2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 #include <sys/socket.h>
28 #include <sys/types.h>
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/index/index.h>
38 #include <common/kernel-ctl/kernel-ctl.h>
39 #include <common/sessiond-comm/relayd.h>
40 #include <common/sessiond-comm/sessiond-comm.h>
41 #include <common/kernel-consumer/kernel-consumer.h>
42 #include <common/relayd/relayd.h>
43 #include <common/ust-consumer/ust-consumer.h>
44 #include <common/consumer-timer.h>
47 #include "consumer-stream.h"
48 #include "consumer-testpoint.h"
50 struct lttng_consumer_global_data consumer_data
= {
53 .type
= LTTNG_CONSUMER_UNKNOWN
,
56 enum consumer_channel_action
{
59 CONSUMER_CHANNEL_QUIT
,
62 struct consumer_channel_msg
{
63 enum consumer_channel_action action
;
64 struct lttng_consumer_channel
*chan
; /* add */
65 uint64_t key
; /* del */
69 * Flag to inform the polling thread to quit when all fd hung up. Updated by
70 * the consumer_thread_receive_fds when it notices that all fds has hung up.
71 * Also updated by the signal handler (consumer_should_exit()). Read by the
74 volatile int consumer_quit
;
77 * Global hash table containing respectively metadata and data streams. The
78 * stream element in this ht should only be updated by the metadata poll thread
79 * for the metadata and the data poll thread for the data.
81 static struct lttng_ht
*metadata_ht
;
82 static struct lttng_ht
*data_ht
;
85 * Notify a thread lttng pipe to poll back again. This usually means that some
86 * global state has changed so we just send back the thread in a poll wait
89 static void notify_thread_lttng_pipe(struct lttng_pipe
*pipe
)
91 struct lttng_consumer_stream
*null_stream
= NULL
;
95 (void) lttng_pipe_write(pipe
, &null_stream
, sizeof(null_stream
));
98 static void notify_health_quit_pipe(int *pipe
)
102 ret
= lttng_write(pipe
[1], "4", 1);
104 PERROR("write consumer health quit");
108 static void notify_channel_pipe(struct lttng_consumer_local_data
*ctx
,
109 struct lttng_consumer_channel
*chan
,
111 enum consumer_channel_action action
)
113 struct consumer_channel_msg msg
;
116 memset(&msg
, 0, sizeof(msg
));
121 ret
= lttng_write(ctx
->consumer_channel_pipe
[1], &msg
, sizeof(msg
));
122 if (ret
< sizeof(msg
)) {
123 PERROR("notify_channel_pipe write error");
127 void notify_thread_del_channel(struct lttng_consumer_local_data
*ctx
,
130 notify_channel_pipe(ctx
, NULL
, key
, CONSUMER_CHANNEL_DEL
);
133 static int read_channel_pipe(struct lttng_consumer_local_data
*ctx
,
134 struct lttng_consumer_channel
**chan
,
136 enum consumer_channel_action
*action
)
138 struct consumer_channel_msg msg
;
141 ret
= lttng_read(ctx
->consumer_channel_pipe
[0], &msg
, sizeof(msg
));
142 if (ret
< sizeof(msg
)) {
146 *action
= msg
.action
;
154 * Cleanup the stream list of a channel. Those streams are not yet globally
157 static void clean_channel_stream_list(struct lttng_consumer_channel
*channel
)
159 struct lttng_consumer_stream
*stream
, *stmp
;
163 /* Delete streams that might have been left in the stream list. */
164 cds_list_for_each_entry_safe(stream
, stmp
, &channel
->streams
.head
,
166 cds_list_del(&stream
->send_node
);
168 * Once a stream is added to this list, the buffers were created so we
169 * have a guarantee that this call will succeed. Setting the monitor
170 * mode to 0 so we don't lock nor try to delete the stream from the
174 consumer_stream_destroy(stream
, NULL
);
179 * Find a stream. The consumer_data.lock must be locked during this
182 static struct lttng_consumer_stream
*find_stream(uint64_t key
,
185 struct lttng_ht_iter iter
;
186 struct lttng_ht_node_u64
*node
;
187 struct lttng_consumer_stream
*stream
= NULL
;
191 /* -1ULL keys are lookup failures */
192 if (key
== (uint64_t) -1ULL) {
198 lttng_ht_lookup(ht
, &key
, &iter
);
199 node
= lttng_ht_iter_get_node_u64(&iter
);
201 stream
= caa_container_of(node
, struct lttng_consumer_stream
, node
);
209 static void steal_stream_key(uint64_t key
, struct lttng_ht
*ht
)
211 struct lttng_consumer_stream
*stream
;
214 stream
= find_stream(key
, ht
);
216 stream
->key
= (uint64_t) -1ULL;
218 * We don't want the lookup to match, but we still need
219 * to iterate on this stream when iterating over the hash table. Just
220 * change the node key.
222 stream
->node
.key
= (uint64_t) -1ULL;
228 * Return a channel object for the given key.
230 * RCU read side lock MUST be acquired before calling this function and
231 * protects the channel ptr.
233 struct lttng_consumer_channel
*consumer_find_channel(uint64_t key
)
235 struct lttng_ht_iter iter
;
236 struct lttng_ht_node_u64
*node
;
237 struct lttng_consumer_channel
*channel
= NULL
;
239 /* -1ULL keys are lookup failures */
240 if (key
== (uint64_t) -1ULL) {
244 lttng_ht_lookup(consumer_data
.channel_ht
, &key
, &iter
);
245 node
= lttng_ht_iter_get_node_u64(&iter
);
247 channel
= caa_container_of(node
, struct lttng_consumer_channel
, node
);
254 * There is a possibility that the consumer does not have enough time between
255 * the close of the channel on the session daemon and the cleanup in here thus
256 * once we have a channel add with an existing key, we know for sure that this
257 * channel will eventually get cleaned up by all streams being closed.
259 * This function just nullifies the already existing channel key.
