2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 #include <sys/socket.h>
28 #include <sys/types.h>
32 #include <common/common.h>
33 #include <common/utils.h>
34 #include <common/compat/poll.h>
35 #include <common/kernel-ctl/kernel-ctl.h>
36 #include <common/sessiond-comm/relayd.h>
37 #include <common/sessiond-comm/sessiond-comm.h>
38 #include <common/kernel-consumer/kernel-consumer.h>
39 #include <common/relayd/relayd.h>
40 #include <common/ust-consumer/ust-consumer.h>
44 struct lttng_consumer_global_data consumer_data
= {
47 .type
= LTTNG_CONSUMER_UNKNOWN
,
51 * Flag to inform the polling thread to quit when all fd hung up. Updated by
52 * the consumer_thread_receive_fds when it notices that all fds has hung up.
53 * Also updated by the signal handler (consumer_should_exit()). Read by the
56 volatile int consumer_quit
;
59 * Global hash table containing respectively metadata and data streams. The
60 * stream element in this ht should only be updated by the metadata poll thread
61 * for the metadata and the data poll thread for the data.
63 static struct lttng_ht
*metadata_ht
;
64 static struct lttng_ht
*data_ht
;
67 * This hash table contains the mapping between the session id of the sessiond
68 * and the relayd session id. Element of the ht are indexed by sessiond session
71 * Node can be added when a relayd communication is opened in the sessiond
74 * Note that a session id of the session daemon is unique to a tracing session
75 * and not to a domain session. However, a domain session has one consumer
76 * which forces the 1-1 mapping between a consumer and a domain session (ex:
77 * UST). This means that we can't have duplicate in this ht.
79 static struct lttng_ht
*relayd_session_id_ht
;
82 * Notify a thread pipe to poll back again. This usually means that some global
83 * state has changed so we just send back the thread in a poll wait call.
85 static void notify_thread_pipe(int wpipe
)
90 struct lttng_consumer_stream
*null_stream
= NULL
;
92 ret
= write(wpipe
, &null_stream
, sizeof(null_stream
));
93 } while (ret
< 0 && errno
== EINTR
);
97 * Find a stream. The consumer_data.lock must be locked during this
100 static struct lttng_consumer_stream
*consumer_find_stream(int key
,
103 struct lttng_ht_iter iter
;
104 struct lttng_ht_node_ulong
*node
;
105 struct lttng_consumer_stream
*stream
= NULL
;
109 /* Negative keys are lookup failures */
116 lttng_ht_lookup(ht
, (void *)((unsigned long) key
), &iter
);
117 node
= lttng_ht_iter_get_node_ulong(&iter
);
119 stream
= caa_container_of(node
, struct lttng_consumer_stream
, node
);
127 void consumer_steal_stream_key(int key
, struct lttng_ht
*ht
)
129 struct lttng_consumer_stream
*stream
;
132 stream
= consumer_find_stream(key
, ht
);
136 * We don't want the lookup to match, but we still need
137 * to iterate on this stream when iterating over the hash table. Just
138 * change the node key.
140 stream
->node
.key
= -1;
146 * Return a channel object for the given key.
148 * RCU read side lock MUST be acquired before calling this function and
149 * protects the channel ptr.
151 static struct lttng_consumer_channel
*consumer_find_channel(int key
)
153 struct lttng_ht_iter iter
;
154 struct lttng_ht_node_ulong
*node
;
155 struct lttng_consumer_channel
*channel
= NULL
;
157 /* Negative keys are lookup failures */
162 lttng_ht_lookup(consumer_data
.channel_ht
, (void *)((unsigned long) key
),
164 node
= lttng_ht_iter_get_node_ulong(&iter
);
166 channel
= caa_container_of(node
, struct lttng_consumer_channel
, node
);
172 static void consumer_steal_channel_key(int key
)
174 struct lttng_consumer_channel
*channel
;
177 channel
= consumer_find_channel(key
);
181 * We don't want the lookup to match, but we still need
182 * to iterate on this channel when iterating over the hash table. Just
183 * change the node key.
185 channel
->node
.key
= -1;
191 void consumer_free_stream(struct rcu_head
*head
)
193 struct lttng_ht_node_ulong
*node
=
194 caa_container_of(head
, struct lttng_ht_node_ulong
, head
);
195 struct lttng_consumer_stream
*stream
=
196 caa_container_of(node
, struct lttng_consumer_stream
, node
);
202 * RCU protected relayd socket pair free.
204 static void consumer_rcu_free_relayd(struct rcu_head
*head
)
206 struct lttng_ht_node_ulong
*node
=
207 caa_container_of(head
, struct lttng_ht_node_ulong
, head
);
208 struct consumer_relayd_sock_pair
*relayd
=
209 caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
212 * Close all sockets. This is done in the call RCU since we don't want the
213 * socket fds to be reassigned thus potentially creating bad state of the
216 * We do not have to lock the control socket mutex here since at this stage
217 * there is no one referencing to this relayd object.
219 (void) relayd_close(&relayd
->control_sock
);
220 (void) relayd_close(&relayd
->data_sock
);
226 * Destroy and free relayd socket pair object.
228 * This function MUST be called with the consumer_data lock acquired.
230 static void destroy_relayd(struct consumer_relayd_sock_pair
*relayd
)
233 struct lttng_ht_iter iter
;
234 struct lttng_ht_node_ulong
*node
;
236 if (relayd
== NULL
) {
240 DBG("Consumer destroy and close relayd socket pair");
242 /* Loockup for a relayd node in the session id map hash table. */
243 lttng_ht_lookup(relayd_session_id_ht
,
244 (void *)((unsigned long) relayd
->sessiond_session_id
), &iter
);
245 node
= lttng_ht_iter_get_node_ulong(&iter
);
247 /* We assume the relayd is being or is destroyed */
252 * Try to delete it from the relayd session id ht. The return value is of
253 * no importance since either way we are going to try to delete the relayd
254 * from the global relayd_ht.
256 lttng_ht_del(relayd_session_id_ht
, &iter
);
258 iter
.iter
.node
= &relayd
->node
.node
;
259 ret
= lttng_ht_del(consumer_data
.relayd_ht
, &iter
);
261 /* We assume the relayd is being or is destroyed */
265 /* RCU free() call */
266 call_rcu(&relayd
->node
.head
, consumer_rcu_free_relayd
);
270 * Iterate over the relayd hash table and destroy each element. Finally,
271 * destroy the whole hash table.
273 static void cleanup_relayd_ht(void)
275 struct lttng_ht_iter iter
;
276 struct consumer_relayd_sock_pair
*relayd
;
280 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
282 destroy_relayd(relayd
);
285 lttng_ht_destroy(consumer_data
.relayd_ht
);
286 /* The destroy_relayd call makes sure that this ht is empty here. */
287 lttng_ht_destroy(relayd_session_id_ht
);
293 * Update the end point status of all streams having the given network sequence
294 * index (relayd index).
296 * It's atomically set without having the stream mutex locked which is fine
297 * because we handle the write/read race with a pipe wakeup for each thread.
299 static void update_endpoint_status_by_netidx(int net_seq_idx
,
300 enum consumer_endpoint_status status
)
302 struct lttng_ht_iter iter
;
303 struct lttng_consumer_stream
*stream
;
305 DBG("Consumer set delete flag on stream by idx %d", net_seq_idx
);
309 /* Let's begin with metadata */
310 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
311 if (stream
->net_seq_idx
== net_seq_idx
) {
312 uatomic_set(&stream
->endpoint_status
, status
);
313 DBG("Delete flag set to metadata stream %d", stream
->wait_fd
);
317 /* Follow up by the data streams */
318 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
319 if (stream
->net_seq_idx
== net_seq_idx
) {
320 uatomic_set(&stream
->endpoint_status
, status
);
321 DBG("Delete flag set to data stream %d", stream
->wait_fd
);
328 * Cleanup a relayd object by flagging every associated streams for deletion,
329 * destroying the object meaning removing it from the relayd hash table,
330 * closing the sockets and freeing the memory in a RCU call.
332 * If a local data context is available, notify the threads that the streams'
333 * state have changed.
335 static void cleanup_relayd(struct consumer_relayd_sock_pair
*relayd
,
336 struct lttng_consumer_local_data
*ctx
)
342 DBG("Cleaning up relayd sockets");
344 /* Save the net sequence index before destroying the object */
345 netidx
= relayd
->net_seq_idx
;
348 * Delete the relayd from the relayd hash table, close the sockets and free
349 * the object in a RCU call.
351 destroy_relayd(relayd
);
353 /* Set inactive endpoint to all streams */
354 update_endpoint_status_by_netidx(netidx
, CONSUMER_ENDPOINT_INACTIVE
);
357 * With a local data context, notify the threads that the streams' state
358 * have changed. The write() action on the pipe acts as an "implicit"
359 * memory barrier ordering the updates of the end point status from the
360 * read of this status which happens AFTER receiving this notify.
363 notify_thread_pipe(ctx
->consumer_data_pipe
[1]);
364 notify_thread_pipe(ctx
->consumer_metadata_pipe
[1]);
369 * Flag a relayd socket pair for destruction. Destroy it if the refcount
372 * RCU read side lock MUST be aquired before calling this function.
374 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair
*relayd
)
378 /* Set destroy flag for this object */
379 uatomic_set(&relayd
->destroy_flag
, 1);
381 /* Destroy the relayd if refcount is 0 */
382 if (uatomic_read(&relayd
->refcount
) == 0) {
383 destroy_relayd(relayd
);
388 * Remove a stream from the global list protected by a mutex. This
389 * function is also responsible for freeing its data structures.
