is list_del_init(). Eg. it cannot be used
1204 * if another CPU could re-list_add() it.
1205 */
1206 static inline int list_empty_careful(const struct list_head *head)
1207 {
1208 struct list_head *next = head->next;
1209 return (next == head) && (next == head->prev);
1210 }
1211
1212 /**
1213 * list_is_singular - tests whether a list has just one entry.
1214 * @head: the list to test.
1215 */
1216 static inline int list_is_singular(const struct list_head *head)
1217 {
1218 return !list_empty(head) && (head->next == head->prev);
1219 }
1220
1221 static inline void __list_cut_position(struct list_head *list,
1222 struct list_head *head, struct list_head *entry)
1223 {
1224 struct list_head *new_first = entry->next;
1225 list->next = head->next;
1226 list->next->prev = list;
1227 list->prev = entry;
1228 entry->next = list;
1229 head->next = new_first;
1230 new_first->prev = head;
1231 }
1232
1233 /**
1234 * list_cut_position - cut a list into two
1235 * @list: a new list to add all removed entries
1236 * @head: a list with entries
1237 * @entry: an entry within head, could be the head itself
1238 * and if so we won't cut the list
1239 *
1240 * This helper moves the initial part of @head, up to and
1241 * including @entry, from @head to @list. You should
1242 * pass on @entry an element you know is on @head. @list
1243 * should be an empty list or a list you do not care about
1244 * losing its data.
1245 *
1246 */
1247 static inline void list_cut_position(struct list_head *list,
1248 struct list_head *head, struct list_head *entry)
1249 {
1250 if (list_empty(head))
1251 return;
1252 if (list_is_singular(head) &&
1253 (head->next != entry && head != entry))
1254 return;
1255 if (entry == head)
1256 INIT_LIST_HEAD(list);
1257 else
1258 __list_cut_position(list, head, entry);
1259 }
1260
1261 static inline void __list_splice(const struct list_head *list,
1262 struct list_head *prev,
1263 struct list_head *next)
1264 {
1265 struct list_head *first = list->next;
1266 struct list_head *last = list->prev;
1267
1268 first->prev = prev;
1269 prev->next = first;
1270
1271 last->next = next;
1272 next->prev = last;
1273 }
1274
1275 /**
1276 * list_splice - join two lists, this is designed for stacks
1277 * @list: the new list to add.
1278 * @head: the place to add it in the first list.
1279 */
1280 static inline void list_splice(const struct list_head *list,
1281 struct list_head *head)
1282 {
1283 if (!list_empty(list))
1284 __list_splice(list, head, head->next);
1285 }
1286
1287 /**
1288 * list_splice_tail - join two lists, each list being a queue
1289 * @list: the new list to add.
1290 * @head: the place to add it in the first list.
1291 */
1292 static inline void list_splice_tail(struct list_head *list,
1293 struct list_head *head)
1294 {
1295 if (!list_empty(list))
1296 __list_splice(list, head->prev, head);
1297 }
1298
1299 /**
1300 * list_splice_init - join two lists and reinitialise the emptied list.
1301 * @list: the new list to add.
1302 * @head: the place to add it in the first list.
1303 *
1304 * The list at @list is reinitialised
1305 */
1306 static inline void list_splice_init(struct list_head *list,
1307 struct list_head *head)
1308 {
1309 if (!list_empty(list)) {
1310 __list_splice(list, head, head->next);
1311 INIT_LIST_HEAD(list);
1312 }
1313 }
1314
1315 /**
1316 * list_splice_tail_init - join two lists and reinitialise the emptied list
1317 * @list: the new list to add.
1318 * @head: the place to add it in the first list.
1319 *
1320 * Each of the lists is a queue.
1321 * The list at @list is reinitialised
1322 */
1323 static inline void list_splice_tail_init(struct list_head *list,
1324 struct list_head *head)
1325 {
1326 if (!list_empty(list)) {
1327 __list_splice(list, head->prev, head);
1328 INIT_LIST_HEAD(list);
1329 }
1330 }
1331
1332 /**
1333 * list_entry - get the struct for this entry
1334 * @ptr: the &struct list_head pointer.
1335 * @type: the type of the struct this is embedded in.
1336 * @member: the name of the list_struct within the struct.
1337 */
1338 #define list_entry(ptr, type, member) \
1339 container_of(ptr, type, member)
1340
1341 /**
1342 * list_first_entry - get the first element from a list
1343 * @ptr: the list head to take the element from.