261 static void steal_channel_key(uint64_t key
)
263 struct lttng_consumer_channel
*channel
;
266 channel
= consumer_find_channel(key
);
268 channel
->key
= (uint64_t) -1ULL;
270 * We don't want the lookup to match, but we still need to iterate on
271 * this channel when iterating over the hash table. Just change the
274 channel
->node
.key
= (uint64_t) -1ULL;
279 static void free_channel_rcu(struct rcu_head
*head
)
281 struct lttng_ht_node_u64
*node
=
282 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
283 struct lttng_consumer_channel
*channel
=
284 caa_container_of(node
, struct lttng_consumer_channel
, node
);
290 * RCU protected relayd socket pair free.
292 static void free_relayd_rcu(struct rcu_head
*head
)
294 struct lttng_ht_node_u64
*node
=
295 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
296 struct consumer_relayd_sock_pair
*relayd
=
297 caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
300 * Close all sockets. This is done in the call RCU since we don't want the
301 * socket fds to be reassigned thus potentially creating bad state of the
304 * We do not have to lock the control socket mutex here since at this stage
305 * there is no one referencing to this relayd object.
307 (void) relayd_close(&relayd
->control_sock
);
308 (void) relayd_close(&relayd
->data_sock
);
314 * Destroy and free relayd socket pair object.
316 void consumer_destroy_relayd(struct consumer_relayd_sock_pair
*relayd
)
319 struct lttng_ht_iter iter
;
321 if (relayd
== NULL
) {
325 DBG("Consumer destroy and close relayd socket pair");
327 iter
.iter
.node
= &relayd
->node
.node
;
328 ret
= lttng_ht_del(consumer_data
.relayd_ht
, &iter
);
330 /* We assume the relayd is being or is destroyed */
334 /* RCU free() call */
335 call_rcu(&relayd
->node
.head
, free_relayd_rcu
);
339 * Remove a channel from the global list protected by a mutex. This function is
340 * also responsible for freeing its data structures.
342 void consumer_del_channel(struct lttng_consumer_channel
*channel
)
345 struct lttng_ht_iter iter
;
347 DBG("Consumer delete channel key %" PRIu64
, channel
->key
);
349 pthread_mutex_lock(&consumer_data
.lock
);
350 pthread_mutex_lock(&channel
->lock
);
352 /* Destroy streams that might have been left in the stream list. */
353 clean_channel_stream_list(channel
);
355 if (channel
->live_timer_enabled
== 1) {
356 consumer_timer_live_stop(channel
);
359 switch (consumer_data
.type
) {
360 case LTTNG_CONSUMER_KERNEL
:
362 case LTTNG_CONSUMER32_UST
:
363 case LTTNG_CONSUMER64_UST
:
364 lttng_ustconsumer_del_channel(channel
);
367 ERR("Unknown consumer_data type");
373 iter
.iter
.node
= &channel
->node
.node
;
374 ret
= lttng_ht_del(consumer_data
.channel_ht
, &iter
);
378 call_rcu(&channel
->node
.head
, free_channel_rcu
);
380 pthread_mutex_unlock(&channel
->lock
);
381 pthread_mutex_unlock(&consumer_data
.lock
);
385 * Iterate over the relayd hash table and destroy each element. Finally,
386 * destroy the whole hash table.
388 static void cleanup_relayd_ht(void)
390 struct lttng_ht_iter iter
;
391 struct consumer_relayd_sock_pair
*relayd
;
395 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
397 consumer_destroy_relayd(relayd
);
402 lttng_ht_destroy(consumer_data
.relayd_ht
);
406 * Update the end point status of all streams having the given network sequence
407 * index (relayd index).
409 * It's atomically set without having the stream mutex locked which is fine
410 * because we handle the write/read race with a pipe wakeup for each thread.
412 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx
,
413 enum consumer_endpoint_status status
)
415 struct lttng_ht_iter iter
;
416 struct lttng_consumer_stream
*stream
;
418 DBG("Consumer set delete flag on stream by idx %" PRIu64
, net_seq_idx
);
422 /* Let's begin with metadata */
423 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
424 if (stream
->net_seq_idx
== net_seq_idx
) {
425 uatomic_set(&stream
->endpoint_status
, status
);
426 DBG("Delete flag set to metadata stream %d", stream
->wait_fd
);
430 /* Follow up by the data streams */
431 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
432 if (stream
->net_seq_idx
== net_seq_idx
) {
433 uatomic_set(&stream
->endpoint_status
, status
);
434 DBG("Delete flag set to data stream %d", stream
->wait_fd
);
441 * Cleanup a relayd object by flagging every associated streams for deletion,
442 * destroying the object meaning removing it from the relayd hash table,
443 * closing the sockets and freeing the memory in a RCU call.
445 * If a local data context is available, notify the threads that the streams'
446 * state have changed.
448 static void cleanup_relayd(struct consumer_relayd_sock_pair
*relayd
,
449 struct lttng_consumer_local_data
*ctx
)
455 DBG("Cleaning up relayd sockets");
457 /* Save the net sequence index before destroying the object */
458 netidx
= relayd
->net_seq_idx
;
461 * Delete the relayd from the relayd hash table, close the sockets and free
462 * the object in a RCU call.
464 consumer_destroy_relayd(relayd
);
466 /* Set inactive endpoint to all streams */
467 update_endpoint_status_by_netidx(netidx
, CONSUMER_ENDPOINT_INACTIVE
);
470 * With a local data context, notify the threads that the streams' state
471 * have changed. The write() action on the pipe acts as an "implicit"
472 * memory barrier ordering the updates of the end point status from the
473 * read of this status which happens AFTER receiving this notify.
476 notify_thread_lttng_pipe(ctx
->consumer_data_pipe
);
477 notify_thread_lttng_pipe(ctx
->consumer_metadata_pipe
);
482 * Flag a relayd socket pair for destruction. Destroy it if the refcount
485 * RCU read side lock MUST be aquired before calling this function.
487 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair
*relayd
)
491 /* Set destroy flag for this object */
492 uatomic_set(&relayd
->destroy_flag
, 1);
494 /* Destroy the relayd if refcount is 0 */
495 if (uatomic_read(&relayd
->refcount
) == 0) {
496 consumer_destroy_relayd(relayd
);
501 * Completly destroy stream from every visiable data structure and the given
504 * One this call returns, the stream object is not longer usable nor visible.