391 void consumer_del_stream(struct lttng_consumer_stream
*stream
,
395 struct lttng_ht_iter iter
;
396 struct lttng_consumer_channel
*free_chan
= NULL
;
397 struct consumer_relayd_sock_pair
*relayd
;
401 DBG("Consumer del stream %d", stream
->wait_fd
);
404 /* Means the stream was allocated but not successfully added */
408 pthread_mutex_lock(&consumer_data
.lock
);
409 pthread_mutex_lock(&stream
->lock
);
411 switch (consumer_data
.type
) {
412 case LTTNG_CONSUMER_KERNEL
:
413 if (stream
->mmap_base
!= NULL
) {
414 ret
= munmap(stream
->mmap_base
, stream
->mmap_len
);
420 case LTTNG_CONSUMER32_UST
:
421 case LTTNG_CONSUMER64_UST
:
422 lttng_ustconsumer_del_stream(stream
);
425 ERR("Unknown consumer_data type");
431 iter
.iter
.node
= &stream
->node
.node
;
432 ret
= lttng_ht_del(ht
, &iter
);
435 /* Remove node session id from the consumer_data stream ht */
436 iter
.iter
.node
= &stream
->node_session_id
.node
;
437 ret
= lttng_ht_del(consumer_data
.stream_list_ht
, &iter
);
441 assert(consumer_data
.stream_count
> 0);
442 consumer_data
.stream_count
--;
444 if (stream
->out_fd
>= 0) {
445 ret
= close(stream
->out_fd
);
450 if (stream
->wait_fd
>= 0 && !stream
->wait_fd_is_copy
) {
451 ret
= close(stream
->wait_fd
);
456 if (stream
->shm_fd
>= 0 && stream
->wait_fd
!= stream
->shm_fd
) {
457 ret
= close(stream
->shm_fd
);
463 /* Check and cleanup relayd */
465 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
466 if (relayd
!= NULL
) {
467 uatomic_dec(&relayd
->refcount
);
468 assert(uatomic_read(&relayd
->refcount
) >= 0);
470 /* Closing streams requires to lock the control socket. */
471 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
472 ret
= relayd_send_close_stream(&relayd
->control_sock
,
473 stream
->relayd_stream_id
,
474 stream
->next_net_seq_num
- 1);
475 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
477 DBG("Unable to close stream on the relayd. Continuing");
479 * Continue here. There is nothing we can do for the relayd.
480 * Chances are that the relayd has closed the socket so we just
481 * continue cleaning up.
485 /* Both conditions are met, we destroy the relayd. */
486 if (uatomic_read(&relayd
->refcount
) == 0 &&
487 uatomic_read(&relayd
->destroy_flag
)) {
488 destroy_relayd(relayd
);
493 uatomic_dec(&stream
->chan
->refcount
);
494 if (!uatomic_read(&stream
->chan
->refcount
)
495 && !uatomic_read(&stream
->chan
->nb_init_streams
)) {
496 free_chan
= stream
->chan
;
500 consumer_data
.need_update
= 1;
501 pthread_mutex_unlock(&stream
->lock
);
502 pthread_mutex_unlock(&consumer_data
.lock
);
505 consumer_del_channel(free_chan
);
509 call_rcu(&stream
->node
.head
, consumer_free_stream
);
512 struct lttng_consumer_stream
*consumer_allocate_stream(
513 int channel_key
, int stream_key
,
514 int shm_fd
, int wait_fd
,
515 enum lttng_consumer_stream_state state
,
517 enum lttng_event_output output
,
518 const char *path_name
,
526 struct lttng_consumer_stream
*stream
;
528 stream
= zmalloc(sizeof(*stream
));
529 if (stream
== NULL
) {
530 PERROR("malloc struct lttng_consumer_stream");
531 *alloc_ret
= -ENOMEM
;
538 * Get stream's channel reference. Needed when adding the stream to the
541 stream
->chan
= consumer_find_channel(channel_key
);
543 *alloc_ret
= -ENOENT
;
544 ERR("Unable to find channel for stream %d", stream_key
);
548 stream
->key
= stream_key
;
549 stream
->shm_fd
= shm_fd
;
550 stream
->wait_fd
= wait_fd
;
552 stream
->out_fd_offset
= 0;
553 stream
->state
= state
;
554 stream
->mmap_len
= mmap_len
;
555 stream
->mmap_base
= NULL
;
556 stream
->output
= output
;
559 stream
->net_seq_idx
= net_index
;
560 stream
->metadata_flag
= metadata_flag
;
561 stream
->session_id
= session_id
;
562 strncpy(stream
->path_name
, path_name
, sizeof(stream
->path_name
));
563 stream
->path_name
[sizeof(stream
->path_name
) - 1] = '\0';
564 pthread_mutex_init(&stream
->lock
, NULL
);
567 * Index differently the metadata node because the thread is using an
568 * internal hash table to match streams in the metadata_ht to the epoll set
572 lttng_ht_node_init_ulong(&stream
->node
, stream
->wait_fd
);
574 lttng_ht_node_init_ulong(&stream
->node
, stream
->key
);
577 /* Init session id node with the stream session id */
578 lttng_ht_node_init_ulong(&stream
->node_session_id
, stream
->session_id
);
581 * The cpu number is needed before using any ustctl_* actions. Ignored for
582 * the kernel so the value does not matter.
584 pthread_mutex_lock(&consumer_data
.lock
);
585 stream
->cpu
= stream
->chan
->cpucount
++;
586 pthread_mutex_unlock(&consumer_data
.lock
);
588 DBG3("Allocated stream %s (key %d, shm_fd %d, wait_fd %d, mmap_len %llu,"
589 " out_fd %d, net_seq_idx %d, session_id %" PRIu64
,
590 stream
->path_name
, stream
->key
, stream
->shm_fd
, stream
->wait_fd
,
591 (unsigned long long) stream
->mmap_len
, stream
->out_fd
,
592 stream
->net_seq_idx
, stream
->session_id
);
605 * Add a stream to the global list protected by a mutex.
607 static int consumer_add_stream(struct lttng_consumer_stream
*stream
,
611 struct consumer_relayd_sock_pair
*relayd
;
616 DBG3("Adding consumer stream %d", stream
->key
);
618 pthread_mutex_lock(&consumer_data
.lock
);
619 pthread_mutex_lock(&stream
->lock
);
622 /* Steal stream identifier to avoid having streams with the same key */
623 consumer_steal_stream_key(stream
->key
, ht
);
625 lttng_ht_add_unique_ulong(ht
, &stream
->node
);
628 * Add stream to the stream_list_ht of the consumer data. No need to steal
629 * the key since the HT does not use it and we allow to add redundant keys
632 lttng_ht_add_ulong(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
634 /* Check and cleanup relayd */
635 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
636 if (relayd
!= NULL
) {
637 uatomic_inc(&relayd
->refcount
);
640 /* Update channel refcount once added without error(s). */
641 uatomic_inc(&stream
->chan
->refcount
);
644 * When nb_init_streams reaches 0, we don't need to trigger any action in
645 * terms of destroying the associated channel, because the action that
646 * causes the count to become 0 also causes a stream to be added. The
647 * channel deletion will thus be triggered by the following removal of this
650 if (uatomic_read(&stream
->chan
->nb_init_streams
) > 0) {
651 uatomic_dec(&stream
->chan
->nb_init_streams
);
654 /* Update consumer data once the node is inserted. */
655 consumer_data
.stream_count
++;
656 consumer_data
.need_update
= 1;
659 pthread_mutex_unlock(&stream
->lock
);
660 pthread_mutex_unlock(&consumer_data
.lock
);
666 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
667 * be acquired before calling this.
669 static int add_relayd(struct consumer_relayd_sock_pair
*relayd
)
672 struct lttng_ht_node_ulong
*node
;
673 struct lttng_ht_iter iter
;
675 if (relayd
== NULL
) {
680 lttng_ht_lookup(consumer_data
.relayd_ht
,
681 (void *)((unsigned long) relayd
->net_seq_idx
), &iter
);
682 node
= lttng_ht_iter_get_node_ulong(&iter
);
684 /* Relayd already exist. Ignore the insertion */
687 lttng_ht_add_unique_ulong(consumer_data
.relayd_ht
, &relayd
->node
);
694 * Allocate and return a consumer relayd socket.
696 struct consumer_relayd_sock_pair
*consumer_allocate_relayd_sock_pair(
699 struct consumer_relayd_sock_pair
*obj
= NULL
;
701 /* Negative net sequence index is a failure */
702 if (net_seq_idx
< 0) {
706 obj
= zmalloc(sizeof(struct consumer_relayd_sock_pair
));
708 PERROR("zmalloc relayd sock");
712 obj
->net_seq_idx
= net_seq_idx
;
714 obj
->destroy_flag
= 0;
715 lttng_ht_node_init_ulong(&obj
->node
, obj
->net_seq_idx
);
716 pthread_mutex_init(&obj
->ctrl_sock_mutex
, NULL
);
723 * Find a relayd socket pair in the global consumer data.
725 * Return the object if found else NULL.
726 * RCU read-side lock must be held across this call and while using the
729 struct consumer_relayd_sock_pair
*consumer_find_relayd(int key
)
731 struct lttng_ht_iter iter
;
732 struct lttng_ht_node_ulong
*node
;
733 struct consumer_relayd_sock_pair
*relayd
= NULL
;
735 /* Negative keys are lookup failures */
740 lttng_ht_lookup(consumer_data
.relayd_ht
, (void *)((unsigned long) key
),
742 node
= lttng_ht_iter_get_node_ulong(&iter
);
744 relayd
= caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
752 * Handle stream for relayd transmission if the stream applies for network
753 * streaming where the net sequence index is set.
755 * Return destination file descriptor or negative value on error.
757 static int write_relayd_stream_header(struct lttng_consumer_stream
*stream
,
758 size_t data_size
, unsigned long padding
,
759 struct consumer_relayd_sock_pair
*relayd
)
762 struct lttcomm_relayd_data_hdr data_hdr
;
768 /* Reset data header */
769 memset(&data_hdr
, 0, sizeof(data_hdr
));
771 if (stream
->metadata_flag
) {
772 /* Caller MUST acquire the relayd control socket lock */
773 ret
= relayd_send_metadata(&relayd
->control_sock
, data_size
);
778 /* Metadata are always sent on the control socket. */
779 outfd
= relayd
->control_sock
.fd
;
781 /* Set header with stream information */
782 data_hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
783 data_hdr
.data_size
= htobe32(data_size
);
784 data_hdr
.padding_size
= htobe32(padding
);
786 * Note that net_seq_num below is assigned with the *current* value of
787 * next_net_seq_num and only after that the next_net_seq_num will be
788 * increment. This is why when issuing a command on the relayd using
789 * this next value, 1 should always be substracted in order to compare
790 * the last seen sequence number on the relayd side to the last sent.
