4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
33 * Some specificities of this Lock-Free Resizable RCU Hash Table
36 * - RCU read-side critical section allows readers to perform hash
37 * table lookups and use the returned objects safely by delaying
38 * memory reclaim of a grace period.
39 * - Add and remove operations are lock-free, and do not need to
40 * allocate memory. They need to be executed within RCU read-side
41 * critical section to ensure the objects they read are valid and to
42 * deal with the cmpxchg ABA problem.
43 * - add and add_unique operations are supported. add_unique checks if
44 * the node key already exists in the hash table. It ensures no key
46 * - The resize operation executes concurrently with add/remove/lookup.
47 * - Hash table nodes are contained within a split-ordered list. This
48 * list is ordered by incrementing reversed-bits-hash value.
49 * - An index of bucket nodes is kept. These bucket nodes are the hash
50 * table "buckets", and they are also chained together in the
51 * split-ordered list, which allows recursive expansion.
52 * - The resize operation for small tables only allows expanding the hash table.
53 * It is triggered automatically by detecting long chains in the add
55 * - The resize operation for larger tables (and available through an
56 * API) allows both expanding and shrinking the hash table.
57 * - Split-counters are used to keep track of the number of
58 * nodes within the hash table for automatic resize triggering.
59 * - Resize operation initiated by long chain detection is executed by a
60 * call_rcu thread, which keeps lock-freedom of add and remove.
61 * - Resize operations are protected by a mutex.
62 * - The removal operation is split in two parts: first, a "removed"
63 * flag is set in the next pointer within the node to remove. Then,
64 * a "garbage collection" is performed in the bucket containing the
65 * removed node (from the start of the bucket up to the removed node).
66 * All encountered nodes with "removed" flag set in their next
67 * pointers are removed from the linked-list. If the cmpxchg used for
68 * removal fails (due to concurrent garbage-collection or concurrent
69 * add), we retry from the beginning of the bucket. This ensures that
70 * the node with "removed" flag set is removed from the hash table
71 * (not visible to lookups anymore) before the RCU read-side critical
72 * section held across removal ends. Furthermore, this ensures that
73 * the node with "removed" flag set is removed from the linked-list
74 * before its memory is reclaimed. Only the thread which removal
75 * successfully set the "removed" flag (with a cmpxchg) into a node's
76 * next pointer is considered to have succeeded its removal (and thus
77 * owns the node to reclaim). Because we garbage-collect starting from
78 * an invariant node (the start-of-bucket bucket node) up to the
79 * "removed" node (or find a reverse-hash that is higher), we are sure
80 * that a successful traversal of the chain leads to a chain that is
81 * present in the linked-list (the start node is never removed) and
82 * that is does not contain the "removed" node anymore, even if
83 * concurrent delete/add operations are changing the structure of the
85 * - The add operation performs gargage collection of buckets if it
86 * encounters nodes with removed flag set in the bucket where it wants
87 * to add its new node. This ensures lock-freedom of add operation by
88 * helping the remover unlink nodes from the list rather than to wait
90 * - A RCU "order table" indexed by log2(hash index) is copied and
91 * expanded by the resize operation. This order table allows finding
92 * the "bucket node" tables.
93 * - There is one bucket node table per hash index order. The size of
94 * each bucket node table is half the number of hashes contained in
95 * this order (except for order 0).
96 * - synchronzie_rcu is used to garbage-collect the old bucket node table.
97 * - The per-order bucket node tables contain a compact version of the
98 * hash table nodes. These tables are invariant after they are
99 * populated into the hash table.
101 * Bucket node tables:
103 * hash table hash table the last all bucket node tables
104 * order size bucket node 0 1 2 3 4 5 6(index)
111 * 5 32 16 1 1 2 4 8 16
112 * 6 64 32 1 1 2 4 8 16 32
114 * When growing/shrinking, we only focus on the last bucket node table
115 * which size is (!order ? 1 : (1 << (order -1))).
117 * Example for growing/shrinking:
118 * grow hash table from order 5 to 6: init the index=6 bucket node table
119 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
121 * A bit of ascii art explanation:
123 * Order index is the off-by-one compare to the actual power of 2 because
124 * we use index 0 to deal with the 0 special-case.
126 * This shows the nodes for a small table ordered by reversed bits:
138 * This shows the nodes in order of non-reversed bits, linked by
139 * reversed-bit order.
144 * 2 | | 2 010 010 <- |
145 * | | | 3 011 110 | <- |
146 * 3 -> | | | 4 100 001 | |
162 #include <urcu-call-rcu.h>
163 #include <urcu/arch.h>
164 #include <urcu/uatomic.h>
165 #include <urcu/compiler.h>
169 #include "rculfhash.h"
170 #include "rculfhash-internal.h"
171 #include "urcu-flavor.h"
174 * Split-counters lazily update the global counter each 1024
175 * addition/removal. It automatically keeps track of resize required.
176 * We use the bucket length as indicator for need to expand for small
177 * tables and machines lacking per-cpu data suppport.
179 #define COUNT_COMMIT_ORDER 10
180 #define DEFAULT_SPLIT_COUNT_MASK 0xFUL
181 #define CHAIN_LEN_TARGET 1
182 #define CHAIN_LEN_RESIZE_THRESHOLD 3
185 * Define the minimum table size.
187 #define MIN_TABLE_ORDER 0
188 #define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
191 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
193 #define MIN_PARTITION_PER_THREAD_ORDER 12
194 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
197 * The removed flag needs to be updated atomically with the pointer.
198 * It indicates that no node must attach to the node scheduled for
199 * removal, and that node garbage collection must be performed.
200 * The bucket flag does not require to be updated atomically with the
201 * pointer, but it is added as a pointer low bit flag to save space.
203 #define REMOVED_FLAG (1UL << 0)
204 #define BUCKET_FLAG (1UL << 1)
205 #define REMOVAL_OWNER_FLAG (1UL << 2)
206 #define FLAGS_MASK ((1UL << 3) - 1)
208 /* Value of the end pointer. Should not interact with flags. */
209 #define END_VALUE NULL
211 DEFINE_RCU_FLAVOR(rcu_flavor
);
214 * ht_items_count: Split-counters counting the number of node addition
215 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
216 * is set at hash table creation.
218 * These are free-running counters, never reset to zero. They count the
219 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
220 * operations to update the global counter. We choose a power-of-2 value
221 * for the trigger to deal with 32 or 64-bit overflow of the counter.
223 struct ht_items_count
{
224 unsigned long add
, del
;
225 } __attribute__((aligned(CAA_CACHE_LINE_SIZE
)));
228 * rcu_resize_work: Contains arguments passed to RCU worker thread
229 * responsible for performing lazy resize.
231 struct rcu_resize_work
{
232 struct rcu_head head
;
237 * partition_resize_work: Contains arguments passed to worker threads
238 * executing the hash table resize on partitions of the hash table
239 * assigned to each processor's worker thread.