1344 * @type: the type of the struct this is embedded in.
1345 * @member: the name of the list_struct within the struct.
1346 *
1347 * Note, that list is expected to be not empty.
1348 */
1349 #define list_first_entry(ptr, type, member) \
1350 list_entry((ptr)->next, type, member)
1351
1352 /**
1353 * list_for_each - iterate over a list
1354 * @pos: the &struct list_head to use as a loop cursor.
1355 * @head: the head for your list.
1356 */
1357 #define list_for_each(pos, head) \
1358 for (pos = (head)->next; prefetch(pos->next), pos != (head); \
1359 pos = pos->next)
1360
1361 /**
1362 * __list_for_each - iterate over a list
1363 * @pos: the &struct list_head to use as a loop cursor.
1364 * @head: the head for your list.
1365 *
1366 * This variant differs from list_for_each() in that it's the
1367 * simplest possible list iteration code, no prefetching is done.
1368 * Use this for code that knows the list to be very short (empty
1369 * or 1 entry) most of the time.
1370 */
1371 #define __list_for_each(pos, head) \
1372 for (pos = (head)->next; pos != (head); pos = pos->next)
1373
1374 /**
1375 * list_for_each_prev - iterate over a list backwards
1376 * @pos: the &struct list_head to use as a loop cursor.
1377 * @head: the head for your list.
1378 */
1379 #define list_for_each_prev(pos, head) \
1380 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
1381 pos = pos->prev)
1382
1383 /**
1384 * list_for_each_safe - iterate over a list safe against removal of list entry
1385 * @pos: the &struct list_head to use as a loop cursor.
1386 * @n: another &struct list_head to use as temporary storage
1387 * @head: the head for your list.
1388 */
1389 #define list_for_each_safe(pos, n, head) \
1390 for (pos = (head)->next, n = pos->next; pos != (head); \
1391 pos = n, n = pos->next)
1392
1393 /**
1394 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
1395 * @pos: the &struct list_head to use as a loop cursor.
1396 * @n: another &struct list_head to use as temporary storage
1397 * @head: the head for your list.
1398 */
1399 #define list_for_each_prev_safe(pos, n, head) \
1400 for (pos = (head)->prev, n = pos->prev; \
1401 prefetch(pos->prev), pos != (head); \
1402 pos = n, n = pos->prev)
1403
1404 /**
1405 * list_for_each_entry - iterate over list of given type
1406 * @pos: the type * to use as a loop cursor.
1407 * @head: the head for your list.
1408 * @member: the name of the list_struct within the struct.
1409 */
1410 #define list_for_each_entry(pos, head, member) \
1411 for (pos = list_entry((head)->next, typeof(*pos), member); \
1412 prefetch(pos->member.next), &pos->member != (head); \
1413 pos = list_entry(pos->member.next, typeof(*pos), member))
1414
1415 /**
1416 * list_for_each_entry_reverse - iterate backwards over list of given type.
1417 * @pos: the type * to use as a loop cursor.
1418 * @head: the head for your list.
1419 * @member: the name of the list_struct within the struct.
1420 */
1421 #define list_for_each_entry_reverse(pos, head, member) \
1422 for (pos = list_entry((head)->prev, typeof(*pos), member); \
1423 prefetch(pos->member.prev), &pos->member != (head); \
1424 pos = list_entry(pos->member.prev, typeof(*pos), member))
1425
1426 /**
1427 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
1428 * @pos: the type * to use as a start point
1429 * @head: the head of the list
1430 * @member: the name of the list_struct within the struct.
1431 *
1432 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
1433 */
1434 #define list_prepare_entry(pos, head, member) \
1435 ((pos) ? : list_entry(head, typeof(*pos), member))
1436
1437 /**
1438 * list_for_each_entry_continue - continue iteration over list of given type
1439 * @pos: the type * to use as a loop cursor.
1440 * @head: the head for your list.
1441 * @member: the name of the list_struct within the struct.
1442 *
1443 * Continue to iterate over list of given type, continuing after
1444 * the current position.
1445 */
1446 #define list_for_each_entry_continue(pos, head, member) \
1447 for (pos = list_entry(pos->member.next, typeof(*pos), member); \
1448 prefetch(pos->member.next), &pos->member != (head); \
1449 pos = list_entry(pos->member.next, typeof(*pos), member))
1450
1451 /**
1452 * list_for_each_entry_continue_reverse - iterate backwards from the given point
1453 * @pos: the type * to use as a loop cursor.