792 data_hdr
.net_seq_num
= htobe64(stream
->next_net_seq_num
++);
793 /* Other fields are zeroed previously */
795 ret
= relayd_send_data_hdr(&relayd
->data_sock
, &data_hdr
,
801 /* Set to go on data socket */
802 outfd
= relayd
->data_sock
.fd
;
810 void consumer_free_channel(struct rcu_head
*head
)
812 struct lttng_ht_node_ulong
*node
=
813 caa_container_of(head
, struct lttng_ht_node_ulong
, head
);
814 struct lttng_consumer_channel
*channel
=
815 caa_container_of(node
, struct lttng_consumer_channel
, node
);
821 * Remove a channel from the global list protected by a mutex. This
822 * function is also responsible for freeing its data structures.
824 void consumer_del_channel(struct lttng_consumer_channel
*channel
)
827 struct lttng_ht_iter iter
;
829 DBG("Consumer delete channel key %d", channel
->key
);
831 pthread_mutex_lock(&consumer_data
.lock
);
833 switch (consumer_data
.type
) {
834 case LTTNG_CONSUMER_KERNEL
:
836 case LTTNG_CONSUMER32_UST
:
837 case LTTNG_CONSUMER64_UST
:
838 lttng_ustconsumer_del_channel(channel
);
841 ERR("Unknown consumer_data type");
847 iter
.iter
.node
= &channel
->node
.node
;
848 ret
= lttng_ht_del(consumer_data
.channel_ht
, &iter
);
852 if (channel
->mmap_base
!= NULL
) {
853 ret
= munmap(channel
->mmap_base
, channel
->mmap_len
);
858 if (channel
->wait_fd
>= 0 && !channel
->wait_fd_is_copy
) {
859 ret
= close(channel
->wait_fd
);
864 if (channel
->shm_fd
>= 0 && channel
->wait_fd
!= channel
->shm_fd
) {
865 ret
= close(channel
->shm_fd
);
871 call_rcu(&channel
->node
.head
, consumer_free_channel
);
873 pthread_mutex_unlock(&consumer_data
.lock
);
876 struct lttng_consumer_channel
*consumer_allocate_channel(
878 int shm_fd
, int wait_fd
,
880 uint64_t max_sb_size
,
881 unsigned int nb_init_streams
)
883 struct lttng_consumer_channel
*channel
;
886 channel
= zmalloc(sizeof(*channel
));
887 if (channel
== NULL
) {
888 PERROR("malloc struct lttng_consumer_channel");
891 channel
->key
= channel_key
;
892 channel
->shm_fd
= shm_fd
;
893 channel
->wait_fd
= wait_fd
;
894 channel
->mmap_len
= mmap_len
;
895 channel
->max_sb_size
= max_sb_size
;
896 channel
->refcount
= 0;
897 channel
->nb_init_streams
= nb_init_streams
;
898 lttng_ht_node_init_ulong(&channel
->node
, channel
->key
);
900 switch (consumer_data
.type
) {
901 case LTTNG_CONSUMER_KERNEL
:
902 channel
->mmap_base
= NULL
;
903 channel
->mmap_len
= 0;
905 case LTTNG_CONSUMER32_UST
:
906 case LTTNG_CONSUMER64_UST
:
907 ret
= lttng_ustconsumer_allocate_channel(channel
);
914 ERR("Unknown consumer_data type");
918 DBG("Allocated channel (key %d, shm_fd %d, wait_fd %d, mmap_len %llu, max_sb_size %llu)",
919 channel
->key
, channel
->shm_fd
, channel
->wait_fd
,
920 (unsigned long long) channel
->mmap_len
,
921 (unsigned long long) channel
->max_sb_size
);
927 * Add a channel to the global list protected by a mutex.
929 int consumer_add_channel(struct lttng_consumer_channel
*channel
)
931 struct lttng_ht_node_ulong
*node
;
932 struct lttng_ht_iter iter
;
934 pthread_mutex_lock(&consumer_data
.lock
);
935 /* Steal channel identifier, for UST */
936 consumer_steal_channel_key(channel
->key
);
939 lttng_ht_lookup(consumer_data
.channel_ht
,
940 (void *)((unsigned long) channel
->key
), &iter
);
941 node
= lttng_ht_iter_get_node_ulong(&iter
);
943 /* Channel already exist. Ignore the insertion */
947 lttng_ht_add_unique_ulong(consumer_data
.channel_ht
, &channel
->node
);
951 pthread_mutex_unlock(&consumer_data
.lock
);
957 * Allocate the pollfd structure and the local view of the out fds to avoid
958 * doing a lookup in the linked list and concurrency issues when writing is
959 * needed. Called with consumer_data.lock held.
961 * Returns the number of fds in the structures.
963 static int consumer_update_poll_array(
964 struct lttng_consumer_local_data
*ctx
, struct pollfd
**pollfd
,
965 struct lttng_consumer_stream
**local_stream
, struct lttng_ht
*ht
)
968 struct lttng_ht_iter iter
;
969 struct lttng_consumer_stream
*stream
;
971 DBG("Updating poll fd array");
973 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
975 * Only active streams with an active end point can be added to the
976 * poll set and local stream storage of the thread.
978 * There is a potential race here for endpoint_status to be updated
979 * just after the check. However, this is OK since the stream(s) will
980 * be deleted once the thread is notified that the end point state has
981 * changed where this function will be called back again.
983 if (stream
->state
!= LTTNG_CONSUMER_ACTIVE_STREAM
||
984 stream
->endpoint_status
== CONSUMER_ENDPOINT_INACTIVE
) {
987 DBG("Active FD %d", stream
->wait_fd
);
988 (*pollfd
)[i
].fd
= stream
->wait_fd
;
989 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
990 local_stream
[i
] = stream
;
996 * Insert the consumer_data_pipe at the end of the array and don't
997 * increment i so nb_fd is the number of real FD.
999 (*pollfd
)[i
].fd
= ctx
->consumer_data_pipe
[0];
1000 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1005 * Poll on the should_quit pipe and the command socket return -1 on error and
1006 * should exit, 0 if data is available on the command socket
1008 int lttng_consumer_poll_socket(struct pollfd
*consumer_sockpoll
)
1013 num_rdy
= poll(consumer_sockpoll
, 2, -1);
1014 if (num_rdy
== -1) {
1016 * Restart interrupted system call.
1018 if (errno
== EINTR
) {
1021 PERROR("Poll error");
1024 if (consumer_sockpoll
[0].revents
& (POLLIN
| POLLPRI
)) {
1025 DBG("consumer_should_quit wake up");
1035 * Set the error socket.
1037 void lttng_consumer_set_error_sock(
1038 struct lttng_consumer_local_data
*ctx
, int sock
)
1040 ctx
->consumer_error_socket
= sock
;
1044 * Set the command socket path.
1046 void lttng_consumer_set_command_sock_path(
1047 struct lttng_consumer_local_data
*ctx
, char *sock
)
1049 ctx
->consumer_command_sock_path
= sock
;
1053 * Send return code to the session daemon.
1054 * If the socket is not defined, we return 0, it is not a fatal error
1056 int lttng_consumer_send_error(
1057 struct lttng_consumer_local_data
*ctx
, int cmd
)
1059 if (ctx
->consumer_error_socket
> 0) {
1060 return lttcomm_send_unix_sock(ctx
->consumer_error_socket
, &cmd
,
1061 sizeof(enum lttcomm_sessiond_command
));
1068 * Close all the tracefiles and stream fds and MUST be called when all
1069 * instances are destroyed i.e. when all threads were joined and are ended.
1071 void lttng_consumer_cleanup(void)
1073 struct lttng_ht_iter iter
;
1074 struct lttng_ht_node_ulong
*node
;
1078 cds_lfht_for_each_entry(consumer_data
.channel_ht
->ht
, &iter
.iter
, node
,
1080 struct lttng_consumer_channel
*channel
=
1081 caa_container_of(node
, struct lttng_consumer_channel
, node
);
1082 consumer_del_channel(channel
);
1087 lttng_ht_destroy(consumer_data
.channel_ht
);
1089 cleanup_relayd_ht();
1092 * This HT contains streams that are freed by either the metadata thread or
1093 * the data thread so we do *nothing* on the hash table and simply destroy
1096 lttng_ht_destroy(consumer_data
.stream_list_ht
);
1100 * Called from signal handler.
1102 void lttng_consumer_should_exit(struct lttng_consumer_local_data
*ctx
)
1107 ret
= write(ctx
->consumer_should_quit
[1], "4", 1);
1108 } while (ret
< 0 && errno
== EINTR
);
1110 PERROR("write consumer quit");
1113 DBG("Consumer flag that it should quit");
1116 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream
*stream
,
1119 int outfd
= stream
->out_fd
;
1122 * This does a blocking write-and-wait on any page that belongs to the
1123 * subbuffer prior to the one we just wrote.
1124 * Don't care about error values, as these are just hints and ways to
1125 * limit the amount of page cache used.
1127 if (orig_offset
< stream
->chan
->max_sb_size
) {
1130 lttng_sync_file_range(outfd
, orig_offset
- stream
->chan
->max_sb_size
,
1131 stream
->chan
->max_sb_size
,
1132 SYNC_FILE_RANGE_WAIT_BEFORE
1133 | SYNC_FILE_RANGE_WRITE
1134 | SYNC_FILE_RANGE_WAIT_AFTER
);
1136 * Give hints to the kernel about how we access the file:
1137 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1140 * We need to call fadvise again after the file grows because the
1141 * kernel does not seem to apply fadvise to non-existing parts of the
1144 * Call fadvise _after_ having waited for the page writeback to
1145 * complete because the dirty page writeback semantic is not well
1146 * defined. So it can be expected to lead to lower throughput in
1149 posix_fadvise(outfd
, orig_offset
- stream
->chan
->max_sb_size
,
1150 stream
->chan
->max_sb_size
, POSIX_FADV_DONTNEED
);
1154 * Initialise the necessary environnement :
1155 * - create a new context
1156 * - create the poll_pipe
1157 * - create the should_quit pipe (for signal handler)
1158 * - create the thread pipe (for splice)
1160 * Takes a function pointer as argument, this function is called when data is
1161 * available on a buffer. This function is responsible to do the
1162 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1163 * buffer configuration and then kernctl_put_next_subbuf at the end.