241 struct partition_resize_work
{
244 unsigned long i
, start
, len
;
245 void (*fct
)(struct cds_lfht
*ht
, unsigned long i
,
246 unsigned long start
, unsigned long len
);
250 * Algorithm to reverse bits in a word by lookup table, extended to
253 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
254 * Originally from Public Domain.
257 static const uint8_t BitReverseTable256
[256] =
259 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
260 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
261 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
262 R6(0), R6(2), R6(1), R6(3)
269 uint8_t bit_reverse_u8(uint8_t v
)
271 return BitReverseTable256
[v
];
274 static __attribute__((unused
))
275 uint32_t bit_reverse_u32(uint32_t v
)
277 return ((uint32_t) bit_reverse_u8(v
) << 24) |
278 ((uint32_t) bit_reverse_u8(v
>> 8) << 16) |
279 ((uint32_t) bit_reverse_u8(v
>> 16) << 8) |
280 ((uint32_t) bit_reverse_u8(v
>> 24));
283 static __attribute__((unused
))
284 uint64_t bit_reverse_u64(uint64_t v
)
286 return ((uint64_t) bit_reverse_u8(v
) << 56) |
287 ((uint64_t) bit_reverse_u8(v
>> 8) << 48) |
288 ((uint64_t) bit_reverse_u8(v
>> 16) << 40) |
289 ((uint64_t) bit_reverse_u8(v
>> 24) << 32) |
290 ((uint64_t) bit_reverse_u8(v
>> 32) << 24) |
291 ((uint64_t) bit_reverse_u8(v
>> 40) << 16) |
292 ((uint64_t) bit_reverse_u8(v
>> 48) << 8) |
293 ((uint64_t) bit_reverse_u8(v
>> 56));
297 unsigned long bit_reverse_ulong(unsigned long v
)
299 #if (CAA_BITS_PER_LONG == 32)
300 return bit_reverse_u32(v
);
302 return bit_reverse_u64(v
);
307 * fls: returns the position of the most significant bit.
308 * Returns 0 if no bit is set, else returns the position of the most
309 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
311 #if defined(__i386) || defined(__x86_64)
313 unsigned int fls_u32(uint32_t x
)
321 : "=r" (r
) : "rm" (x
));
327 #if defined(__x86_64)
329 unsigned int fls_u64(uint64_t x
)
337 : "=r" (r
) : "rm" (x
));
344 static __attribute__((unused
))
345 unsigned int fls_u64(uint64_t x
)
352 if (!(x
& 0xFFFFFFFF00000000ULL
)) {
356 if (!(x
& 0xFFFF000000000000ULL
)) {
360 if (!(x
& 0xFF00000000000000ULL
)) {
364 if (!(x
& 0xF000000000000000ULL
)) {
368 if (!(x
& 0xC000000000000000ULL
)) {
372 if (!(x
& 0x8000000000000000ULL
)) {
381 static __attribute__((unused
))
382 unsigned int fls_u32(uint32_t x
)
388 if (!(x
& 0xFFFF0000U
)) {
392 if (!(x
& 0xFF000000U
)) {
396 if (!(x
& 0xF0000000U
)) {
400 if (!(x
& 0xC0000000U
)) {
404 if (!(x
& 0x80000000U
)) {
412 unsigned int cds_lfht_fls_ulong(unsigned long x
)
414 #if (CAA_BITS_PER_LONG == 32)
422 * Return the minimum order for which x <= (1UL << order).
423 * Return -1 if x is 0.
425 int cds_lfht_get_count_order_u32(uint32_t x
)
430 return fls_u32(x
- 1);
434 * Return the minimum order for which x <= (1UL << order).
435 * Return -1 if x is 0.
437 int cds_lfht_get_count_order_ulong(unsigned long x
)
442 return cds_lfht_fls_ulong(x
- 1);
446 void cds_lfht_resize_lazy_grow(struct cds_lfht
*ht
, unsigned long size
, int growth
);
449 void cds_lfht_resize_lazy_count(struct cds_lfht
*ht
, unsigned long size
,
450 unsigned long count
);
452 static long nr_cpus_mask
= -1;
453 static long split_count_mask
= -1;
455 #if defined(HAVE_SYSCONF)
456 static void ht_init_nr_cpus_mask(void)
460 maxcpus
= sysconf(_SC_NPROCESSORS_CONF
);
466 * round up number of CPUs to next power of two, so we
467 * can use & for modulo.
469 maxcpus
= 1UL << cds_lfht_get_count_order_ulong(maxcpus
);
470 nr_cpus_mask
= maxcpus
- 1;
472 #else /* #if defined(HAVE_SYSCONF) */
473 static void ht_init_nr_cpus_mask(void)
477 #endif /* #else #if defined(HAVE_SYSCONF) */
480 void alloc_split_items_count(struct cds_lfht
*ht
)
482 struct ht_items_count
*count
;
484 if (nr_cpus_mask
== -1) {
485 ht_init_nr_cpus_mask();
486 if (nr_cpus_mask
< 0)
487 split_count_mask
= DEFAULT_SPLIT_COUNT_MASK
;
489 split_count_mask
= nr_cpus_mask
;
492 assert(split_count_mask
>= 0);
494 if (ht
->flags
& CDS_LFHT_ACCOUNTING
) {
495 ht
->split_count
= calloc(split_count_mask
+ 1, sizeof(*count
));
496 assert(ht
->split_count
);
498 ht
->split_count
= NULL
;
503 void free_split_items_count(struct cds_lfht
*ht
)
505 poison_free(ht
->split_count
);
508 #if defined(HAVE_SCHED_GETCPU)
510 int ht_get_split_count_index(unsigned long hash
)
514 assert(split_count_mask
>= 0);
515 cpu
= sched_getcpu();
516 if (caa_unlikely(cpu
< 0))
517 return hash
& split_count_mask
;
519 return cpu
& split_count_mask
;
521 #else /* #if defined(HAVE_SCHED_GETCPU) */
523 int ht_get_split_count_index(unsigned long hash
)
525 return hash
& split_count_mask
;
527 #endif /* #else #if defined(HAVE_SCHED_GETCPU) */
530 void ht_count_add(struct cds_lfht
*ht
, unsigned long size
, unsigned long hash
)
532 unsigned long split_count
;
536 if (caa_unlikely(!ht
->split_count
))
538 index
= ht_get_split_count_index(hash
);
539 split_count
= uatomic_add_return(&ht
->split_count
[index
].add
, 1);
540 if (caa_likely(split_count
& ((1UL << COUNT_COMMIT_ORDER
) - 1)))
542 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
544 dbg_printf("add split count %lu\n", split_count
);
545 count
= uatomic_add_return(&ht
->count
,
546 1UL << COUNT_COMMIT_ORDER
);
547 if (caa_likely(count
& (count
- 1)))
549 /* Only if global count is power of 2 */
551 if ((count
>> CHAIN_LEN_RESIZE_THRESHOLD
) < size
)
553 dbg_printf("add set global %ld\n", count
);
554 cds_lfht_resize_lazy_count(ht
, size
,
555 count
>> (CHAIN_LEN_TARGET
- 1));
559 void ht_count_del(struct cds_lfht
*ht
, unsigned long size
, unsigned long hash
)
561 unsigned long split_count
;
565 if (caa_unlikely(!ht
->split_count
))
567 index
= ht_get_split_count_index(hash
);
568 split_count
= uatomic_add_return(&ht
->split_count
[index
].del
, 1);
569 if (caa_likely(split_count
& ((1UL << COUNT_COMMIT_ORDER
) - 1)))
571 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
573 dbg_printf("del split count %lu\n", split_count
);
574 count
= uatomic_add_return(&ht
->count
,
575 -(1UL << COUNT_COMMIT_ORDER
));
576 if (caa_likely(count
& (count
- 1)))
578 /* Only if global count is power of 2 */
580 if ((count
>> CHAIN_LEN_RESIZE_THRESHOLD
) >= size
)
582 dbg_printf("del set global %ld\n", count
);
584 * Don't shrink table if the number of nodes is below a
587 if (count
< (1UL << COUNT_COMMIT_ORDER
) * (split_count_mask
+ 1))
589 cds_lfht_resize_lazy_count(ht
, size
,
590 count
>> (CHAIN_LEN_TARGET
- 1));
594 void check_resize(struct cds_lfht
*ht
, unsigned long size
, uint32_t chain_len
)
598 if (!(ht
->flags
& CDS_LFHT_AUTO_RESIZE
))
600 count
= uatomic_read(&ht
->count
);
602 * Use bucket-local length for small table expand and for
603 * environments lacking per-cpu data support.