1454 * @head: the head for your list.
1455 * @member: the name of the list_struct within the struct.
1456 *
1457 * Start to iterate over list of given type backwards, continuing after
1458 * the current position.
1459 */
1460 #define list_for_each_entry_continue_reverse(pos, head, member) \
1461 for (pos = list_entry(pos->member.prev, typeof(*pos), member); \
1462 prefetch(pos->member.prev), &pos->member != (head); \
1463 pos = list_entry(pos->member.prev, typeof(*pos), member))
1464
1465 /**
1466 * list_for_each_entry_from - iterate over list of given type from the current point
1467 * @pos: the type * to use as a loop cursor.
1468 * @head: the head for your list.
1469 * @member: the name of the list_struct within the struct.
1470 *
1471 * Iterate over list of given type, continuing from current position.
1472 */
1473 #define list_for_each_entry_from(pos, head, member) \
1474 for (; prefetch(pos->member.next), &pos->member != (head); \
1475 pos = list_entry(pos->member.next, typeof(*pos), member))
1476
1477 /**
1478 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1479 * @pos: the type * to use as a loop cursor.
1480 * @n: another type * to use as temporary storage
1481 * @head: the head for your list.
1482 * @member: the name of the list_struct within the struct.
1483 */
1484 #define list_for_each_entry_safe(pos, n, head, member) \
1485 for (pos = list_entry((head)->next, typeof(*pos), member), \
1486 n = list_entry(pos->member.next, typeof(*pos), member); \
1487 &pos->member != (head); \
1488 pos = n, n = list_entry(n->member.next, typeof(*n), member))
1489
1490 /**
1491 * list_for_each_entry_safe_continue
1492 * @pos: the type * to use as a loop cursor.
1493 * @n: another type * to use as temporary storage
1494 * @head: the head for your list.
1495 * @member: the name of the list_struct within the struct.
1496 *
1497 * Iterate over list of given type, continuing after current point,
1498 * safe against removal of list entry.
1499 */
1500 #define list_for_each_entry_safe_continue(pos, n, head, member) \
1501 for (pos = list_entry(pos->member.next, typeof(*pos), member), \
1502 n = list_entry(pos->member.next, typeof(*pos), member); \
1503 &pos->member != (head); \
1504 pos = n, n = list_entry(n->member.next, typeof(*n), member))
1505
1506 /**
1507 * list_for_each_entry_safe_from
1508 * @pos: the type * to use as a loop cursor.
1509 * @n: another type * to use as temporary storage
1510 * @head: the head for your list.
1511 * @member: the name of the list_struct within the struct.
1512 *
1513 * Iterate over list of given type from current point, safe against
1514 * removal of list entry.
1515 */
1516 #define list_for_each_entry_safe_from(pos, n, head, member) \
1517 for (n = list_entry(pos->member.next, typeof(*pos), member); \
1518 &pos->member != (head); \
1519 pos = n, n = list_entry(n->member.next, typeof(*n), member))
1520
1521 /**
1522 * list_for_each_entry_safe_reverse
1523 * @pos: the type * to use as a loop cursor.
1524 * @n: another type * to use as temporary storage
1525 * @head: the head for your list.
1526 * @member: the name of the list_struct within the struct.
1527 *
1528 * Iterate backwards over list of given type, safe against removal
1529 * of list entry.
1530 */
1531 #define list_for_each_entry_safe_reverse(pos, n, head, member) \
1532 for (pos = list_entry((head)->prev, typeof(*pos), member), \
1533 n = list_entry(pos->member.prev, typeof(*pos), member); \
1534 &pos->member != (head); \
1535 pos = n, n = list_entry(n->member.prev, typeof(*n), member))
1536
1537 /*
1538 * Double linked lists with a single pointer list head.
1539 * Mostly useful for hash tables where the two pointer list head is
1540 * too wasteful.
1541 * You lose the ability to access the tail in O(1).