1165 * Returns a pointer to the new context or NULL on error.
1167 struct lttng_consumer_local_data
*lttng_consumer_create(
1168 enum lttng_consumer_type type
,
1169 ssize_t (*buffer_ready
)(struct lttng_consumer_stream
*stream
,
1170 struct lttng_consumer_local_data
*ctx
),
1171 int (*recv_channel
)(struct lttng_consumer_channel
*channel
),
1172 int (*recv_stream
)(struct lttng_consumer_stream
*stream
),
1173 int (*update_stream
)(int stream_key
, uint32_t state
))
1176 struct lttng_consumer_local_data
*ctx
;
1178 assert(consumer_data
.type
== LTTNG_CONSUMER_UNKNOWN
||
1179 consumer_data
.type
== type
);
1180 consumer_data
.type
= type
;
1182 ctx
= zmalloc(sizeof(struct lttng_consumer_local_data
));
1184 PERROR("allocating context");
1188 ctx
->consumer_error_socket
= -1;
1189 /* assign the callbacks */
1190 ctx
->on_buffer_ready
= buffer_ready
;
1191 ctx
->on_recv_channel
= recv_channel
;
1192 ctx
->on_recv_stream
= recv_stream
;
1193 ctx
->on_update_stream
= update_stream
;
1195 ret
= pipe(ctx
->consumer_data_pipe
);
1197 PERROR("Error creating poll pipe");
1198 goto error_poll_pipe
;
1201 /* set read end of the pipe to non-blocking */
1202 ret
= fcntl(ctx
->consumer_data_pipe
[0], F_SETFL
, O_NONBLOCK
);
1204 PERROR("fcntl O_NONBLOCK");
1205 goto error_poll_fcntl
;
1208 /* set write end of the pipe to non-blocking */
1209 ret
= fcntl(ctx
->consumer_data_pipe
[1], F_SETFL
, O_NONBLOCK
);
1211 PERROR("fcntl O_NONBLOCK");
1212 goto error_poll_fcntl
;
1215 ret
= pipe(ctx
->consumer_should_quit
);
1217 PERROR("Error creating recv pipe");
1218 goto error_quit_pipe
;
1221 ret
= pipe(ctx
->consumer_thread_pipe
);
1223 PERROR("Error creating thread pipe");
1224 goto error_thread_pipe
;
1227 ret
= utils_create_pipe(ctx
->consumer_metadata_pipe
);
1229 goto error_metadata_pipe
;
1232 ret
= utils_create_pipe(ctx
->consumer_splice_metadata_pipe
);
1234 goto error_splice_pipe
;
1240 utils_close_pipe(ctx
->consumer_metadata_pipe
);
1241 error_metadata_pipe
:
1242 utils_close_pipe(ctx
->consumer_thread_pipe
);
1244 for (i
= 0; i
< 2; i
++) {
1247 err
= close(ctx
->consumer_should_quit
[i
]);
1254 for (i
= 0; i
< 2; i
++) {
1257 err
= close(ctx
->consumer_data_pipe
[i
]);
1269 * Close all fds associated with the instance and free the context.
1271 void lttng_consumer_destroy(struct lttng_consumer_local_data
*ctx
)
1275 DBG("Consumer destroying it. Closing everything.");
1277 ret
= close(ctx
->consumer_error_socket
);
1281 ret
= close(ctx
->consumer_thread_pipe
[0]);
1285 ret
= close(ctx
->consumer_thread_pipe
[1]);
1289 ret
= close(ctx
->consumer_data_pipe
[0]);
1293 ret
= close(ctx
->consumer_data_pipe
[1]);
1297 ret
= close(ctx
->consumer_should_quit
[0]);
1301 ret
= close(ctx
->consumer_should_quit
[1]);
1305 utils_close_pipe(ctx
->consumer_splice_metadata_pipe
);
1307 unlink(ctx
->consumer_command_sock_path
);
1312 * Write the metadata stream id on the specified file descriptor.
1314 static int write_relayd_metadata_id(int fd
,
1315 struct lttng_consumer_stream
*stream
,
1316 struct consumer_relayd_sock_pair
*relayd
,
1317 unsigned long padding
)
1320 struct lttcomm_relayd_metadata_payload hdr
;
1322 hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
1323 hdr
.padding_size
= htobe32(padding
);
1325 ret
= write(fd
, (void *) &hdr
, sizeof(hdr
));
1326 } while (ret
< 0 && errno
== EINTR
);
1328 PERROR("write metadata stream id");
1331 DBG("Metadata stream id %" PRIu64
" with padding %lu written before data",
1332 stream
->relayd_stream_id
, padding
);
1339 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1340 * core function for writing trace buffers to either the local filesystem or
1343 * It must be called with the stream lock held.
1345 * Careful review MUST be put if any changes occur!
1347 * Returns the number of bytes written
1349 ssize_t
lttng_consumer_on_read_subbuffer_mmap(
1350 struct lttng_consumer_local_data
*ctx
,
1351 struct lttng_consumer_stream
*stream
, unsigned long len
,
1352 unsigned long padding
)
1354 unsigned long mmap_offset
;
1355 ssize_t ret
= 0, written
= 0;
1356 off_t orig_offset
= stream
->out_fd_offset
;
1357 /* Default is on the disk */
1358 int outfd
= stream
->out_fd
;
1359 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1360 unsigned int relayd_hang_up
= 0;
1362 /* RCU lock for the relayd pointer */
1365 /* Flag that the current stream if set for network streaming. */
1366 if (stream
->net_seq_idx
!= -1) {
1367 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1368 if (relayd
== NULL
) {
1373 /* get the offset inside the fd to mmap */
1374 switch (consumer_data
.type
) {
1375 case LTTNG_CONSUMER_KERNEL
:
1376 ret
= kernctl_get_mmap_read_offset(stream
->wait_fd
, &mmap_offset
);
1378 case LTTNG_CONSUMER32_UST
:
1379 case LTTNG_CONSUMER64_UST
:
1380 ret
= lttng_ustctl_get_mmap_read_offset(stream
->chan
->handle
,
1381 stream
->buf
, &mmap_offset
);
1384 ERR("Unknown consumer_data type");
1389 PERROR("tracer ctl get_mmap_read_offset");
1394 /* Handle stream on the relayd if the output is on the network */
1396 unsigned long netlen
= len
;
1399 * Lock the control socket for the complete duration of the function
1400 * since from this point on we will use the socket.
1402 if (stream
->metadata_flag
) {
1403 /* Metadata requires the control socket. */
1404 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1405 netlen
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1408 ret
= write_relayd_stream_header(stream
, netlen
, padding
, relayd
);
1410 /* Use the returned socket. */
1413 /* Write metadata stream id before payload */
1414 if (stream
->metadata_flag
) {
1415 ret
= write_relayd_metadata_id(outfd
, stream
, relayd
, padding
);
1418 /* Socket operation failed. We consider the relayd dead */
1419 if (ret
== -EPIPE
|| ret
== -EINVAL
) {
1427 /* Socket operation failed. We consider the relayd dead */
1428 if (ret
== -EPIPE
|| ret
== -EINVAL
) {
1432 /* Else, use the default set before which is the filesystem. */
1435 /* No streaming, we have to set the len with the full padding */
1441 ret
= write(outfd
, stream
->mmap_base
+ mmap_offset
, len
);
1442 } while (ret
< 0 && errno
== EINTR
);
1443 DBG("Consumer mmap write() ret %zd (len %lu)", ret
, len
);
1446 * This is possible if the fd is closed on the other side (outfd)
1447 * or any write problem. It can be verbose a bit for a normal
1448 * execution if for instance the relayd is stopped abruptly. This
1449 * can happen so set this to a DBG statement.
1451 DBG("Error in file write mmap");
1455 /* Socket operation failed. We consider the relayd dead */
1456 if (errno
== EPIPE
|| errno
== EINVAL
) {
1461 } else if (ret
> len
) {
1462 PERROR("Error in file write (ret %zd > len %lu)", ret
, len
);
1470 /* This call is useless on a socket so better save a syscall. */
1472 /* This won't block, but will start writeout asynchronously */
1473 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret
,
1474 SYNC_FILE_RANGE_WRITE
);
1475 stream
->out_fd_offset
+= ret
;
1479 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1483 * This is a special case that the relayd has closed its socket. Let's
1484 * cleanup the relayd object and all associated streams.
1486 if (relayd
&& relayd_hang_up
) {
1487 cleanup_relayd(relayd
, ctx
);
1491 /* Unlock only if ctrl socket used */
1492 if (relayd
&& stream
->metadata_flag
) {
1493 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1501 * Splice the data from the ring buffer to the tracefile.
1503 * It must be called with the stream lock held.
1505 * Returns the number of bytes spliced.
1507 ssize_t
lttng_consumer_on_read_subbuffer_splice(
1508 struct lttng_consumer_local_data
*ctx
,
1509 struct lttng_consumer_stream
*stream
, unsigned long len
,
1510 unsigned long padding
)
1512 ssize_t ret
= 0, written
= 0, ret_splice
= 0;
1514 off_t orig_offset
= stream
->out_fd_offset
;
1515 int fd
= stream
->wait_fd
;
1516 /* Default is on the disk */
1517 int outfd
= stream
->out_fd
;
1518 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1520 unsigned int relayd_hang_up
= 0;
1522 switch (consumer_data
.type
) {
1523 case LTTNG_CONSUMER_KERNEL
:
1525 case LTTNG_CONSUMER32_UST
:
1526 case LTTNG_CONSUMER64_UST
:
1527 /* Not supported for user space tracing */
1530 ERR("Unknown consumer_data type");
1534 /* RCU lock for the relayd pointer */
1537 /* Flag that the current stream if set for network streaming. */
1538 if (stream
->net_seq_idx
!= -1) {
1539 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1540 if (relayd
== NULL
) {
1546 * Choose right pipe for splice. Metadata and trace data are handled by
1547 * different threads hence the use of two pipes in order not to race or
1548 * corrupt the written data.