605 if (count
>= (1UL << COUNT_COMMIT_ORDER
))
608 dbg_printf("WARNING: large chain length: %u.\n",
610 if (chain_len
>= CHAIN_LEN_RESIZE_THRESHOLD
)
611 cds_lfht_resize_lazy_grow(ht
, size
,
612 cds_lfht_get_count_order_u32(chain_len
- (CHAIN_LEN_TARGET
- 1)));
616 struct cds_lfht_node
*clear_flag(struct cds_lfht_node
*node
)
618 return (struct cds_lfht_node
*) (((unsigned long) node
) & ~FLAGS_MASK
);
622 int is_removed(struct cds_lfht_node
*node
)
624 return ((unsigned long) node
) & REMOVED_FLAG
;
628 struct cds_lfht_node
*flag_removed(struct cds_lfht_node
*node
)
630 return (struct cds_lfht_node
*) (((unsigned long) node
) | REMOVED_FLAG
);
634 int is_bucket(struct cds_lfht_node
*node
)
636 return ((unsigned long) node
) & BUCKET_FLAG
;
640 struct cds_lfht_node
*flag_bucket(struct cds_lfht_node
*node
)
642 return (struct cds_lfht_node
*) (((unsigned long) node
) | BUCKET_FLAG
);
646 int is_removal_owner(struct cds_lfht_node
*node
)
648 return ((unsigned long) node
) & REMOVAL_OWNER_FLAG
;
652 struct cds_lfht_node
*flag_removal_owner(struct cds_lfht_node
*node
)
654 return (struct cds_lfht_node
*) (((unsigned long) node
) | REMOVAL_OWNER_FLAG
);
658 struct cds_lfht_node
*get_end(void)
660 return (struct cds_lfht_node
*) END_VALUE
;
664 int is_end(struct cds_lfht_node
*node
)
666 return clear_flag(node
) == (struct cds_lfht_node
*) END_VALUE
;
670 unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr
,
673 unsigned long old1
, old2
;
675 old1
= uatomic_read(ptr
);
680 } while ((old1
= uatomic_cmpxchg(ptr
, old2
, v
)) != old2
);
685 void cds_lfht_alloc_bucket_table(struct cds_lfht
*ht
, unsigned long order
)
687 return ht
->mm
->alloc_bucket_table(ht
, order
);
691 * cds_lfht_free_bucket_table() should be called with decreasing order.
692 * When cds_lfht_free_bucket_table(0) is called, it means the whole
696 void cds_lfht_free_bucket_table(struct cds_lfht
*ht
, unsigned long order
)
698 return ht
->mm
->free_bucket_table(ht
, order
);
702 struct cds_lfht_node
*bucket_at(struct cds_lfht
*ht
, unsigned long index
)
704 return ht
->bucket_at(ht
, index
);
708 struct cds_lfht_node
*lookup_bucket(struct cds_lfht
*ht
, unsigned long size
,
712 return bucket_at(ht
, hash
& (size
- 1));
716 * Remove all logically deleted nodes from a bucket up to a certain node key.
719 void _cds_lfht_gc_bucket(struct cds_lfht_node
*bucket
, struct cds_lfht_node
*node
)
721 struct cds_lfht_node
*iter_prev
, *iter
, *next
, *new_next
;
723 assert(!is_bucket(bucket
));
724 assert(!is_removed(bucket
));
725 assert(!is_bucket(node
));
726 assert(!is_removed(node
));
729 /* We can always skip the bucket node initially */
730 iter
= rcu_dereference(iter_prev
->next
);
731 assert(!is_removed(iter
));
732 assert(iter_prev
->reverse_hash
<= node
->reverse_hash
);
734 * We should never be called with bucket (start of chain)
735 * and logically removed node (end of path compression
736 * marker) being the actual same node. This would be a
737 * bug in the algorithm implementation.
739 assert(bucket
!= node
);
741 if (caa_unlikely(is_end(iter
)))
743 if (caa_likely(clear_flag(iter
)->reverse_hash
> node
->reverse_hash
))
745 next
= rcu_dereference(clear_flag(iter
)->next
);
746 if (caa_likely(is_removed(next
)))
748 iter_prev
= clear_flag(iter
);
751 assert(!is_removed(iter
));
753 new_next
= flag_bucket(clear_flag(next
));
755 new_next
= clear_flag(next
);
756 (void) uatomic_cmpxchg(&iter_prev
->next
, iter
, new_next
);
761 int _cds_lfht_replace(struct cds_lfht
*ht
, unsigned long size
,
762 struct cds_lfht_node
*old_node
,
763 struct cds_lfht_node
*old_next
,
764 struct cds_lfht_node
*new_node
)
766 struct cds_lfht_node
*bucket
, *ret_next
;
768 if (!old_node
) /* Return -ENOENT if asked to replace NULL node */
771 assert(!is_removed(old_node
));
772 assert(!is_bucket(old_node
));
773 assert(!is_removed(new_node
));
774 assert(!is_bucket(new_node
));
775 assert(new_node
!= old_node
);
777 /* Insert after node to be replaced */
778 if (is_removed(old_next
)) {
780 * Too late, the old node has been removed under us
781 * between lookup and replace. Fail.