506 void consumer_del_stream(struct lttng_consumer_stream
*stream
,
509 consumer_stream_destroy(stream
, ht
);
513 * XXX naming of del vs destroy is all mixed up.
515 void consumer_del_stream_for_data(struct lttng_consumer_stream
*stream
)
517 consumer_stream_destroy(stream
, data_ht
);
520 void consumer_del_stream_for_metadata(struct lttng_consumer_stream
*stream
)
522 consumer_stream_destroy(stream
, metadata_ht
);
525 struct lttng_consumer_stream
*consumer_allocate_stream(uint64_t channel_key
,
527 enum lttng_consumer_stream_state state
,
528 const char *channel_name
,
535 enum consumer_channel_type type
,
536 unsigned int monitor
)
539 struct lttng_consumer_stream
*stream
;
541 stream
= zmalloc(sizeof(*stream
));
542 if (stream
== NULL
) {
543 PERROR("malloc struct lttng_consumer_stream");
550 stream
->key
= stream_key
;
552 stream
->out_fd_offset
= 0;
553 stream
->output_written
= 0;
554 stream
->state
= state
;
557 stream
->net_seq_idx
= relayd_id
;
558 stream
->session_id
= session_id
;
559 stream
->monitor
= monitor
;
560 stream
->endpoint_status
= CONSUMER_ENDPOINT_ACTIVE
;
561 stream
->index_fd
= -1;
562 pthread_mutex_init(&stream
->lock
, NULL
);
564 /* If channel is the metadata, flag this stream as metadata. */
565 if (type
== CONSUMER_CHANNEL_TYPE_METADATA
) {
566 stream
->metadata_flag
= 1;
567 /* Metadata is flat out. */
568 strncpy(stream
->name
, DEFAULT_METADATA_NAME
, sizeof(stream
->name
));
569 /* Live rendez-vous point. */
570 pthread_cond_init(&stream
->metadata_rdv
, NULL
);
571 pthread_mutex_init(&stream
->metadata_rdv_lock
, NULL
);
573 /* Format stream name to <channel_name>_<cpu_number> */
574 ret
= snprintf(stream
->name
, sizeof(stream
->name
), "%s_%d",
577 PERROR("snprintf stream name");
582 /* Key is always the wait_fd for streams. */
583 lttng_ht_node_init_u64(&stream
->node
, stream
->key
);
585 /* Init node per channel id key */
586 lttng_ht_node_init_u64(&stream
->node_channel_id
, channel_key
);
588 /* Init session id node with the stream session id */
589 lttng_ht_node_init_u64(&stream
->node_session_id
, stream
->session_id
);
591 DBG3("Allocated stream %s (key %" PRIu64
", chan_key %" PRIu64
592 " relayd_id %" PRIu64
", session_id %" PRIu64
,
593 stream
->name
, stream
->key
, channel_key
,
594 stream
->net_seq_idx
, stream
->session_id
);
610 * Add a stream to the global list protected by a mutex.
612 int consumer_add_data_stream(struct lttng_consumer_stream
*stream
)
614 struct lttng_ht
*ht
= data_ht
;
620 DBG3("Adding consumer stream %" PRIu64
, stream
->key
);
622 pthread_mutex_lock(&consumer_data
.lock
);
623 pthread_mutex_lock(&stream
->chan
->lock
);
624 pthread_mutex_lock(&stream
->chan
->timer_lock
);
625 pthread_mutex_lock(&stream
->lock
);
628 /* Steal stream identifier to avoid having streams with the same key */
629 steal_stream_key(stream
->key
, ht
);
631 lttng_ht_add_unique_u64(ht
, &stream
->node
);
633 lttng_ht_add_u64(consumer_data
.stream_per_chan_id_ht
,
634 &stream
->node_channel_id
);
637 * Add stream to the stream_list_ht of the consumer data. No need to steal
638 * the key since the HT does not use it and we allow to add redundant keys
641 lttng_ht_add_u64(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
644 * When nb_init_stream_left reaches 0, we don't need to trigger any action
645 * in terms of destroying the associated channel, because the action that
646 * causes the count to become 0 also causes a stream to be added. The
647 * channel deletion will thus be triggered by the following removal of this
650 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
651 /* Increment refcount before decrementing nb_init_stream_left */
653 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
656 /* Update consumer data once the node is inserted. */
657 consumer_data
.stream_count
++;
658 consumer_data
.need_update
= 1;
661 pthread_mutex_unlock(&stream
->lock
);
662 pthread_mutex_unlock(&stream
->chan
->timer_lock
);
663 pthread_mutex_unlock(&stream
->chan
->lock
);
664 pthread_mutex_unlock(&consumer_data
.lock
);
669 void consumer_del_data_stream(struct lttng_consumer_stream
*stream
)
671 consumer_del_stream(stream
, data_ht
);
675 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
676 * be acquired before calling this.
678 static int add_relayd(struct consumer_relayd_sock_pair
*relayd
)
681 struct lttng_ht_node_u64
*node
;
682 struct lttng_ht_iter iter
;
686 lttng_ht_lookup(consumer_data
.relayd_ht
,
687 &relayd
->net_seq_idx
, &iter
);
688 node
= lttng_ht_iter_get_node_u64(&iter
);
692 lttng_ht_add_unique_u64(consumer_data
.relayd_ht
, &relayd
->node
);
699 * Allocate and return a consumer relayd socket.
701 struct consumer_relayd_sock_pair
*consumer_allocate_relayd_sock_pair(
702 uint64_t net_seq_idx
)
704 struct consumer_relayd_sock_pair
*obj
= NULL
;
706 /* net sequence index of -1 is a failure */
707 if (net_seq_idx
== (uint64_t) -1ULL) {
711 obj
= zmalloc(sizeof(struct consumer_relayd_sock_pair
));
713 PERROR("zmalloc relayd sock");
717 obj
->net_seq_idx
= net_seq_idx
;
719 obj
->destroy_flag
= 0;
720 obj
->control_sock
.sock
.fd
= -1;
721 obj
->data_sock
.sock
.fd
= -1;
722 lttng_ht_node_init_u64(&obj
->node
, obj
->net_seq_idx
);
723 pthread_mutex_init(&obj
->ctrl_sock_mutex
, NULL
);
730 * Find a relayd socket pair in the global consumer data.