1550 if (stream
->metadata_flag
) {
1551 splice_pipe
= ctx
->consumer_splice_metadata_pipe
;
1553 splice_pipe
= ctx
->consumer_thread_pipe
;
1556 /* Write metadata stream id before payload */
1558 int total_len
= len
;
1560 if (stream
->metadata_flag
) {
1562 * Lock the control socket for the complete duration of the function
1563 * since from this point on we will use the socket.
1565 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1567 ret
= write_relayd_metadata_id(splice_pipe
[1], stream
, relayd
,
1571 /* Socket operation failed. We consider the relayd dead */
1572 if (ret
== -EBADF
) {
1573 WARN("Remote relayd disconnected. Stopping");
1580 total_len
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1583 ret
= write_relayd_stream_header(stream
, total_len
, padding
, relayd
);
1585 /* Use the returned socket. */
1588 /* Socket operation failed. We consider the relayd dead */
1589 if (ret
== -EBADF
) {
1590 WARN("Remote relayd disconnected. Stopping");
1597 /* No streaming, we have to set the len with the full padding */
1602 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1603 (unsigned long)offset
, len
, fd
, splice_pipe
[1]);
1604 ret_splice
= splice(fd
, &offset
, splice_pipe
[1], NULL
, len
,
1605 SPLICE_F_MOVE
| SPLICE_F_MORE
);
1606 DBG("splice chan to pipe, ret %zd", ret_splice
);
1607 if (ret_splice
< 0) {
1608 PERROR("Error in relay splice");
1610 written
= ret_splice
;
1616 /* Handle stream on the relayd if the output is on the network */
1618 if (stream
->metadata_flag
) {
1619 size_t metadata_payload_size
=
1620 sizeof(struct lttcomm_relayd_metadata_payload
);
1622 /* Update counter to fit the spliced data */
1623 ret_splice
+= metadata_payload_size
;
1624 len
+= metadata_payload_size
;
1626 * We do this so the return value can match the len passed as
1627 * argument to this function.
1629 written
-= metadata_payload_size
;
1633 /* Splice data out */
1634 ret_splice
= splice(splice_pipe
[0], NULL
, outfd
, NULL
,
1635 ret_splice
, SPLICE_F_MOVE
| SPLICE_F_MORE
);
1636 DBG("Consumer splice pipe to file, ret %zd", ret_splice
);
1637 if (ret_splice
< 0) {
1638 PERROR("Error in file splice");
1640 written
= ret_splice
;
1642 /* Socket operation failed. We consider the relayd dead */
1643 if (errno
== EBADF
|| errno
== EPIPE
) {
1644 WARN("Remote relayd disconnected. Stopping");
1650 } else if (ret_splice
> len
) {
1652 PERROR("Wrote more data than requested %zd (len: %lu)",
1654 written
+= ret_splice
;
1660 /* This call is useless on a socket so better save a syscall. */
1662 /* This won't block, but will start writeout asynchronously */
1663 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret_splice
,
1664 SYNC_FILE_RANGE_WRITE
);
1665 stream
->out_fd_offset
+= ret_splice
;
1667 written
+= ret_splice
;
1669 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1677 * This is a special case that the relayd has closed its socket. Let's
1678 * cleanup the relayd object and all associated streams.
1680 if (relayd
&& relayd_hang_up
) {
1681 cleanup_relayd(relayd
, ctx
);
1682 /* Skip splice error so the consumer does not fail */
1687 /* send the appropriate error description to sessiond */
1690 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_EINVAL
);
1693 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ENOMEM
);
1696 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ESPIPE
);
1701 if (relayd
&& stream
->metadata_flag
) {
1702 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1710 * Take a snapshot for a specific fd
1712 * Returns 0 on success, < 0 on error
1714 int lttng_consumer_take_snapshot(struct lttng_consumer_local_data
*ctx
,
1715 struct lttng_consumer_stream
*stream
)
1717 switch (consumer_data
.type
) {
1718 case LTTNG_CONSUMER_KERNEL
:
1719 return lttng_kconsumer_take_snapshot(ctx
, stream
);
1720 case LTTNG_CONSUMER32_UST
:
1721 case LTTNG_CONSUMER64_UST
:
1722 return lttng_ustconsumer_take_snapshot(ctx
, stream
);
1724 ERR("Unknown consumer_data type");
1732 * Get the produced position
1734 * Returns 0 on success, < 0 on error
1736 int lttng_consumer_get_produced_snapshot(
1737 struct lttng_consumer_local_data
*ctx
,
1738 struct lttng_consumer_stream
*stream
,
1741 switch (consumer_data
.type
) {
1742 case LTTNG_CONSUMER_KERNEL
:
1743 return lttng_kconsumer_get_produced_snapshot(ctx
, stream
, pos
);
1744 case LTTNG_CONSUMER32_UST
:
1745 case LTTNG_CONSUMER64_UST
:
1746 return lttng_ustconsumer_get_produced_snapshot(ctx
, stream
, pos
);
1748 ERR("Unknown consumer_data type");
1754 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data
*ctx
,
1755 int sock
, struct pollfd
*consumer_sockpoll
)
1757 switch (consumer_data
.type
) {
1758 case LTTNG_CONSUMER_KERNEL
:
1759 return lttng_kconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1760 case LTTNG_CONSUMER32_UST
:
1761 case LTTNG_CONSUMER64_UST
:
1762 return lttng_ustconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1764 ERR("Unknown consumer_data type");
1771 * Iterate over all streams of the hashtable and free them properly.
1773 * WARNING: *MUST* be used with data stream only.
1775 static void destroy_data_stream_ht(struct lttng_ht
*ht
)
1777 struct lttng_ht_iter iter
;
1778 struct lttng_consumer_stream
*stream
;
1785 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1787 * Ignore return value since we are currently cleaning up so any error
1790 (void) consumer_del_stream(stream
, ht
);
1794 lttng_ht_destroy(ht
);
1798 * Iterate over all streams of the hashtable and free them properly.
1800 * XXX: Should not be only for metadata stream or else use an other name.
1802 static void destroy_stream_ht(struct lttng_ht
*ht
)
1804 struct lttng_ht_iter iter
;
1805 struct lttng_consumer_stream
*stream
;
1812 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1814 * Ignore return value since we are currently cleaning up so any error
1817 (void) consumer_del_metadata_stream(stream
, ht
);
1821 lttng_ht_destroy(ht
);
1825 * Clean up a metadata stream and free its memory.
1827 void consumer_del_metadata_stream(struct lttng_consumer_stream
*stream
,
1828 struct lttng_ht
*ht
)
1831 struct lttng_ht_iter iter
;
1832 struct lttng_consumer_channel
*free_chan
= NULL
;
1833 struct consumer_relayd_sock_pair
*relayd
;
1837 * This call should NEVER receive regular stream. It must always be
1838 * metadata stream and this is crucial for data structure synchronization.
1840 assert(stream
->metadata_flag
);
1842 DBG3("Consumer delete metadata stream %d", stream
->wait_fd
);
1845 /* Means the stream was allocated but not successfully added */
1849 pthread_mutex_lock(&consumer_data
.lock
);
1850 pthread_mutex_lock(&stream
->lock
);
1852 switch (consumer_data
.type
) {
1853 case LTTNG_CONSUMER_KERNEL
:
1854 if (stream
->mmap_base
!= NULL
) {
1855 ret
= munmap(stream
->mmap_base
, stream
->mmap_len
);
1857 PERROR("munmap metadata stream");
1861 case LTTNG_CONSUMER32_UST
:
1862 case LTTNG_CONSUMER64_UST
:
1863 lttng_ustconsumer_del_stream(stream
);
1866 ERR("Unknown consumer_data type");
1872 iter
.iter
.node
= &stream
->node
.node
;
1873 ret
= lttng_ht_del(ht
, &iter
);
1876 /* Remove node session id from the consumer_data stream ht */
1877 iter
.iter
.node
= &stream
->node_session_id
.node
;
1878 ret
= lttng_ht_del(consumer_data
.stream_list_ht
, &iter
);
1882 if (stream
->out_fd
>= 0) {
1883 ret
= close(stream
->out_fd
);
1889 if (stream
->wait_fd
>= 0 && !stream
->wait_fd_is_copy
) {
1890 ret
= close(stream
->wait_fd
);
1896 if (stream
->shm_fd
>= 0 && stream
->wait_fd
!= stream
->shm_fd
) {
1897 ret
= close(stream
->shm_fd
);
1903 /* Check and cleanup relayd */
1905 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1906 if (relayd
!= NULL
) {
1907 uatomic_dec(&relayd
->refcount
);
1908 assert(uatomic_read(&relayd
->refcount
) >= 0);
1910 /* Closing streams requires to lock the control socket. */
1911 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1912 ret
= relayd_send_close_stream(&relayd
->control_sock
,
1913 stream
->relayd_stream_id
, stream
->next_net_seq_num
- 1);
1914 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1916 DBG("Unable to close stream on the relayd. Continuing");
1918 * Continue here. There is nothing we can do for the relayd.
1919 * Chances are that the relayd has closed the socket so we just
1920 * continue cleaning up.
1924 /* Both conditions are met, we destroy the relayd. */
1925 if (uatomic_read(&relayd
->refcount
) == 0 &&
1926 uatomic_read(&relayd
->destroy_flag
)) {
1927 destroy_relayd(relayd
);
1932 /* Atomically decrement channel refcount since other threads can use it. */
1933 uatomic_dec(&stream
->chan
->refcount
);
1934 if (!uatomic_read(&stream
->chan
->refcount
)
1935 && !uatomic_read(&stream
->chan
->nb_init_streams
)) {
1936 /* Go for channel deletion! */
1937 free_chan
= stream
->chan
;
1941 pthread_mutex_unlock(&stream
->lock
);
1942 pthread_mutex_unlock(&consumer_data
.lock
);
1945 consumer_del_channel(free_chan
);
1949 call_rcu(&stream
->node
.head
, consumer_free_stream
);
1953 * Action done with the metadata stream when adding it to the consumer internal
1954 * data structures to handle it.