785 assert(old_next
== clear_flag(old_next
));
786 assert(new_node
!= old_next
);
787 new_node
->next
= old_next
;
789 * Here is the whole trick for lock-free replace: we add
790 * the replacement node _after_ the node we want to
791 * replace by atomically setting its next pointer at the
792 * same time we set its removal flag. Given that
793 * the lookups/get next use an iterator aware of the
794 * next pointer, they will either skip the old node due
795 * to the removal flag and see the new node, or use
796 * the old node, but will not see the new one.
797 * This is a replacement of a node with another node
798 * that has the same value: we are therefore not
799 * removing a value from the hash table.
801 ret_next
= uatomic_cmpxchg(&old_node
->next
,
802 old_next
, flag_removed(new_node
));
803 if (ret_next
== old_next
)
804 break; /* We performed the replacement. */
809 * Ensure that the old node is not visible to readers anymore:
810 * lookup for the node, and remove it (along with any other
811 * logically removed node) if found.
813 bucket
= lookup_bucket(ht
, size
, bit_reverse_ulong(old_node
->reverse_hash
));
814 _cds_lfht_gc_bucket(bucket
, new_node
);
816 assert(is_removed(rcu_dereference(old_node
->next
)));
821 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
822 * mode. A NULL unique_ret allows creation of duplicate keys.
825 void _cds_lfht_add(struct cds_lfht
*ht
,
827 cds_lfht_match_fct match
,
830 struct cds_lfht_node
*node
,
831 struct cds_lfht_iter
*unique_ret
,
834 struct cds_lfht_node
*iter_prev
, *iter
, *next
, *new_node
, *new_next
,
836 struct cds_lfht_node
*bucket
;
838 assert(!is_bucket(node
));
839 assert(!is_removed(node
));
840 bucket
= lookup_bucket(ht
, size
, hash
);
842 uint32_t chain_len
= 0;
845 * iter_prev points to the non-removed node prior to the
849 /* We can always skip the bucket node initially */
850 iter
= rcu_dereference(iter_prev
->next
);
851 assert(iter_prev
->reverse_hash
<= node
->reverse_hash
);
853 if (caa_unlikely(is_end(iter
)))
855 if (caa_likely(clear_flag(iter
)->reverse_hash
> node
->reverse_hash
))
858 /* bucket node is the first node of the identical-hash-value chain */
859 if (bucket_flag
&& clear_flag(iter
)->reverse_hash
== node
->reverse_hash
)
862 next
= rcu_dereference(clear_flag(iter
)->next
);
863 if (caa_unlikely(is_removed(next
)))
869 && clear_flag(iter
)->reverse_hash
== node
->reverse_hash
) {
870 struct cds_lfht_iter d_iter
= { .node
= node
, .next
= iter
, };
873 * uniquely adding inserts the node as the first
874 * node of the identical-hash-value node chain.
876 * This semantic ensures no duplicated keys
877 * should ever be observable in the table
878 * (including observe one node by one node
879 * by forward iterations)
881 cds_lfht_next_duplicate(ht
, match
, key
, &d_iter
);
885 *unique_ret
= d_iter
;
889 /* Only account for identical reverse hash once */
890 if (iter_prev
->reverse_hash
!= clear_flag(iter
)->reverse_hash
892 check_resize(ht
, size
, ++chain_len
);
893 iter_prev
= clear_flag(iter
);
898 assert(node
!= clear_flag(iter
));
899 assert(!is_removed(iter_prev
));
900 assert(!is_removed(iter
));
901 assert(iter_prev
!= node
);
903 node
->next
= clear_flag(iter
);
905 node
->next
= flag_bucket(clear_flag(iter
));
907 new_node
= flag_bucket(node
);
910 if (uatomic_cmpxchg(&iter_prev
->next
, iter
,
912 continue; /* retry */
919 assert(!is_removed(iter
));
921 new_next
= flag_bucket(clear_flag(next
));
923 new_next
= clear_flag(next
);
924 (void) uatomic_cmpxchg(&iter_prev
->next
, iter
, new_next
);
929 unique_ret
->node
= return_node
;
930 /* unique_ret->next left unset, never used. */
935 int _cds_lfht_del(struct cds_lfht
*ht
, unsigned long size
,
936 struct cds_lfht_node
*node
)
938 struct cds_lfht_node
*bucket
, *next
;
940 if (!node
) /* Return -ENOENT if asked to delete NULL node */
943 /* logically delete the node */
944 assert(!is_bucket(node
));
945 assert(!is_removed(node
));
946 assert(!is_removal_owner(node
));
949 * We are first checking if the node had previously been
950 * logically removed (this check is not atomic with setting the
951 * logical removal flag). Return -ENOENT if the node had
952 * previously been removed.
954 next
= rcu_dereference(node
->next
);
955 if (caa_unlikely(is_removed(next
)))
957 assert(!is_bucket(next
));
959 * We set the REMOVED_FLAG unconditionally. Note that there may
960 * be more than one concurrent thread setting this flag.
961 * Knowing which wins the race will be known after the garbage
962 * collection phase, stay tuned!
964 uatomic_or(&node
->next
, REMOVED_FLAG
);
965 /* We performed the (logical) deletion. */
968 * Ensure that the node is not visible to readers anymore: lookup for
969 * the node, and remove it (along with any other logically removed node)
972 bucket
= lookup_bucket(ht
, size
, bit_reverse_ulong(node
->reverse_hash
));
973 _cds_lfht_gc_bucket(bucket
, node
);
975 assert(is_removed(rcu_dereference(node
->next
)));
977 * Last phase: atomically exchange node->next with a version
978 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
979 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
980 * the node and win the removal race.
981 * It is interesting to note that all "add" paths are forbidden
982 * to change the next pointer starting from the point where the
983 * REMOVED_FLAG is set, so here using a read, followed by a
984 * xchg() suffice to guarantee that the xchg() will ever only
985 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
988 if (!is_removal_owner(uatomic_xchg(&node
->next
,
989 flag_removal_owner(node
->next
))))
996 void *partition_resize_thread(void *arg
)
998 struct partition_resize_work
*work
= arg
;
1000 work
->ht
->flavor
->register_thread();
1001 work
->fct(work
->ht
, work
->i
, work
->start
, work
->len
);
1002 work
->ht
->flavor
->unregister_thread();
1007 void partition_resize_helper(struct cds_lfht
*ht
, unsigned long i
,
1009 void (*fct
)(struct cds_lfht
*ht
, unsigned long i
,
1010 unsigned long start
, unsigned long len
))
1012 unsigned long partition_len
;
1013 struct partition_resize_work
*work
;
1015 unsigned long nr_threads
;
1018 * Note: nr_cpus_mask + 1 is always power of 2.
1019 * We spawn just the number of threads we need to satisfy the minimum
1020 * partition size, up to the number of CPUs in the system.