732 * Return the object if found else NULL.
733 * RCU read-side lock must be held across this call and while using the
736 struct consumer_relayd_sock_pair
*consumer_find_relayd(uint64_t key
)
738 struct lttng_ht_iter iter
;
739 struct lttng_ht_node_u64
*node
;
740 struct consumer_relayd_sock_pair
*relayd
= NULL
;
742 /* Negative keys are lookup failures */
743 if (key
== (uint64_t) -1ULL) {
747 lttng_ht_lookup(consumer_data
.relayd_ht
, &key
,
749 node
= lttng_ht_iter_get_node_u64(&iter
);
751 relayd
= caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
759 * Find a relayd and send the stream
761 * Returns 0 on success, < 0 on error
763 int consumer_send_relayd_stream(struct lttng_consumer_stream
*stream
,
767 struct consumer_relayd_sock_pair
*relayd
;
770 assert(stream
->net_seq_idx
!= -1ULL);
773 /* The stream is not metadata. Get relayd reference if exists. */
775 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
776 if (relayd
!= NULL
) {
777 /* Add stream on the relayd */
778 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
779 ret
= relayd_add_stream(&relayd
->control_sock
, stream
->name
,
780 path
, &stream
->relayd_stream_id
,
781 stream
->chan
->tracefile_size
, stream
->chan
->tracefile_count
);
782 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
787 uatomic_inc(&relayd
->refcount
);
788 stream
->sent_to_relayd
= 1;
790 ERR("Stream %" PRIu64
" relayd ID %" PRIu64
" unknown. Can't send it.",
791 stream
->key
, stream
->net_seq_idx
);
796 DBG("Stream %s with key %" PRIu64
" sent to relayd id %" PRIu64
,
797 stream
->name
, stream
->key
, stream
->net_seq_idx
);
805 * Find a relayd and send the streams sent message
807 * Returns 0 on success, < 0 on error
809 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx
)
812 struct consumer_relayd_sock_pair
*relayd
;
814 assert(net_seq_idx
!= -1ULL);
816 /* The stream is not metadata. Get relayd reference if exists. */
818 relayd
= consumer_find_relayd(net_seq_idx
);
819 if (relayd
!= NULL
) {
820 /* Add stream on the relayd */
821 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
822 ret
= relayd_streams_sent(&relayd
->control_sock
);
823 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
828 ERR("Relayd ID %" PRIu64
" unknown. Can't send streams_sent.",
835 DBG("All streams sent relayd id %" PRIu64
, net_seq_idx
);
843 * Find a relayd and close the stream
845 void close_relayd_stream(struct lttng_consumer_stream
*stream
)
847 struct consumer_relayd_sock_pair
*relayd
;
849 /* The stream is not metadata. Get relayd reference if exists. */
851 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
853 consumer_stream_relayd_close(stream
, relayd
);
859 * Handle stream for relayd transmission if the stream applies for network
860 * streaming where the net sequence index is set.
862 * Return destination file descriptor or negative value on error.
864 static int write_relayd_stream_header(struct lttng_consumer_stream
*stream
,
865 size_t data_size
, unsigned long padding
,
866 struct consumer_relayd_sock_pair
*relayd
)
869 struct lttcomm_relayd_data_hdr data_hdr
;
875 /* Reset data header */
876 memset(&data_hdr
, 0, sizeof(data_hdr
));
878 if (stream
->metadata_flag
) {
879 /* Caller MUST acquire the relayd control socket lock */
880 ret
= relayd_send_metadata(&relayd
->control_sock
, data_size
);
885 /* Metadata are always sent on the control socket. */
886 outfd
= relayd
->control_sock
.sock
.fd
;
888 /* Set header with stream information */
889 data_hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
890 data_hdr
.data_size
= htobe32(data_size
);
891 data_hdr
.padding_size
= htobe32(padding
);
893 * Note that net_seq_num below is assigned with the *current* value of
894 * next_net_seq_num and only after that the next_net_seq_num will be
895 * increment. This is why when issuing a command on the relayd using
896 * this next value, 1 should always be substracted in order to compare
897 * the last seen sequence number on the relayd side to the last sent.
899 data_hdr
.net_seq_num
= htobe64(stream
->next_net_seq_num
);
900 /* Other fields are zeroed previously */
902 ret
= relayd_send_data_hdr(&relayd
->data_sock
, &data_hdr
,
908 ++stream
->next_net_seq_num
;
910 /* Set to go on data socket */
911 outfd
= relayd
->data_sock
.sock
.fd
;
919 * Allocate and return a new lttng_consumer_channel object using the given key
920 * to initialize the hash table node.
922 * On error, return NULL.
924 struct lttng_consumer_channel
*consumer_allocate_channel(uint64_t key
,
926 const char *pathname
,
931 enum lttng_event_output output
,
932 uint64_t tracefile_size
,
933 uint64_t tracefile_count
,
934 uint64_t session_id_per_pid
,
935 unsigned int monitor
,
936 unsigned int live_timer_interval
)
938 struct lttng_consumer_channel
*channel
;
940 channel
= zmalloc(sizeof(*channel
));
941 if (channel
== NULL
) {
942 PERROR("malloc struct lttng_consumer_channel");
947 channel
->refcount
= 0;
948 channel
->session_id
= session_id
;
949 channel
->session_id_per_pid
= session_id_per_pid
;
952 channel
->relayd_id
= relayd_id
;
953 channel
->tracefile_size
= tracefile_size
;
954 channel
->tracefile_count
= tracefile_count
;
955 channel
->monitor
= monitor
;
956 channel
->live_timer_interval
= live_timer_interval
;
957 pthread_mutex_init(&channel
->lock
, NULL
);
958 pthread_mutex_init(&channel
->timer_lock
, NULL
);
961 case LTTNG_EVENT_SPLICE
:
962 channel
->output
= CONSUMER_CHANNEL_SPLICE
;
964 case LTTNG_EVENT_MMAP
:
965 channel
->output
= CONSUMER_CHANNEL_MMAP
;
975 * In monitor mode, the streams associated with the channel will be put in
976 * a special list ONLY owned by this channel. So, the refcount is set to 1
977 * here meaning that the channel itself has streams that are referenced.