1956 static int consumer_add_metadata_stream(struct lttng_consumer_stream
*stream
,
1957 struct lttng_ht
*ht
)
1960 struct consumer_relayd_sock_pair
*relayd
;
1961 struct lttng_ht_iter iter
;
1962 struct lttng_ht_node_ulong
*node
;
1967 DBG3("Adding metadata stream %d to hash table", stream
->wait_fd
);
1969 pthread_mutex_lock(&consumer_data
.lock
);
1970 pthread_mutex_lock(&stream
->lock
);
1973 * From here, refcounts are updated so be _careful_ when returning an error
1980 * Lookup the stream just to make sure it does not exist in our internal
1981 * state. This should NEVER happen.
1983 lttng_ht_lookup(ht
, (void *)((unsigned long) stream
->wait_fd
), &iter
);
1984 node
= lttng_ht_iter_get_node_ulong(&iter
);
1987 /* Find relayd and, if one is found, increment refcount. */
1988 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1989 if (relayd
!= NULL
) {
1990 uatomic_inc(&relayd
->refcount
);
1993 /* Update channel refcount once added without error(s). */
1994 uatomic_inc(&stream
->chan
->refcount
);
1997 * When nb_init_streams reaches 0, we don't need to trigger any action in
1998 * terms of destroying the associated channel, because the action that
1999 * causes the count to become 0 also causes a stream to be added. The
2000 * channel deletion will thus be triggered by the following removal of this
2003 if (uatomic_read(&stream
->chan
->nb_init_streams
) > 0) {
2004 uatomic_dec(&stream
->chan
->nb_init_streams
);
2007 lttng_ht_add_unique_ulong(ht
, &stream
->node
);
2010 * Add stream to the stream_list_ht of the consumer data. No need to steal
2011 * the key since the HT does not use it and we allow to add redundant keys
2014 lttng_ht_add_ulong(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
2018 pthread_mutex_unlock(&stream
->lock
);
2019 pthread_mutex_unlock(&consumer_data
.lock
);
2024 * Delete data stream that are flagged for deletion (endpoint_status).
2026 static void validate_endpoint_status_data_stream(void)
2028 struct lttng_ht_iter iter
;
2029 struct lttng_consumer_stream
*stream
;
2031 DBG("Consumer delete flagged data stream");
2034 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2035 /* Validate delete flag of the stream */
2036 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2039 /* Delete it right now */
2040 consumer_del_stream(stream
, data_ht
);
2046 * Delete metadata stream that are flagged for deletion (endpoint_status).
2048 static void validate_endpoint_status_metadata_stream(
2049 struct lttng_poll_event
*pollset
)
2051 struct lttng_ht_iter iter
;
2052 struct lttng_consumer_stream
*stream
;
2054 DBG("Consumer delete flagged metadata stream");
2059 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2060 /* Validate delete flag of the stream */
2061 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2065 * Remove from pollset so the metadata thread can continue without
2066 * blocking on a deleted stream.
2068 lttng_poll_del(pollset
, stream
->wait_fd
);
2070 /* Delete it right now */
2071 consumer_del_metadata_stream(stream
, metadata_ht
);
2077 * Thread polls on metadata file descriptor and write them on disk or on the
2080 void *consumer_thread_metadata_poll(void *data
)
2083 uint32_t revents
, nb_fd
;
2084 struct lttng_consumer_stream
*stream
= NULL
;
2085 struct lttng_ht_iter iter
;
2086 struct lttng_ht_node_ulong
*node
;
2087 struct lttng_poll_event events
;
2088 struct lttng_consumer_local_data
*ctx
= data
;
2091 rcu_register_thread();
2093 metadata_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2095 /* ENOMEM at this point. Better to bail out. */
2099 DBG("Thread metadata poll started");
2101 /* Size is set to 1 for the consumer_metadata pipe */
2102 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2104 ERR("Poll set creation failed");
2108 ret
= lttng_poll_add(&events
, ctx
->consumer_metadata_pipe
[0], LPOLLIN
);
2114 DBG("Metadata main loop started");
2117 /* Only the metadata pipe is set */
2118 if (LTTNG_POLL_GETNB(&events
) == 0 && consumer_quit
== 1) {
2123 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events
));
2124 ret
= lttng_poll_wait(&events
, -1);
2125 DBG("Metadata event catched in thread");
2127 if (errno
== EINTR
) {
2128 ERR("Poll EINTR catched");
2136 /* From here, the event is a metadata wait fd */
2137 for (i
= 0; i
< nb_fd
; i
++) {
2138 revents
= LTTNG_POLL_GETEV(&events
, i
);
2139 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2141 /* Just don't waste time if no returned events for the fd */
2146 if (pollfd
== ctx
->consumer_metadata_pipe
[0]) {
2147 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2148 DBG("Metadata thread pipe hung up");
2150 * Remove the pipe from the poll set and continue the loop
2151 * since their might be data to consume.
2153 lttng_poll_del(&events
, ctx
->consumer_metadata_pipe
[0]);
2154 ret
= close(ctx
->consumer_metadata_pipe
[0]);
2156 PERROR("close metadata pipe");
2159 } else if (revents
& LPOLLIN
) {
2161 /* Get the stream pointer received */
2162 ret
= read(pollfd
, &stream
, sizeof(stream
));
2163 } while (ret
< 0 && errno
== EINTR
);
2165 ret
< sizeof(struct lttng_consumer_stream
*)) {
2166 PERROR("read metadata stream");
2168 * Let's continue here and hope we can still work
2169 * without stopping the consumer. XXX: Should we?
2174 /* A NULL stream means that the state has changed. */
2175 if (stream
== NULL
) {
2176 /* Check for deleted streams. */
2177 validate_endpoint_status_metadata_stream(&events
);
2181 DBG("Adding metadata stream %d to poll set",
2184 ret
= consumer_add_metadata_stream(stream
, metadata_ht
);
2186 ERR("Unable to add metadata stream");
2187 /* Stream was not setup properly. Continuing. */
2188 consumer_del_metadata_stream(stream
, NULL
);
2192 /* Add metadata stream to the global poll events list */
2193 lttng_poll_add(&events
, stream
->wait_fd
,
2194 LPOLLIN
| LPOLLPRI
);
2197 /* Handle other stream */
2202 lttng_ht_lookup(metadata_ht
, (void *)((unsigned long) pollfd
),
2204 node
= lttng_ht_iter_get_node_ulong(&iter
);
2207 stream
= caa_container_of(node
, struct lttng_consumer_stream
,
2210 /* Check for error event */
2211 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2212 DBG("Metadata fd %d is hup|err.", pollfd
);
2213 if (!stream
->hangup_flush_done
2214 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2215 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2216 DBG("Attempting to flush and consume the UST buffers");
2217 lttng_ustconsumer_on_stream_hangup(stream
);
2219 /* We just flushed the stream now read it. */
2221 len
= ctx
->on_buffer_ready(stream
, ctx
);
2223 * We don't check the return value here since if we get
2224 * a negative len, it means an error occured thus we
2225 * simply remove it from the poll set and free the
2231 lttng_poll_del(&events
, stream
->wait_fd
);
2233 * This call update the channel states, closes file descriptors
2234 * and securely free the stream.
2236 consumer_del_metadata_stream(stream
, metadata_ht
);
2237 } else if (revents
& (LPOLLIN
| LPOLLPRI
)) {
2238 /* Get the data out of the metadata file descriptor */
2239 DBG("Metadata available on fd %d", pollfd
);
2240 assert(stream
->wait_fd
== pollfd
);
2242 len
= ctx
->on_buffer_ready(stream
, ctx
);
2243 /* It's ok to have an unavailable sub-buffer */
2244 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2245 /* Clean up stream from consumer and free it. */
2246 lttng_poll_del(&events
, stream
->wait_fd
);
2247 consumer_del_metadata_stream(stream
, metadata_ht
);
2248 } else if (len
> 0) {
2249 stream
->data_read
= 1;
2253 /* Release RCU lock for the stream looked up */
2260 DBG("Metadata poll thread exiting");
2261 lttng_poll_clean(&events
);
2263 destroy_stream_ht(metadata_ht
);
2265 rcu_unregister_thread();
2270 * This thread polls the fds in the set to consume the data and write
2271 * it to tracefile if necessary.
2273 void *consumer_thread_data_poll(void *data
)
2275 int num_rdy
, num_hup
, high_prio
, ret
, i
;
2276 struct pollfd
*pollfd
= NULL
;
2277 /* local view of the streams */
2278 struct lttng_consumer_stream
**local_stream
= NULL
, *new_stream
= NULL
;
2279 /* local view of consumer_data.fds_count */
2281 struct lttng_consumer_local_data
*ctx
= data
;
2284 rcu_register_thread();
2286 data_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2287 if (data_ht
== NULL
) {
2288 /* ENOMEM at this point. Better to bail out. */
2292 local_stream
= zmalloc(sizeof(struct lttng_consumer_stream
));
2299 * the fds set has been updated, we need to update our
2300 * local array as well
2302 pthread_mutex_lock(&consumer_data
.lock
);
2303 if (consumer_data
.need_update
) {
2304 if (pollfd
!= NULL
) {
2308 if (local_stream
!= NULL
) {
2310 local_stream
= NULL
;
2313 /* allocate for all fds + 1 for the consumer_data_pipe */
2314 pollfd
= zmalloc((consumer_data
.stream_count
+ 1) * sizeof(struct pollfd
));
2315 if (pollfd
== NULL
) {
2316 PERROR("pollfd malloc");
2317 pthread_mutex_unlock(&consumer_data
.lock
);
2321 /* allocate for all fds + 1 for the consumer_data_pipe */
2322 local_stream
= zmalloc((consumer_data
.stream_count
+ 1) *
2323 sizeof(struct lttng_consumer_stream
));
2324 if (local_stream
== NULL
) {
2325 PERROR("local_stream malloc");
2326 pthread_mutex_unlock(&consumer_data
.lock
);
2329 ret
= consumer_update_poll_array(ctx
, &pollfd
, local_stream
,
2332 ERR("Error in allocating pollfd or local_outfds");
2333 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2334 pthread_mutex_unlock(&consumer_data
.lock
);
2338 consumer_data
.need_update
= 0;
2340 pthread_mutex_unlock(&consumer_data
.lock
);
2342 /* No FDs and consumer_quit, consumer_cleanup the thread */
2343 if (nb_fd
== 0 && consumer_quit
== 1) {
2346 /* poll on the array of fds */
2348 DBG("polling on %d fd", nb_fd
+ 1);
2349 num_rdy
= poll(pollfd
, nb_fd
+ 1, -1);
2350 DBG("poll num_rdy : %d", num_rdy
);
2351 if (num_rdy
== -1) {
2353 * Restart interrupted system call.