1022 if (nr_cpus_mask
> 0) {
1023 nr_threads
= min(nr_cpus_mask
+ 1,
1024 len
>> MIN_PARTITION_PER_THREAD_ORDER
);
1028 partition_len
= len
>> cds_lfht_get_count_order_ulong(nr_threads
);
1029 work
= calloc(nr_threads
, sizeof(*work
));
1031 for (thread
= 0; thread
< nr_threads
; thread
++) {
1032 work
[thread
].ht
= ht
;
1034 work
[thread
].len
= partition_len
;
1035 work
[thread
].start
= thread
* partition_len
;
1036 work
[thread
].fct
= fct
;
1037 ret
= pthread_create(&(work
[thread
].thread_id
), ht
->resize_attr
,
1038 partition_resize_thread
, &work
[thread
]);
1041 for (thread
= 0; thread
< nr_threads
; thread
++) {
1042 ret
= pthread_join(work
[thread
].thread_id
, NULL
);
1049 * Holding RCU read lock to protect _cds_lfht_add against memory
1050 * reclaim that could be performed by other call_rcu worker threads (ABA
1053 * When we reach a certain length, we can split this population phase over
1054 * many worker threads, based on the number of CPUs available in the system.
1055 * This should therefore take care of not having the expand lagging behind too
1056 * many concurrent insertion threads by using the scheduler's ability to
1057 * schedule bucket node population fairly with insertions.
1060 void init_table_populate_partition(struct cds_lfht
*ht
, unsigned long i
,
1061 unsigned long start
, unsigned long len
)
1063 unsigned long j
, size
= 1UL << (i
- 1);
1065 assert(i
> MIN_TABLE_ORDER
);
1066 ht
->flavor
->read_lock();
1067 for (j
= size
+ start
; j
< size
+ start
+ len
; j
++) {
1068 struct cds_lfht_node
*new_node
= bucket_at(ht
, j
);
1070 assert(j
>= size
&& j
< (size
<< 1));
1071 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1073 new_node
->reverse_hash
= bit_reverse_ulong(j
);
1074 _cds_lfht_add(ht
, j
, NULL
, NULL
, size
, new_node
, NULL
, 1);
1076 ht
->flavor
->read_unlock();
1080 void init_table_populate(struct cds_lfht
*ht
, unsigned long i
,
1083 assert(nr_cpus_mask
!= -1);
1084 if (nr_cpus_mask
< 0 || len
< 2 * MIN_PARTITION_PER_THREAD
) {
1085 ht
->flavor
->thread_online();
1086 init_table_populate_partition(ht
, i
, 0, len
);
1087 ht
->flavor
->thread_offline();
1090 partition_resize_helper(ht
, i
, len
, init_table_populate_partition
);
1094 void init_table(struct cds_lfht
*ht
,
1095 unsigned long first_order
, unsigned long last_order
)
1099 dbg_printf("init table: first_order %lu last_order %lu\n",
1100 first_order
, last_order
);
1101 assert(first_order
> MIN_TABLE_ORDER
);
1102 for (i
= first_order
; i
<= last_order
; i
++) {
1105 len
= 1UL << (i
- 1);
1106 dbg_printf("init order %lu len: %lu\n", i
, len
);
1108 /* Stop expand if the resize target changes under us */
1109 if (CMM_LOAD_SHARED(ht
->resize_target
) < (1UL << i
))
1112 cds_lfht_alloc_bucket_table(ht
, i
);
1115 * Set all bucket nodes reverse hash values for a level and
1116 * link all bucket nodes into the table.
1118 init_table_populate(ht
, i
, len
);
1121 * Update table size.
1123 cmm_smp_wmb(); /* populate data before RCU size */
1124 CMM_STORE_SHARED(ht
->size
, 1UL << i
);
1126 dbg_printf("init new size: %lu\n", 1UL << i
);
1127 if (CMM_LOAD_SHARED(ht
->in_progress_destroy
))
1133 * Holding RCU read lock to protect _cds_lfht_remove against memory
1134 * reclaim that could be performed by other call_rcu worker threads (ABA
1136 * For a single level, we logically remove and garbage collect each node.
1138 * As a design choice, we perform logical removal and garbage collection on a
1139 * node-per-node basis to simplify this algorithm. We also assume keeping good
1140 * cache locality of the operation would overweight possible performance gain
1141 * that could be achieved by batching garbage collection for multiple levels.
1142 * However, this would have to be justified by benchmarks.
1144 * Concurrent removal and add operations are helping us perform garbage
1145 * collection of logically removed nodes. We guarantee that all logically
1146 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1147 * invoked to free a hole level of bucket nodes (after a grace period).
1149 * Logical removal and garbage collection can therefore be done in batch or on a
1150 * node-per-node basis, as long as the guarantee above holds.
1152 * When we reach a certain length, we can split this removal over many worker
1153 * threads, based on the number of CPUs available in the system. This should
1154 * take care of not letting resize process lag behind too many concurrent
1155 * updater threads actively inserting into the hash table.
1158 void remove_table_partition(struct cds_lfht
*ht
, unsigned long i
,
1159 unsigned long start
, unsigned long len
)
1161 unsigned long j
, size
= 1UL << (i
- 1);
1163 assert(i
> MIN_TABLE_ORDER
);
1164 ht
->flavor
->read_lock();
1165 for (j
= size
+ start
; j
< size
+ start
+ len
; j
++) {
1166 struct cds_lfht_node
*fini_bucket
= bucket_at(ht
, j
);
1167 struct cds_lfht_node
*parent_bucket
= bucket_at(ht
, j
- size
);
1169 assert(j
>= size
&& j
< (size
<< 1));
1170 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1172 /* Set the REMOVED_FLAG to freeze the ->next for gc */
1173 uatomic_or(&fini_bucket
->next
, REMOVED_FLAG
);
1174 _cds_lfht_gc_bucket(parent_bucket
, fini_bucket
);
1176 ht
->flavor
->read_unlock();
1180 void remove_table(struct cds_lfht
*ht
, unsigned long i
, unsigned long len
)
1183 assert(nr_cpus_mask
!= -1);
1184 if (nr_cpus_mask
< 0 || len
< 2 * MIN_PARTITION_PER_THREAD
) {
1185 ht
->flavor
->thread_online();
1186 remove_table_partition(ht
, i
, 0, len
);
1187 ht
->flavor
->thread_offline();
1190 partition_resize_helper(ht
, i
, len
, remove_table_partition
);
1194 * fini_table() is never called for first_order == 0, which is why
1195 * free_by_rcu_order == 0 can be used as criterion to know if free must
1199 void fini_table(struct cds_lfht
*ht
,
1200 unsigned long first_order
, unsigned long last_order
)
1203 unsigned long free_by_rcu_order
= 0;
1205 dbg_printf("fini table: first_order %lu last_order %lu\n",
1206 first_order
, last_order
);
1207 assert(first_order
> MIN_TABLE_ORDER
);
1208 for (i
= last_order
; i
>= first_order
; i
--) {
1211 len
= 1UL << (i
- 1);
1212 dbg_printf("fini order %lu len: %lu\n", i
, len
);
1214 /* Stop shrink if the resize target changes under us */
1215 if (CMM_LOAD_SHARED(ht
->resize_target
) > (1UL << (i
- 1)))
1218 cmm_smp_wmb(); /* populate data before RCU size */
1219 CMM_STORE_SHARED(ht
->size
, 1UL << (i
- 1));
1222 * We need to wait for all add operations to reach Q.S. (and
1223 * thus use the new table for lookups) before we can start
1224 * releasing the old bucket nodes. Otherwise their lookup will
1225 * return a logically removed node as insert position.