979 * On a channel deletion, once the channel is no longer visible, the
980 * refcount is decremented and checked for a zero value to delete it. With
981 * streams in no monitor mode, it will now be safe to destroy the channel.
983 if (!channel
->monitor
) {
984 channel
->refcount
= 1;
987 strncpy(channel
->pathname
, pathname
, sizeof(channel
->pathname
));
988 channel
->pathname
[sizeof(channel
->pathname
) - 1] = '\0';
990 strncpy(channel
->name
, name
, sizeof(channel
->name
));
991 channel
->name
[sizeof(channel
->name
) - 1] = '\0';
993 lttng_ht_node_init_u64(&channel
->node
, channel
->key
);
995 channel
->wait_fd
= -1;
997 CDS_INIT_LIST_HEAD(&channel
->streams
.head
);
999 DBG("Allocated channel (key %" PRIu64
")", channel
->key
)
1006 * Add a channel to the global list protected by a mutex.
1008 * Always return 0 indicating success.
1010 int consumer_add_channel(struct lttng_consumer_channel
*channel
,
1011 struct lttng_consumer_local_data
*ctx
)
1013 pthread_mutex_lock(&consumer_data
.lock
);
1014 pthread_mutex_lock(&channel
->lock
);
1015 pthread_mutex_lock(&channel
->timer_lock
);
1018 * This gives us a guarantee that the channel we are about to add to the
1019 * channel hash table will be unique. See this function comment on the why
1020 * we need to steel the channel key at this stage.
1022 steal_channel_key(channel
->key
);
1025 lttng_ht_add_unique_u64(consumer_data
.channel_ht
, &channel
->node
);
1028 pthread_mutex_unlock(&channel
->timer_lock
);
1029 pthread_mutex_unlock(&channel
->lock
);
1030 pthread_mutex_unlock(&consumer_data
.lock
);
1032 if (channel
->wait_fd
!= -1 && channel
->type
== CONSUMER_CHANNEL_TYPE_DATA
) {
1033 notify_channel_pipe(ctx
, channel
, -1, CONSUMER_CHANNEL_ADD
);
1040 * Allocate the pollfd structure and the local view of the out fds to avoid
1041 * doing a lookup in the linked list and concurrency issues when writing is
1042 * needed. Called with consumer_data.lock held.
1044 * Returns the number of fds in the structures.
1046 static int update_poll_array(struct lttng_consumer_local_data
*ctx
,
1047 struct pollfd
**pollfd
, struct lttng_consumer_stream
**local_stream
,
1048 struct lttng_ht
*ht
)
1051 struct lttng_ht_iter iter
;
1052 struct lttng_consumer_stream
*stream
;
1057 assert(local_stream
);
1059 DBG("Updating poll fd array");
1061 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1063 * Only active streams with an active end point can be added to the
1064 * poll set and local stream storage of the thread.
1066 * There is a potential race here for endpoint_status to be updated
1067 * just after the check. However, this is OK since the stream(s) will
1068 * be deleted once the thread is notified that the end point state has
1069 * changed where this function will be called back again.
1071 if (stream
->state
!= LTTNG_CONSUMER_ACTIVE_STREAM
||
1072 stream
->endpoint_status
== CONSUMER_ENDPOINT_INACTIVE
) {
1076 * This clobbers way too much the debug output. Uncomment that if you
1077 * need it for debugging purposes.
1079 * DBG("Active FD %d", stream->wait_fd);
1081 (*pollfd
)[i
].fd
= stream
->wait_fd
;
1082 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1083 local_stream
[i
] = stream
;
1089 * Insert the consumer_data_pipe at the end of the array and don't
1090 * increment i so nb_fd is the number of real FD.
1092 (*pollfd
)[i
].fd
= lttng_pipe_get_readfd(ctx
->consumer_data_pipe
);
1093 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1095 (*pollfd
)[i
+ 1].fd
= lttng_pipe_get_readfd(ctx
->consumer_wakeup_pipe
);
1096 (*pollfd
)[i
+ 1].events
= POLLIN
| POLLPRI
;
1101 * Poll on the should_quit pipe and the command socket return -1 on
1102 * error, 1 if should exit, 0 if data is available on the command socket
1104 int lttng_consumer_poll_socket(struct pollfd
*consumer_sockpoll
)
1109 num_rdy
= poll(consumer_sockpoll
, 2, -1);
1110 if (num_rdy
== -1) {
1112 * Restart interrupted system call.
1114 if (errno
== EINTR
) {
1117 PERROR("Poll error");
1120 if (consumer_sockpoll
[0].revents
& (POLLIN
| POLLPRI
)) {
1121 DBG("consumer_should_quit wake up");
1128 * Set the error socket.
1130 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data
*ctx
,
1133 ctx
->consumer_error_socket
= sock
;
1137 * Set the command socket path.
1139 void lttng_consumer_set_command_sock_path(
1140 struct lttng_consumer_local_data
*ctx
, char *sock
)
1142 ctx
->consumer_command_sock_path
= sock
;
1146 * Send return code to the session daemon.
1147 * If the socket is not defined, we return 0, it is not a fatal error
1149 int lttng_consumer_send_error(struct lttng_consumer_local_data
*ctx
, int cmd
)
1151 if (ctx
->consumer_error_socket
> 0) {
1152 return lttcomm_send_unix_sock(ctx
->consumer_error_socket
, &cmd
,
1153 sizeof(enum lttcomm_sessiond_command
));
1160 * Close all the tracefiles and stream fds and MUST be called when all
1161 * instances are destroyed i.e. when all threads were joined and are ended.