2355 if (errno
== EINTR
) {
2358 PERROR("Poll error");
2359 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2361 } else if (num_rdy
== 0) {
2362 DBG("Polling thread timed out");
2367 * If the consumer_data_pipe triggered poll go directly to the
2368 * beginning of the loop to update the array. We want to prioritize
2369 * array update over low-priority reads.
2371 if (pollfd
[nb_fd
].revents
& (POLLIN
| POLLPRI
)) {
2372 size_t pipe_readlen
;
2374 DBG("consumer_data_pipe wake up");
2375 /* Consume 1 byte of pipe data */
2377 pipe_readlen
= read(ctx
->consumer_data_pipe
[0], &new_stream
,
2378 sizeof(new_stream
));
2379 } while (pipe_readlen
== -1 && errno
== EINTR
);
2380 if (pipe_readlen
< 0) {
2381 PERROR("read consumer data pipe");
2382 /* Continue so we can at least handle the current stream(s). */
2387 * If the stream is NULL, just ignore it. It's also possible that
2388 * the sessiond poll thread changed the consumer_quit state and is
2389 * waking us up to test it.
2391 if (new_stream
== NULL
) {
2392 validate_endpoint_status_data_stream();
2396 ret
= consumer_add_stream(new_stream
, data_ht
);
2398 ERR("Consumer add stream %d failed. Continuing",
2401 * At this point, if the add_stream fails, it is not in the
2402 * hash table thus passing the NULL value here.
2404 consumer_del_stream(new_stream
, NULL
);
2407 /* Continue to update the local streams and handle prio ones */
2411 /* Take care of high priority channels first. */
2412 for (i
= 0; i
< nb_fd
; i
++) {
2413 if (local_stream
[i
] == NULL
) {
2416 if (pollfd
[i
].revents
& POLLPRI
) {
2417 DBG("Urgent read on fd %d", pollfd
[i
].fd
);
2419 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2420 /* it's ok to have an unavailable sub-buffer */
2421 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2422 /* Clean the stream and free it. */
2423 consumer_del_stream(local_stream
[i
], data_ht
);
2424 local_stream
[i
] = NULL
;
2425 } else if (len
> 0) {
2426 local_stream
[i
]->data_read
= 1;
2432 * If we read high prio channel in this loop, try again
2433 * for more high prio data.
2439 /* Take care of low priority channels. */
2440 for (i
= 0; i
< nb_fd
; i
++) {
2441 if (local_stream
[i
] == NULL
) {
2444 if ((pollfd
[i
].revents
& POLLIN
) ||
2445 local_stream
[i
]->hangup_flush_done
) {
2446 DBG("Normal read on fd %d", pollfd
[i
].fd
);
2447 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2448 /* it's ok to have an unavailable sub-buffer */
2449 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2450 /* Clean the stream and free it. */
2451 consumer_del_stream(local_stream
[i
], data_ht
);
2452 local_stream
[i
] = NULL
;
2453 } else if (len
> 0) {
2454 local_stream
[i
]->data_read
= 1;
2459 /* Handle hangup and errors */
2460 for (i
= 0; i
< nb_fd
; i
++) {
2461 if (local_stream
[i
] == NULL
) {
2464 if (!local_stream
[i
]->hangup_flush_done
2465 && (pollfd
[i
].revents
& (POLLHUP
| POLLERR
| POLLNVAL
))
2466 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2467 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2468 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2470 lttng_ustconsumer_on_stream_hangup(local_stream
[i
]);
2471 /* Attempt read again, for the data we just flushed. */
2472 local_stream
[i
]->data_read
= 1;
2475 * If the poll flag is HUP/ERR/NVAL and we have
2476 * read no data in this pass, we can remove the
2477 * stream from its hash table.
2479 if ((pollfd
[i
].revents
& POLLHUP
)) {
2480 DBG("Polling fd %d tells it has hung up.", pollfd
[i
].fd
);
2481 if (!local_stream
[i
]->data_read
) {
2482 consumer_del_stream(local_stream
[i
], data_ht
);
2483 local_stream
[i
] = NULL
;
2486 } else if (pollfd
[i
].revents
& POLLERR
) {
2487 ERR("Error returned in polling fd %d.", pollfd
[i
].fd
);
2488 if (!local_stream
[i
]->data_read
) {
2489 consumer_del_stream(local_stream
[i
], data_ht
);
2490 local_stream
[i
] = NULL
;
2493 } else if (pollfd
[i
].revents
& POLLNVAL
) {
2494 ERR("Polling fd %d tells fd is not open.", pollfd
[i
].fd
);
2495 if (!local_stream
[i
]->data_read
) {
2496 consumer_del_stream(local_stream
[i
], data_ht
);
2497 local_stream
[i
] = NULL
;
2501 if (local_stream
[i
] != NULL
) {
2502 local_stream
[i
]->data_read
= 0;
2507 DBG("polling thread exiting");
2508 if (pollfd
!= NULL
) {
2512 if (local_stream
!= NULL
) {
2514 local_stream
= NULL
;
2518 * Close the write side of the pipe so epoll_wait() in
2519 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2520 * read side of the pipe. If we close them both, epoll_wait strangely does
2521 * not return and could create a endless wait period if the pipe is the
2522 * only tracked fd in the poll set. The thread will take care of closing
2525 ret
= close(ctx
->consumer_metadata_pipe
[1]);
2527 PERROR("close data pipe");
2530 destroy_data_stream_ht(data_ht
);
2532 rcu_unregister_thread();
2537 * This thread listens on the consumerd socket and receives the file
2538 * descriptors from the session daemon.
2540 void *consumer_thread_sessiond_poll(void *data
)
2542 int sock
= -1, client_socket
, ret
;
2544 * structure to poll for incoming data on communication socket avoids
2545 * making blocking sockets.
2547 struct pollfd consumer_sockpoll
[2];
2548 struct lttng_consumer_local_data
*ctx
= data
;
2550 rcu_register_thread();
2552 DBG("Creating command socket %s", ctx
->consumer_command_sock_path
);
2553 unlink(ctx
->consumer_command_sock_path
);
2554 client_socket
= lttcomm_create_unix_sock(ctx
->consumer_command_sock_path
);
2555 if (client_socket
< 0) {
2556 ERR("Cannot create command socket");
2560 ret
= lttcomm_listen_unix_sock(client_socket
);
2565 DBG("Sending ready command to lttng-sessiond");
2566 ret
= lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY
);
2567 /* return < 0 on error, but == 0 is not fatal */
2569 ERR("Error sending ready command to lttng-sessiond");
2573 ret
= fcntl(client_socket
, F_SETFL
, O_NONBLOCK
);
2575 PERROR("fcntl O_NONBLOCK");
2579 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2580 consumer_sockpoll
[0].fd
= ctx
->consumer_should_quit
[0];
2581 consumer_sockpoll
[0].events
= POLLIN
| POLLPRI
;
2582 consumer_sockpoll
[1].fd
= client_socket
;
2583 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
2585 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2588 DBG("Connection on client_socket");
2590 /* Blocking call, waiting for transmission */
2591 sock
= lttcomm_accept_unix_sock(client_socket
);
2596 ret
= fcntl(sock
, F_SETFL
, O_NONBLOCK
);
2598 PERROR("fcntl O_NONBLOCK");
2602 /* This socket is not useful anymore. */
2603 ret
= close(client_socket
);
2605 PERROR("close client_socket");
2609 /* update the polling structure to poll on the established socket */
2610 consumer_sockpoll
[1].fd
= sock
;
2611 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
2614 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2617 DBG("Incoming command on sock");
2618 ret
= lttng_consumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
2619 if (ret
== -ENOENT
) {
2620 DBG("Received STOP command");
2625 * This could simply be a session daemon quitting. Don't output
2628 DBG("Communication interrupted on command socket");
2631 if (consumer_quit
) {
2632 DBG("consumer_thread_receive_fds received quit from signal");
2635 DBG("received fds on sock");
2638 DBG("consumer_thread_receive_fds exiting");
2641 * when all fds have hung up, the polling thread
2647 * Notify the data poll thread to poll back again and test the
2648 * consumer_quit state that we just set so to quit gracefully.
2650 notify_thread_pipe(ctx
->consumer_data_pipe
[1]);
2652 /* Cleaning up possibly open sockets. */
2656 PERROR("close sock sessiond poll");
2659 if (client_socket
>= 0) {
2662 PERROR("close client_socket sessiond poll");
2666 rcu_unregister_thread();
2670 ssize_t
lttng_consumer_read_subbuffer(struct lttng_consumer_stream
*stream
,
2671 struct lttng_consumer_local_data
*ctx
)
2675 pthread_mutex_lock(&stream
->lock
);
2677 switch (consumer_data
.type
) {
2678 case LTTNG_CONSUMER_KERNEL
:
2679 ret
= lttng_kconsumer_read_subbuffer(stream
, ctx
);
2681 case LTTNG_CONSUMER32_UST
:
2682 case LTTNG_CONSUMER64_UST
:
2683 ret
= lttng_ustconsumer_read_subbuffer(stream
, ctx
);
2686 ERR("Unknown consumer_data type");
2692 pthread_mutex_unlock(&stream
->lock
);
2696 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream
*stream
)
2698 switch (consumer_data
.type
) {
2699 case LTTNG_CONSUMER_KERNEL
:
2700 return lttng_kconsumer_on_recv_stream(stream
);
2701 case LTTNG_CONSUMER32_UST
:
2702 case LTTNG_CONSUMER64_UST
:
2703 return lttng_ustconsumer_on_recv_stream(stream
);
2705 ERR("Unknown consumer_data type");
2712 * Allocate and set consumer data hash tables.
2714 void lttng_consumer_init(void)
2716 consumer_data
.channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2717 consumer_data
.relayd_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2718 consumer_data
.stream_list_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2719 relayd_session_id_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2723 * Process the ADD_RELAYD command receive by a consumer.