1227 ht
->flavor
->update_synchronize_rcu();
1228 if (free_by_rcu_order
)
1229 cds_lfht_free_bucket_table(ht
, free_by_rcu_order
);
1232 * Set "removed" flag in bucket nodes about to be removed.
1233 * Unlink all now-logically-removed bucket node pointers.
1234 * Concurrent add/remove operation are helping us doing
1237 remove_table(ht
, i
, len
);
1239 free_by_rcu_order
= i
;
1241 dbg_printf("fini new size: %lu\n", 1UL << i
);
1242 if (CMM_LOAD_SHARED(ht
->in_progress_destroy
))
1246 if (free_by_rcu_order
) {
1247 ht
->flavor
->update_synchronize_rcu();
1248 cds_lfht_free_bucket_table(ht
, free_by_rcu_order
);
1253 void cds_lfht_create_bucket(struct cds_lfht
*ht
, unsigned long size
)
1255 struct cds_lfht_node
*prev
, *node
;
1256 unsigned long order
, len
, i
;
1258 cds_lfht_alloc_bucket_table(ht
, 0);
1260 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1261 node
= bucket_at(ht
, 0);
1262 node
->next
= flag_bucket(get_end());
1263 node
->reverse_hash
= 0;
1265 for (order
= 1; order
< cds_lfht_get_count_order_ulong(size
) + 1; order
++) {
1266 len
= 1UL << (order
- 1);
1267 cds_lfht_alloc_bucket_table(ht
, order
);
1269 for (i
= 0; i
< len
; i
++) {
1271 * Now, we are trying to init the node with the
1272 * hash=(len+i) (which is also a bucket with the
1273 * index=(len+i)) and insert it into the hash table,
1274 * so this node has to be inserted after the bucket
1275 * with the index=(len+i)&(len-1)=i. And because there
1276 * is no other non-bucket node nor bucket node with
1277 * larger index/hash inserted, so the bucket node
1278 * being inserted should be inserted directly linked
1279 * after the bucket node with index=i.
1281 prev
= bucket_at(ht
, i
);
1282 node
= bucket_at(ht
, len
+ i
);
1284 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1285 order
, len
+ i
, len
+ i
);
1286 node
->reverse_hash
= bit_reverse_ulong(len
+ i
);
1288 /* insert after prev */
1289 assert(is_bucket(prev
->next
));
1290 node
->next
= prev
->next
;
1291 prev
->next
= flag_bucket(node
);
1296 struct cds_lfht
*_cds_lfht_new(unsigned long init_size
,
1297 unsigned long min_nr_alloc_buckets
,
1298 unsigned long max_nr_buckets
,
1300 const struct cds_lfht_mm_type
*mm
,
1301 const struct rcu_flavor_struct
*flavor
,
1302 pthread_attr_t
*attr
)
1304 struct cds_lfht
*ht
;
1305 unsigned long order
;
1307 /* min_nr_alloc_buckets must be power of two */
1308 if (!min_nr_alloc_buckets
|| (min_nr_alloc_buckets
& (min_nr_alloc_buckets
- 1)))
1311 /* init_size must be power of two */
1312 if (!init_size
|| (init_size
& (init_size
- 1)))
1316 * Memory management plugin default.
1319 if (CAA_BITS_PER_LONG
> 32
1321 && max_nr_buckets
<= (1ULL << 32)) {
1323 * For 64-bit architectures, with max number of
1324 * buckets small enough not to use the entire
1325 * 64-bit memory mapping space (and allowing a
1326 * fair number of hash table instances), use the
1327 * mmap allocator, which is faster than the
1330 mm
= &cds_lfht_mm_mmap
;
1333 * The fallback is to use the order allocator.
1335 mm
= &cds_lfht_mm_order
;
1339 /* max_nr_buckets == 0 for order based mm means infinite */
1340 if (mm
== &cds_lfht_mm_order
&& !max_nr_buckets
)
1341 max_nr_buckets
= 1UL << (MAX_TABLE_ORDER
- 1);
1343 /* max_nr_buckets must be power of two */
1344 if (!max_nr_buckets
|| (max_nr_buckets
& (max_nr_buckets
- 1)))
1347 min_nr_alloc_buckets
= max(min_nr_alloc_buckets
, MIN_TABLE_SIZE
);
1348 init_size
= max(init_size
, MIN_TABLE_SIZE
);
1349 max_nr_buckets
= max(max_nr_buckets
, min_nr_alloc_buckets
);
1350 init_size
= min(init_size
, max_nr_buckets
);
1352 ht
= mm
->alloc_cds_lfht(min_nr_alloc_buckets
, max_nr_buckets
);
1354 assert(ht
->mm
== mm
);
1355 assert(ht
->bucket_at
== mm
->bucket_at
);
1358 ht
->flavor
= flavor
;
1359 ht
->resize_attr
= attr
;
1360 alloc_split_items_count(ht
);
1361 /* this mutex should not nest in read-side C.S. */
1362 pthread_mutex_init(&ht
->resize_mutex
, NULL
);
1363 order
= cds_lfht_get_count_order_ulong(init_size
);
1364 ht
->resize_target
= 1UL << order
;
1365 cds_lfht_create_bucket(ht
, 1UL << order
);
1366 ht
->size
= 1UL << order
;
1370 void cds_lfht_lookup(struct cds_lfht
*ht
, unsigned long hash
,
1371 cds_lfht_match_fct match
, const void *key
,
1372 struct cds_lfht_iter
*iter
)
1374 struct cds_lfht_node
*node
, *next
, *bucket
;
1375 unsigned long reverse_hash
, size
;
1377 reverse_hash
= bit_reverse_ulong(hash
);
1379 size
= rcu_dereference(ht
->size
);
1380 bucket
= lookup_bucket(ht
, size
, hash
);
1381 /* We can always skip the bucket node initially */
1382 node
= rcu_dereference(bucket
->next
);
1383 node
= clear_flag(node
);
1385 if (caa_unlikely(is_end(node
))) {
1389 if (caa_unlikely(node
->reverse_hash
> reverse_hash
)) {
1393 next
= rcu_dereference(node
->next
);
1394 assert(node
== clear_flag(node
));
1395 if (caa_likely(!is_removed(next
))
1397 && node
->reverse_hash
== reverse_hash
1398 && caa_likely(match(node
, key
))) {
1401 node
= clear_flag(next
);
1403 assert(!node
|| !is_bucket(rcu_dereference(node
->next
)));
1408 void cds_lfht_next_duplicate(struct cds_lfht
*ht
, cds_lfht_match_fct match
,
1409 const void *key
, struct cds_lfht_iter
*iter
)
1411 struct cds_lfht_node
*node
, *next
;
1412 unsigned long reverse_hash
;
1415 reverse_hash
= node
->reverse_hash
;
1417 node
= clear_flag(next
);
1420 if (caa_unlikely(is_end(node
))) {
1424 if (caa_unlikely(node
->reverse_hash
> reverse_hash
)) {
1428 next
= rcu_dereference(node
->next
);
1429 if (caa_likely(!is_removed(next
))
1431 && caa_likely(match(node
, key
))) {
1434 node
= clear_flag(next
);
1436 assert(!node
|| !is_bucket(rcu_dereference(node
->next
)));
1441 void cds_lfht_next(struct cds_lfht
*ht
, struct cds_lfht_iter
*iter
)
1443 struct cds_lfht_node
*node
, *next
;
1445 node
= clear_flag(iter
->next
);
1447 if (caa_unlikely(is_end(node
))) {
1451 next
= rcu_dereference(node
->next
);
1452 if (caa_likely(!is_removed(next
))
1453 && !is_bucket(next
)) {
1456 node
= clear_flag(next
);
1458 assert(!node
|| !is_bucket(rcu_dereference(node
->next
)));
1463 void cds_lfht_first(struct cds_lfht
*ht
, struct cds_lfht_iter
*iter
)
1466 * Get next after first bucket node. The first bucket node is the
1467 * first node of the linked list.