1163 void lttng_consumer_cleanup(void)
1165 struct lttng_ht_iter iter
;
1166 struct lttng_consumer_channel
*channel
;
1170 cds_lfht_for_each_entry(consumer_data
.channel_ht
->ht
, &iter
.iter
, channel
,
1172 consumer_del_channel(channel
);
1177 lttng_ht_destroy(consumer_data
.channel_ht
);
1179 cleanup_relayd_ht();
1181 lttng_ht_destroy(consumer_data
.stream_per_chan_id_ht
);
1184 * This HT contains streams that are freed by either the metadata thread or
1185 * the data thread so we do *nothing* on the hash table and simply destroy
1188 lttng_ht_destroy(consumer_data
.stream_list_ht
);
1192 * Called from signal handler.
1194 void lttng_consumer_should_exit(struct lttng_consumer_local_data
*ctx
)
1199 ret
= lttng_write(ctx
->consumer_should_quit
[1], "4", 1);
1201 PERROR("write consumer quit");
1204 DBG("Consumer flag that it should quit");
1207 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream
*stream
,
1210 int outfd
= stream
->out_fd
;
1213 * This does a blocking write-and-wait on any page that belongs to the
1214 * subbuffer prior to the one we just wrote.
1215 * Don't care about error values, as these are just hints and ways to
1216 * limit the amount of page cache used.
1218 if (orig_offset
< stream
->max_sb_size
) {
1221 lttng_sync_file_range(outfd
, orig_offset
- stream
->max_sb_size
,
1222 stream
->max_sb_size
,
1223 SYNC_FILE_RANGE_WAIT_BEFORE
1224 | SYNC_FILE_RANGE_WRITE
1225 | SYNC_FILE_RANGE_WAIT_AFTER
);
1227 * Give hints to the kernel about how we access the file:
1228 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1231 * We need to call fadvise again after the file grows because the
1232 * kernel does not seem to apply fadvise to non-existing parts of the
1235 * Call fadvise _after_ having waited for the page writeback to
1236 * complete because the dirty page writeback semantic is not well
1237 * defined. So it can be expected to lead to lower throughput in
1240 posix_fadvise(outfd
, orig_offset
- stream
->max_sb_size
,
1241 stream
->max_sb_size
, POSIX_FADV_DONTNEED
);
1245 * Initialise the necessary environnement :
1246 * - create a new context
1247 * - create the poll_pipe
1248 * - create the should_quit pipe (for signal handler)
1249 * - create the thread pipe (for splice)
1251 * Takes a function pointer as argument, this function is called when data is
1252 * available on a buffer. This function is responsible to do the
1253 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1254 * buffer configuration and then kernctl_put_next_subbuf at the end.
1256 * Returns a pointer to the new context or NULL on error.
1258 struct lttng_consumer_local_data
*lttng_consumer_create(
1259 enum lttng_consumer_type type
,
1260 ssize_t (*buffer_ready
)(struct lttng_consumer_stream
*stream
,
1261 struct lttng_consumer_local_data
*ctx
),
1262 int (*recv_channel
)(struct lttng_consumer_channel
*channel
),
1263 int (*recv_stream
)(struct lttng_consumer_stream
*stream
),
1264 int (*update_stream
)(uint64_t stream_key
, uint32_t state
))
1267 struct lttng_consumer_local_data
*ctx
;
1269 assert(consumer_data
.type
== LTTNG_CONSUMER_UNKNOWN
||
1270 consumer_data
.type
== type
);
1271 consumer_data
.type
= type
;
1273 ctx
= zmalloc(sizeof(struct lttng_consumer_local_data
));
1275 PERROR("allocating context");
1279 ctx
->consumer_error_socket
= -1;
1280 ctx
->consumer_metadata_socket
= -1;
1281 pthread_mutex_init(&ctx
->metadata_socket_lock
, NULL
);
1282 /* assign the callbacks */
1283 ctx
->on_buffer_ready
= buffer_ready
;
1284 ctx
->on_recv_channel
= recv_channel
;
1285 ctx
->on_recv_stream
= recv_stream
;
1286 ctx
->on_update_stream
= update_stream
;
1288 ctx
->consumer_data_pipe
= lttng_pipe_open(0);
1289 if (!ctx
->consumer_data_pipe
) {
1290 goto error_poll_pipe
;
1293 ctx
->consumer_wakeup_pipe
= lttng_pipe_open(0);
1294 if (!ctx
->consumer_wakeup_pipe
) {
1295 goto error_wakeup_pipe
;
1298 ret
= pipe(ctx
->consumer_should_quit
);
1300 PERROR("Error creating recv pipe");
1301 goto error_quit_pipe
;
1304 ret
= pipe(ctx
->consumer_thread_pipe
);
1306 PERROR("Error creating thread pipe");
1307 goto error_thread_pipe
;
1310 ret
= pipe(ctx
->consumer_channel_pipe
);
1312 PERROR("Error creating channel pipe");
1313 goto error_channel_pipe
;
1316 ctx
->consumer_metadata_pipe
= lttng_pipe_open(0);
1317 if (!ctx
->consumer_metadata_pipe
) {
1318 goto error_metadata_pipe
;
1321 ret
= utils_create_pipe(ctx
->consumer_splice_metadata_pipe
);
1323 goto error_splice_pipe
;
1329 lttng_pipe_destroy(ctx
->consumer_metadata_pipe
);
1330 error_metadata_pipe
:
1331 utils_close_pipe(ctx
->consumer_channel_pipe
);
1333 utils_close_pipe(ctx
->consumer_thread_pipe
);
1335 utils_close_pipe(ctx
->consumer_should_quit
);
1337 lttng_pipe_destroy(ctx
->consumer_wakeup_pipe
);
1339 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1347 * Iterate over all streams of the hashtable and free them properly.
1349 static void destroy_data_stream_ht(struct lttng_ht
*ht
)
1351 struct lttng_ht_iter iter
;
1352 struct lttng_consumer_stream
*stream
;
1359 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1361 * Ignore return value since we are currently cleaning up so any error
1364 (void) consumer_del_stream(stream
, ht
);
1368 lttng_ht_destroy(ht
);
1372 * Iterate over all streams of the metadata hashtable and free them
1375 static void destroy_metadata_stream_ht(struct lttng_ht
*ht
)
1377 struct lttng_ht_iter iter
;
1378 struct lttng_consumer_stream
*stream
;
1385 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1387 * Ignore return value since we are currently cleaning up so any error
1390 (void) consumer_del_metadata_stream(stream
, ht
);
1394 lttng_ht_destroy(ht
);
1398 * Close all fds associated with the instance and free the context.