2725 * This will create a relayd socket pair and add it to the relayd hash table.
2726 * The caller MUST acquire a RCU read side lock before calling it.
2728 int consumer_add_relayd_socket(int net_seq_idx
, int sock_type
,
2729 struct lttng_consumer_local_data
*ctx
, int sock
,
2730 struct pollfd
*consumer_sockpoll
, struct lttcomm_sock
*relayd_sock
,
2731 unsigned int sessiond_id
)
2733 int fd
= -1, ret
= -1, relayd_created
= 0;
2734 enum lttng_error_code ret_code
= LTTNG_OK
;
2735 struct consumer_relayd_sock_pair
*relayd
;
2736 struct consumer_relayd_session_id
*relayd_id_node
;
2738 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx
);
2740 /* First send a status message before receiving the fds. */
2741 ret
= consumer_send_status_msg(sock
, ret_code
);
2743 /* Somehow, the session daemon is not responding anymore. */
2747 /* Get relayd reference if exists. */
2748 relayd
= consumer_find_relayd(net_seq_idx
);
2749 if (relayd
== NULL
) {
2750 /* Not found. Allocate one. */
2751 relayd
= consumer_allocate_relayd_sock_pair(net_seq_idx
);
2752 if (relayd
== NULL
) {
2753 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_OUTFD_ERROR
);
2756 relayd
->sessiond_session_id
= (uint64_t) sessiond_id
;
2760 /* Poll on consumer socket. */
2761 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2766 /* Get relayd socket from session daemon */
2767 ret
= lttcomm_recv_fds_unix_sock(sock
, &fd
, 1);
2768 if (ret
!= sizeof(fd
)) {
2769 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_ERROR_RECV_FD
);
2771 fd
= -1; /* Just in case it gets set with an invalid value. */
2775 /* We have the fds without error. Send status back. */
2776 ret
= consumer_send_status_msg(sock
, ret_code
);
2778 /* Somehow, the session daemon is not responding anymore. */
2782 /* Copy socket information and received FD */
2783 switch (sock_type
) {
2784 case LTTNG_STREAM_CONTROL
:
2785 /* Copy received lttcomm socket */
2786 lttcomm_copy_sock(&relayd
->control_sock
, relayd_sock
);
2787 ret
= lttcomm_create_sock(&relayd
->control_sock
);
2788 /* Immediately try to close the created socket if valid. */
2789 if (relayd
->control_sock
.fd
>= 0) {
2790 if (close(relayd
->control_sock
.fd
)) {
2791 PERROR("close relayd control socket");
2794 /* Handle create_sock error. */
2799 /* Assign new file descriptor */
2800 relayd
->control_sock
.fd
= fd
;
2803 * Create a session on the relayd and store the returned id. No need to
2804 * grab the socket lock since the relayd object is not yet visible.
2806 ret
= relayd_create_session(&relayd
->control_sock
,
2807 &relayd
->relayd_session_id
);
2812 /* Set up a relayd session id node. */
2813 relayd_id_node
= zmalloc(sizeof(struct consumer_relayd_session_id
));
2814 if (!relayd_id_node
) {
2815 PERROR("zmalloc relayd id node");
2819 relayd_id_node
->relayd_id
= relayd
->relayd_session_id
;
2820 relayd_id_node
->sessiond_id
= (uint64_t) sessiond_id
;
2822 /* Indexed by session id of the sessiond. */
2823 lttng_ht_node_init_ulong(&relayd_id_node
->node
,
2824 relayd_id_node
->sessiond_id
);
2826 lttng_ht_add_unique_ulong(relayd_session_id_ht
, &relayd_id_node
->node
);
2830 case LTTNG_STREAM_DATA
:
2831 /* Copy received lttcomm socket */
2832 lttcomm_copy_sock(&relayd
->data_sock
, relayd_sock
);
2833 ret
= lttcomm_create_sock(&relayd
->data_sock
);
2834 /* Immediately try to close the created socket if valid. */
2835 if (relayd
->data_sock
.fd
>= 0) {
2836 if (close(relayd
->data_sock
.fd
)) {
2837 PERROR("close relayd data socket");
2840 /* Handle create_sock error. */
2845 /* Assign new file descriptor */
2846 relayd
->data_sock
.fd
= fd
;
2849 ERR("Unknown relayd socket type (%d)", sock_type
);
2853 DBG("Consumer %s socket created successfully with net idx %d (fd: %d)",
2854 sock_type
== LTTNG_STREAM_CONTROL
? "control" : "data",
2855 relayd
->net_seq_idx
, fd
);
2858 * Add relayd socket pair to consumer data hashtable. If object already
2859 * exists or on error, the function gracefully returns.
2867 /* Close received socket if valid. */
2870 PERROR("close received socket");
2874 if (relayd_created
) {
2875 /* We just want to cleanup. Ignore ret value. */
2876 (void) relayd_close(&relayd
->control_sock
);
2877 (void) relayd_close(&relayd
->data_sock
);
2885 * Try to lock the stream mutex.
2887 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
2889 static int stream_try_lock(struct lttng_consumer_stream
*stream
)
2896 * Try to lock the stream mutex. On failure, we know that the stream is
2897 * being used else where hence there is data still being extracted.
2899 ret
= pthread_mutex_trylock(&stream
->lock
);
2901 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
2913 * Search for a relayd associated to the session id and return the reference.
2915 * A rcu read side lock MUST be acquire before calling this function and locked
2916 * until the relayd object is no longer necessary.
2918 static struct consumer_relayd_sock_pair
*find_relayd_by_session_id(uint64_t id
)
2920 struct lttng_ht_iter iter
;
2921 struct lttng_ht_node_ulong
*node
;
2922 struct consumer_relayd_sock_pair
*relayd
= NULL
;
2923 struct consumer_relayd_session_id
*session_id_map
;
2925 /* Get the session id map. */
2926 lttng_ht_lookup(relayd_session_id_ht
, (void *)((unsigned long) id
), &iter
);
2927 node
= lttng_ht_iter_get_node_ulong(&iter
);
2932 session_id_map
= caa_container_of(node
, struct consumer_relayd_session_id
,
2935 /* Iterate over all relayd since they are indexed by net_seq_idx. */
2936 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
2938 if (relayd
->relayd_session_id
== session_id_map
->relayd_id
) {
2939 /* Found the relayd. There can be only one per id. */
2949 * Check if for a given session id there is still data needed to be extract
2952 * Return 1 if data is pending or else 0 meaning ready to be read.
2954 int consumer_data_pending(uint64_t id
)
2957 struct lttng_ht_iter iter
;
2958 struct lttng_ht
*ht
;
2959 struct lttng_consumer_stream
*stream
;
2960 struct consumer_relayd_sock_pair
*relayd
= NULL
;
2961 int (*data_pending
)(struct lttng_consumer_stream
*);
2963 DBG("Consumer data pending command on session id %" PRIu64
, id
);
2966 pthread_mutex_lock(&consumer_data
.lock
);
2968 switch (consumer_data
.type
) {
2969 case LTTNG_CONSUMER_KERNEL
:
2970 data_pending
= lttng_kconsumer_data_pending
;
2972 case LTTNG_CONSUMER32_UST
:
2973 case LTTNG_CONSUMER64_UST
:
2974 data_pending
= lttng_ustconsumer_data_pending
;
2977 ERR("Unknown consumer data type");
2981 /* Ease our life a bit */
2982 ht
= consumer_data
.stream_list_ht
;
2984 relayd
= find_relayd_by_session_id(id
);
2986 /* Send init command for data pending. */
2987 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
2988 ret
= relayd_begin_data_pending(&relayd
->control_sock
,
2989 relayd
->relayd_session_id
);
2990 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
2992 /* Communication error thus the relayd so no data pending. */
2993 goto data_not_pending
;
2997 cds_lfht_for_each_entry_duplicate(ht
->ht
,
2998 ht
->hash_fct((void *)((unsigned long) id
), lttng_ht_seed
),
2999 ht
->match_fct
, (void *)((unsigned long) id
),
3000 &iter
.iter
, stream
, node_session_id
.node
) {
3001 /* If this call fails, the stream is being used hence data pending. */
3002 ret
= stream_try_lock(stream
);
3008 * A removed node from the hash table indicates that the stream has
3009 * been deleted thus having a guarantee that the buffers are closed
3010 * on the consumer side. However, data can still be transmitted
3011 * over the network so don't skip the relayd check.
3013 ret
= cds_lfht_is_node_deleted(&stream
->node
.node
);
3015 /* Check the stream if there is data in the buffers. */
3016 ret
= data_pending(stream
);
3018 pthread_mutex_unlock(&stream
->lock
);
3025 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3026 if (stream
->metadata_flag
) {
3027 ret
= relayd_quiescent_control(&relayd
->control_sock
,
3028 stream
->relayd_stream_id
);
3030 ret
= relayd_data_pending(&relayd
->control_sock
,
3031 stream
->relayd_stream_id
,
3032 stream
->next_net_seq_num
- 1);
3034 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3036 pthread_mutex_unlock(&stream
->lock
);
3040 pthread_mutex_unlock(&stream
->lock
);
3044 unsigned int is_data_inflight
= 0;
3046 /* Send init command for data pending. */
3047 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3048 ret
= relayd_end_data_pending(&relayd
->control_sock
,
3049 relayd
->relayd_session_id
, &is_data_inflight
);
3050 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3052 goto data_not_pending
;
3054 if (is_data_inflight
) {
3060 * Finding _no_ node in the hash table and no inflight data means that the
3061 * stream(s) have been removed thus data is guaranteed to be available for
3062 * analysis from the trace files.
3066 /* Data is available to be read by a viewer. */
3067 pthread_mutex_unlock(&consumer_data
.lock
);
3072 /* Data is still being extracted from buffers. */
3073 pthread_mutex_unlock(&consumer_data
.lock
);
3079 * Send a ret code status message to the sessiond daemon.
3081 * Return the sendmsg() return value.
3083 int consumer_send_status_msg(int sock
, int ret_code
)
3085 struct lttcomm_consumer_status_msg msg
;
3087 msg
.ret_code
= ret_code
;
3089 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));