1469 iter
->next
= bucket_at(ht
, 0)->next
;
1470 cds_lfht_next(ht
, iter
);
1473 void cds_lfht_add(struct cds_lfht
*ht
, unsigned long hash
,
1474 struct cds_lfht_node
*node
)
1478 node
->reverse_hash
= bit_reverse_ulong(hash
);
1479 size
= rcu_dereference(ht
->size
);
1480 _cds_lfht_add(ht
, hash
, NULL
, NULL
, size
, node
, NULL
, 0);
1481 ht_count_add(ht
, size
, hash
);
1484 struct cds_lfht_node
*cds_lfht_add_unique(struct cds_lfht
*ht
,
1486 cds_lfht_match_fct match
,
1488 struct cds_lfht_node
*node
)
1491 struct cds_lfht_iter iter
;
1493 node
->reverse_hash
= bit_reverse_ulong(hash
);
1494 size
= rcu_dereference(ht
->size
);
1495 _cds_lfht_add(ht
, hash
, match
, key
, size
, node
, &iter
, 0);
1496 if (iter
.node
== node
)
1497 ht_count_add(ht
, size
, hash
);
1501 struct cds_lfht_node
*cds_lfht_add_replace(struct cds_lfht
*ht
,
1503 cds_lfht_match_fct match
,
1505 struct cds_lfht_node
*node
)
1508 struct cds_lfht_iter iter
;
1510 node
->reverse_hash
= bit_reverse_ulong(hash
);
1511 size
= rcu_dereference(ht
->size
);
1513 _cds_lfht_add(ht
, hash
, match
, key
, size
, node
, &iter
, 0);
1514 if (iter
.node
== node
) {
1515 ht_count_add(ht
, size
, hash
);
1519 if (!_cds_lfht_replace(ht
, size
, iter
.node
, iter
.next
, node
))
1524 int cds_lfht_replace(struct cds_lfht
*ht
,
1525 struct cds_lfht_iter
*old_iter
,
1527 cds_lfht_match_fct match
,
1529 struct cds_lfht_node
*new_node
)
1533 new_node
->reverse_hash
= bit_reverse_ulong(hash
);
1534 if (!old_iter
->node
)
1536 if (caa_unlikely(old_iter
->node
->reverse_hash
!= new_node
->reverse_hash
))
1538 if (caa_unlikely(!match(old_iter
->node
, key
)))
1540 size
= rcu_dereference(ht
->size
);
1541 return _cds_lfht_replace(ht
, size
, old_iter
->node
, old_iter
->next
,
1545 int cds_lfht_del(struct cds_lfht
*ht
, struct cds_lfht_node
*node
)
1547 unsigned long size
, hash
;
1550 size
= rcu_dereference(ht
->size
);
1551 ret
= _cds_lfht_del(ht
, size
, node
);
1553 hash
= bit_reverse_ulong(node
->reverse_hash
);
1554 ht_count_del(ht
, size
, hash
);
1560 int cds_lfht_delete_bucket(struct cds_lfht
*ht
)
1562 struct cds_lfht_node
*node
;
1563 unsigned long order
, i
, size
;
1565 /* Check that the table is empty */
1566 node
= bucket_at(ht
, 0);
1568 node
= clear_flag(node
)->next
;
1569 if (!is_bucket(node
))
1571 assert(!is_removed(node
));
1572 } while (!is_end(node
));
1574 * size accessed without rcu_dereference because hash table is
1578 /* Internal sanity check: all nodes left should be bucket */
1579 for (i
= 0; i
< size
; i
++) {
1580 node
= bucket_at(ht
, i
);
1581 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1582 i
, i
, bit_reverse_ulong(node
->reverse_hash
));
1583 assert(is_bucket(node
->next
));
1586 for (order
= cds_lfht_get_count_order_ulong(size
); (long)order
>= 0; order
--)
1587 cds_lfht_free_bucket_table(ht
, order
);
1593 * Should only be called when no more concurrent readers nor writers can
1594 * possibly access the table.