1400 void lttng_consumer_destroy(struct lttng_consumer_local_data
*ctx
)
1404 DBG("Consumer destroying it. Closing everything.");
1406 destroy_data_stream_ht(data_ht
);
1407 destroy_metadata_stream_ht(metadata_ht
);
1409 ret
= close(ctx
->consumer_error_socket
);
1413 ret
= close(ctx
->consumer_metadata_socket
);
1417 utils_close_pipe(ctx
->consumer_thread_pipe
);
1418 utils_close_pipe(ctx
->consumer_channel_pipe
);
1419 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1420 lttng_pipe_destroy(ctx
->consumer_metadata_pipe
);
1421 lttng_pipe_destroy(ctx
->consumer_wakeup_pipe
);
1422 utils_close_pipe(ctx
->consumer_should_quit
);
1423 utils_close_pipe(ctx
->consumer_splice_metadata_pipe
);
1425 unlink(ctx
->consumer_command_sock_path
);
1430 * Write the metadata stream id on the specified file descriptor.
1432 static int write_relayd_metadata_id(int fd
,
1433 struct lttng_consumer_stream
*stream
,
1434 struct consumer_relayd_sock_pair
*relayd
, unsigned long padding
)
1437 struct lttcomm_relayd_metadata_payload hdr
;
1439 hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
1440 hdr
.padding_size
= htobe32(padding
);
1441 ret
= lttng_write(fd
, (void *) &hdr
, sizeof(hdr
));
1442 if (ret
< sizeof(hdr
)) {
1444 * This error means that the fd's end is closed so ignore the perror
1445 * not to clubber the error output since this can happen in a normal
1448 if (errno
!= EPIPE
) {
1449 PERROR("write metadata stream id");
1451 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno
);
1453 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1454 * handle writting the missing part so report that as an error and
1455 * don't lie to the caller.
1460 DBG("Metadata stream id %" PRIu64
" with padding %lu written before data",
1461 stream
->relayd_stream_id
, padding
);
1468 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1469 * core function for writing trace buffers to either the local filesystem or
1472 * It must be called with the stream lock held.
1474 * Careful review MUST be put if any changes occur!
1476 * Returns the number of bytes written
1478 ssize_t
lttng_consumer_on_read_subbuffer_mmap(
1479 struct lttng_consumer_local_data
*ctx
,
1480 struct lttng_consumer_stream
*stream
, unsigned long len
,
1481 unsigned long padding
,
1482 struct ctf_packet_index
*index
)
1484 unsigned long mmap_offset
;
1487 off_t orig_offset
= stream
->out_fd_offset
;
1488 /* Default is on the disk */
1489 int outfd
= stream
->out_fd
;
1490 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1491 unsigned int relayd_hang_up
= 0;
1493 /* RCU lock for the relayd pointer */
1496 /* Flag that the current stream if set for network streaming. */
1497 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1498 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1499 if (relayd
== NULL
) {
1505 /* get the offset inside the fd to mmap */
1506 switch (consumer_data
.type
) {
1507 case LTTNG_CONSUMER_KERNEL
:
1508 mmap_base
= stream
->mmap_base
;
1509 ret
= kernctl_get_mmap_read_offset(stream
->wait_fd
, &mmap_offset
);
1512 PERROR("tracer ctl get_mmap_read_offset");
1516 case LTTNG_CONSUMER32_UST
:
1517 case LTTNG_CONSUMER64_UST
:
1518 mmap_base
= lttng_ustctl_get_mmap_base(stream
);
1520 ERR("read mmap get mmap base for stream %s", stream
->name
);
1524 ret
= lttng_ustctl_get_mmap_read_offset(stream
, &mmap_offset
);
1526 PERROR("tracer ctl get_mmap_read_offset");
1532 ERR("Unknown consumer_data type");
1536 /* Handle stream on the relayd if the output is on the network */
1538 unsigned long netlen
= len
;
1541 * Lock the control socket for the complete duration of the function
1542 * since from this point on we will use the socket.
1544 if (stream
->metadata_flag
) {
1545 /* Metadata requires the control socket. */
1546 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1547 netlen
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1550 ret
= write_relayd_stream_header(stream
, netlen
, padding
, relayd
);
1555 /* Use the returned socket. */
1558 /* Write metadata stream id before payload */
1559 if (stream
->metadata_flag
) {
1560 ret
= write_relayd_metadata_id(outfd
, stream
, relayd
, padding
);
1567 /* No streaming, we have to set the len with the full padding */
1571 * Check if we need to change the tracefile before writing the packet.
1573 if (stream
->chan
->tracefile_size
> 0 &&
1574 (stream
->tracefile_size_current
+ len
) >
1575 stream
->chan
->tracefile_size
) {
1576 ret
= utils_rotate_stream_file(stream
->chan
->pathname
,
1577 stream
->name
, stream
->chan
->tracefile_size
,
1578 stream
->chan
->tracefile_count
, stream
->uid
, stream
->gid
,
1579 stream
->out_fd
, &(stream
->tracefile_count_current
),
1582 ERR("Rotating output file");
1585 outfd
= stream
->out_fd
;
1587 if (stream
->index_fd
>= 0) {
1588 ret
= index_create_file(stream
->chan
->pathname
,
1589 stream
->name
, stream
->uid
, stream
->gid
,
1590 stream
->chan
->tracefile_size
,
1591 stream
->tracefile_count_current
);
1595 stream
->index_fd
= ret
;
1598 /* Reset current size because we just perform a rotation. */
1599 stream
->tracefile_size_current
= 0;
1600 stream
->out_fd_offset
= 0;
1603 stream
->tracefile_size_current
+= len
;
1605 index
->offset
= htobe64(stream
->out_fd_offset
);
1610 * This call guarantee that len or less is returned. It's impossible to
1611 * receive a ret value that is bigger than len.