1542 */
1543
1544 struct hlist_head {
1545 struct hlist_node *first;
1546 };
1547
1548 struct hlist_node {
1549 struct hlist_node *next, **pprev;
1550 };
1551
1552 #define HLIST_HEAD_INIT { .first = NULL }
1553 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
1554 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
1555 static inline void INIT_HLIST_NODE(struct hlist_node *h)
1556 {
1557 h->next = NULL;
1558 h->pprev = NULL;
1559 }
1560
1561 static inline int hlist_unhashed(const struct hlist_node *h)
1562 {
1563 return !h->pprev;
1564 }
1565
1566 static inline int hlist_empty(const struct hlist_head *h)
1567 {
1568 return !h->first;
1569 }
1570
1571 static inline void __hlist_del(struct hlist_node *n)
1572 {
1573 struct hlist_node *next = n->next;
1574 struct hlist_node **pprev = n->pprev;
1575 *pprev = next;
1576 if (next)
1577 next->pprev = pprev;
1578 }
1579
1580 static inline void hlist_del(struct hlist_node *n)
1581 {
1582 __hlist_del(n);
1583 n->next = LIST_POISON1;
1584 n->pprev = LIST_POISON2;
1585 }
1586
1587 static inline void hlist_del_init(struct hlist_node *n)
1588 {
1589 if (!hlist_unhashed(n)) {
1590 __hlist_del(n);
1591 INIT_HLIST_NODE(n);
1592 }
1593 }
1594
1595 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
1596 {
1597 struct hlist_node *first = h->first;
1598 n->next = first;
1599 if (first)
1600 first->pprev = &n->next;
1601 h->first = n;
1602 n->pprev = &h->first;
1603 }
1604
1605 /* next must be != NULL */
1606 static inline void hlist_add_before(struct hlist_node *n,
1607 struct hlist_node *next)
1608 {
1609 n->pprev = next->pprev;
1610 n->next = next;
1611 next->pprev = &n->next;
1612 *(n->pprev) = n;
1613 }
1614
1615 static inline void hlist_add_after(struct hlist_node *n,
1616 struct hlist_node *next)
1617 {
1618 next->next = n->next;
1619 n->next = next;
1620 next->pprev = &n->next;
1621
1622 if(next->next)
1623 next->next->pprev = &next->next;
1624 }
1625
1626 /*
1627 * Move a list from one list head to another. Fixup the pprev
1628 * reference of the first entry if it exists.
1629 */
1630 static inline void hlist_move_list(struct hlist_head *old,
1631 struct hlist_head *new)
1632 {
1633 new->first = old->first;
1634 if (new->first)
1635 new->first->pprev = &new->first;
1636 old->first = NULL;
1637 }
1638
1639 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
1640
1641 #define hlist_for_each(pos, head) \
1642 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
1643 pos = pos->next)
1644
1645 #define hlist_for_each_safe(pos, n, head) \
1646 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
1647 pos = n)
1648
1649 /**
1650 * hlist_for_each_entry - iterate over list of given type
1651 * @tpos: the type * to use as a loop cursor.
1652 * @pos: the &struct hlist_node to use as a loop cursor.
1653 * @head: the head for your list.
1654 * @member: the name of the hlist_node within the struct.
1655 */
1656 #define hlist_for_each_entry(tpos, pos, head, member) \
1657 for (pos = (head)->first; \
1658 pos && ({ prefetch(pos->next); 1;}) && \
1659 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
1660 pos = pos->next)
1661
1662 /**
1663 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
1664 * @tpos: the type * to use as a loop cursor.
1665 * @pos: the &struct hlist_node to use as a loop cursor.
1666 * @member: the name of the hlist_node within the struct.
1667 */
1668 #define hlist_for_each_entry_continue(tpos, pos, member) \
1669 for (pos = (pos)->next; \
1670 pos && ({ prefetch(pos->next); 1;}) && \
1671 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
1672 pos = pos->next)
1673
1674 /**
1675 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1676 * @tpos: the type * to use as a loop cursor.
1677 * @pos: the &struct hlist_node to use as a loop cursor.
1678 * @member: the name of the hlist_node within the struct.
1679 */
1680 #define hlist_for_each_entry_from(tpos, pos, member) \
1681 for (; pos && ({ prefetch(pos->next); 1;}) && \
1682 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
1683 pos = pos->next)
1684
1685 /**
1686 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1687 * @tpos: the type * to use as a loop cursor.
1688 * @pos: the &struct hlist_node to use as a loop cursor.
1689 * @n: another &struct hlist_node to use as temporary storage
1690 * @head: the head for your list.
1691 * @member: the name of the hlist_node within the struct.
1692 */
1693 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \
1694 for (pos = (head)->first; \
1695 pos && ({ n = pos->next; 1; }) && \
1696 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
1697 pos = n)
1698
1699 #endif
This page took 0.067771 seconds and 4 git commands to generate.