1596 int cds_lfht_destroy(struct cds_lfht
*ht
, pthread_attr_t
**attr
)
1600 /* Wait for in-flight resize operations to complete */
1601 _CMM_STORE_SHARED(ht
->in_progress_destroy
, 1);
1602 cmm_smp_mb(); /* Store destroy before load resize */
1603 while (uatomic_read(&ht
->in_progress_resize
))
1604 poll(NULL
, 0, 100); /* wait for 100ms */
1605 ret
= cds_lfht_delete_bucket(ht
);
1608 free_split_items_count(ht
);
1610 *attr
= ht
->resize_attr
;
1615 void cds_lfht_count_nodes(struct cds_lfht
*ht
,
1616 long *approx_before
,
1617 unsigned long *count
,
1620 struct cds_lfht_node
*node
, *next
;
1621 unsigned long nr_bucket
= 0, nr_removed
= 0;
1624 if (ht
->split_count
) {
1627 for (i
= 0; i
< split_count_mask
+ 1; i
++) {
1628 *approx_before
+= uatomic_read(&ht
->split_count
[i
].add
);
1629 *approx_before
-= uatomic_read(&ht
->split_count
[i
].del
);
1635 /* Count non-bucket nodes in the table */
1636 node
= bucket_at(ht
, 0);
1638 next
= rcu_dereference(node
->next
);
1639 if (is_removed(next
)) {
1640 if (!is_bucket(next
))
1644 } else if (!is_bucket(next
))
1648 node
= clear_flag(next
);
1649 } while (!is_end(node
));
1650 dbg_printf("number of logically removed nodes: %lu\n", nr_removed
);
1651 dbg_printf("number of bucket nodes: %lu\n", nr_bucket
);
1653 if (ht
->split_count
) {
1656 for (i
= 0; i
< split_count_mask
+ 1; i
++) {
1657 *approx_after
+= uatomic_read(&ht
->split_count
[i
].add
);
1658 *approx_after
-= uatomic_read(&ht
->split_count
[i
].del
);
1663 /* called with resize mutex held */
1665 void _do_cds_lfht_grow(struct cds_lfht
*ht
,
1666 unsigned long old_size
, unsigned long new_size
)
1668 unsigned long old_order
, new_order
;
1670 old_order
= cds_lfht_get_count_order_ulong(old_size
);
1671 new_order
= cds_lfht_get_count_order_ulong(new_size
);
1672 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1673 old_size
, old_order
, new_size
, new_order
);
1674 assert(new_size
> old_size
);
1675 init_table(ht
, old_order
+ 1, new_order
);
1678 /* called with resize mutex held */
1680 void _do_cds_lfht_shrink(struct cds_lfht
*ht
,
1681 unsigned long old_size
, unsigned long new_size
)
1683 unsigned long old_order
, new_order
;
1685 new_size
= max(new_size
, MIN_TABLE_SIZE
);
1686 old_order
= cds_lfht_get_count_order_ulong(old_size
);
1687 new_order
= cds_lfht_get_count_order_ulong(new_size
);
1688 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1689 old_size
, old_order
, new_size
, new_order
);
1690 assert(new_size
< old_size
);
1692 /* Remove and unlink all bucket nodes to remove. */
1693 fini_table(ht
, new_order
+ 1, old_order
);
1697 /* called with resize mutex held */
1699 void _do_cds_lfht_resize(struct cds_lfht
*ht
)
1701 unsigned long new_size
, old_size
;
1704 * Resize table, re-do if the target size has changed under us.
1707 assert(uatomic_read(&ht
->in_progress_resize
));
1708 if (CMM_LOAD_SHARED(ht
->in_progress_destroy
))
1710 ht
->resize_initiated
= 1;
1711 old_size
= ht
->size
;
1712 new_size
= CMM_LOAD_SHARED(ht
->resize_target
);
1713 if (old_size
< new_size
)
1714 _do_cds_lfht_grow(ht
, old_size
, new_size
);
1715 else if (old_size
> new_size
)
1716 _do_cds_lfht_shrink(ht
, old_size
, new_size
);
1717 ht
->resize_initiated
= 0;
1718 /* write resize_initiated before read resize_target */
1720 } while (ht
->size
!= CMM_LOAD_SHARED(ht
->resize_target
));
1724 unsigned long resize_target_grow(struct cds_lfht
*ht
, unsigned long new_size
)
1726 return _uatomic_xchg_monotonic_increase(&ht
->resize_target
, new_size
);
1730 void resize_target_update_count(struct cds_lfht
*ht
,
1731 unsigned long count
)
1733 count
= max(count
, MIN_TABLE_SIZE
);
1734 count
= min(count
, ht
->max_nr_buckets
);
1735 uatomic_set(&ht
->resize_target
, count
);
1738 void cds_lfht_resize(struct cds_lfht
*ht
, unsigned long new_size
)
1740 resize_target_update_count(ht
, new_size
);
1741 CMM_STORE_SHARED(ht
->resize_initiated
, 1);
1742 ht
->flavor
->thread_offline();
1743 pthread_mutex_lock(&ht
->resize_mutex
);
1744 _do_cds_lfht_resize(ht
);
1745 pthread_mutex_unlock(&ht
->resize_mutex
);
1746 ht
->flavor
->thread_online();
1750 void do_resize_cb(struct rcu_head
*head
)
1752 struct rcu_resize_work
*work
=
1753 caa_container_of(head
, struct rcu_resize_work
, head
);
1754 struct cds_lfht
*ht
= work
->ht
;
1756 ht
->flavor
->thread_offline();
1757 pthread_mutex_lock(&ht
->resize_mutex
);
1758 _do_cds_lfht_resize(ht
);
1759 pthread_mutex_unlock(&ht
->resize_mutex
);
1760 ht
->flavor
->thread_online();
1762 cmm_smp_mb(); /* finish resize before decrement */
1763 uatomic_dec(&ht
->in_progress_resize
);
1767 void __cds_lfht_resize_lazy_launch(struct cds_lfht
*ht
)
1769 struct rcu_resize_work
*work
;
1771 /* Store resize_target before read resize_initiated */
1773 if (!CMM_LOAD_SHARED(ht
->resize_initiated
)) {
1774 uatomic_inc(&ht
->in_progress_resize
);
1775 cmm_smp_mb(); /* increment resize count before load destroy */
1776 if (CMM_LOAD_SHARED(ht
->in_progress_destroy
)) {
1777 uatomic_dec(&ht
->in_progress_resize
);
1780 work
= malloc(sizeof(*work
));
1782 ht
->flavor
->update_call_rcu(&work
->head
, do_resize_cb
);
1783 CMM_STORE_SHARED(ht
->resize_initiated
, 1);
1788 void cds_lfht_resize_lazy_grow(struct cds_lfht
*ht
, unsigned long size
, int growth
)
1790 unsigned long target_size
= size
<< growth
;
1792 target_size
= min(target_size
, ht
->max_nr_buckets
);
1793 if (resize_target_grow(ht
, target_size
) >= target_size
)
1796 __cds_lfht_resize_lazy_launch(ht
);
1800 * We favor grow operations over shrink. A shrink operation never occurs
1801 * if a grow operation is queued for lazy execution. A grow operation
1802 * cancels any pending shrink lazy execution.
1805 void cds_lfht_resize_lazy_count(struct cds_lfht
*ht
, unsigned long size
,
1806 unsigned long count
)
1808 if (!(ht
->flags
& CDS_LFHT_AUTO_RESIZE
))
1810 count
= max(count
, MIN_TABLE_SIZE
);
1811 count
= min(count
, ht
->max_nr_buckets
);
1813 return; /* Already the right size, no resize needed */
1814 if (count
> size
) { /* lazy grow */
1815 if (resize_target_grow(ht
, count
) >= count
)
1817 } else { /* lazy shrink */
1821 s
= uatomic_cmpxchg(&ht
->resize_target
, size
, count
);
1823 break; /* no resize needed */
1825 return; /* growing is/(was just) in progress */
1827 return; /* some other thread do shrink */
1831 __cds_lfht_resize_lazy_launch(ht
);