1613 ret
= lttng_write(outfd
, mmap_base
+ mmap_offset
, len
);
1614 DBG("Consumer mmap write() ret %zd (len %lu)", ret
, len
);
1615 if (ret
< 0 || ((size_t) ret
!= len
)) {
1617 * Report error to caller if nothing was written else at least send the
1625 /* Socket operation failed. We consider the relayd dead */
1626 if (errno
== EPIPE
|| errno
== EINVAL
|| errno
== EBADF
) {
1628 * This is possible if the fd is closed on the other side
1629 * (outfd) or any write problem. It can be verbose a bit for a
1630 * normal execution if for instance the relayd is stopped
1631 * abruptly. This can happen so set this to a DBG statement.
1633 DBG("Consumer mmap write detected relayd hang up");
1635 /* Unhandled error, print it and stop function right now. */
1636 PERROR("Error in write mmap (ret %zd != len %lu)", ret
, len
);
1640 stream
->output_written
+= ret
;
1642 /* This call is useless on a socket so better save a syscall. */
1644 /* This won't block, but will start writeout asynchronously */
1645 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, len
,
1646 SYNC_FILE_RANGE_WRITE
);
1647 stream
->out_fd_offset
+= len
;
1649 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1653 * This is a special case that the relayd has closed its socket. Let's
1654 * cleanup the relayd object and all associated streams.
1656 if (relayd
&& relayd_hang_up
) {
1657 cleanup_relayd(relayd
, ctx
);
1661 /* Unlock only if ctrl socket used */
1662 if (relayd
&& stream
->metadata_flag
) {
1663 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1671 * Splice the data from the ring buffer to the tracefile.
1673 * It must be called with the stream lock held.
1675 * Returns the number of bytes spliced.
1677 ssize_t
lttng_consumer_on_read_subbuffer_splice(
1678 struct lttng_consumer_local_data
*ctx
,
1679 struct lttng_consumer_stream
*stream
, unsigned long len
,
1680 unsigned long padding
,
1681 struct ctf_packet_index
*index
)
1683 ssize_t ret
= 0, written
= 0, ret_splice
= 0;
1685 off_t orig_offset
= stream
->out_fd_offset
;
1686 int fd
= stream
->wait_fd
;
1687 /* Default is on the disk */
1688 int outfd
= stream
->out_fd
;
1689 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1691 unsigned int relayd_hang_up
= 0;
1693 switch (consumer_data
.type
) {
1694 case LTTNG_CONSUMER_KERNEL
:
1696 case LTTNG_CONSUMER32_UST
:
1697 case LTTNG_CONSUMER64_UST
:
1698 /* Not supported for user space tracing */
1701 ERR("Unknown consumer_data type");
1705 /* RCU lock for the relayd pointer */
1708 /* Flag that the current stream if set for network streaming. */
1709 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1710 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1711 if (relayd
== NULL
) {
1718 * Choose right pipe for splice. Metadata and trace data are handled by
1719 * different threads hence the use of two pipes in order not to race or
1720 * corrupt the written data.
1722 if (stream
->metadata_flag
) {
1723 splice_pipe
= ctx
->consumer_splice_metadata_pipe
;
1725 splice_pipe
= ctx
->consumer_thread_pipe
;
1728 /* Write metadata stream id before payload */
1730 unsigned long total_len
= len
;
1732 if (stream
->metadata_flag
) {
1734 * Lock the control socket for the complete duration of the function
1735 * since from this point on we will use the socket.
1737 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1739 ret
= write_relayd_metadata_id(splice_pipe
[1], stream
, relayd
,
1747 total_len
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1750 ret
= write_relayd_stream_header(stream
, total_len
, padding
, relayd
);
1756 /* Use the returned socket. */
1759 /* No streaming, we have to set the len with the full padding */
1763 * Check if we need to change the tracefile before writing the packet.
1765 if (stream
->chan
->tracefile_size
> 0 &&
1766 (stream
->tracefile_size_current
+ len
) >
1767 stream
->chan
->tracefile_size
) {
1768 ret
= utils_rotate_stream_file(stream
->chan
->pathname
,
1769 stream
->name
, stream
->chan
->tracefile_size
,
1770 stream
->chan
->tracefile_count
, stream
->uid
, stream
->gid
,
1771 stream
->out_fd
, &(stream
->tracefile_count_current
),
1775 ERR("Rotating output file");
1778 outfd
= stream
->out_fd
;
1780 if (stream
->index_fd
>= 0) {
1781 ret
= index_create_file(stream
->chan
->pathname
,
1782 stream
->name
, stream
->uid
, stream
->gid
,
1783 stream
->chan
->tracefile_size
,
1784 stream
->tracefile_count_current
);
1789 stream
->index_fd
= ret
;
1792 /* Reset current size because we just perform a rotation. */
1793 stream
->tracefile_size_current
= 0;
1794 stream
->out_fd_offset
= 0;
1797 stream
->tracefile_size_current
+= len
;
1798 index
->offset
= htobe64(stream
->out_fd_offset
);
1802 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1803 (unsigned long)offset
, len
, fd
, splice_pipe
[1]);
1804 ret_splice
= splice(fd
, &offset
, splice_pipe
[1], NULL
, len
,
1805 SPLICE_F_MOVE
| SPLICE_F_MORE
);
1806 DBG("splice chan to pipe, ret %zd", ret_splice
);
1807 if (ret_splice
< 0) {
1810 PERROR("Error in relay splice");
1814 /* Handle stream on the relayd if the output is on the network */
1815 if (relayd
&& stream
->metadata_flag
) {
1816 size_t metadata_payload_size
=
1817 sizeof(struct lttcomm_relayd_metadata_payload
);
1819 /* Update counter to fit the spliced data */
1820 ret_splice
+= metadata_payload_size
;
1821 len
+= metadata_payload_size
;
1823 * We do this so the return value can match the len passed as
1824 * argument to this function.
1826 written
-= metadata_payload_size
;
1829 /* Splice data out */
1830 ret_splice
= splice(splice_pipe
[0], NULL
, outfd
, NULL
,
1831 ret_splice
, SPLICE_F_MOVE
| SPLICE_F_MORE
);
1832 DBG("Consumer splice pipe to file, ret %zd", ret_splice
);
1833 if (ret_splice
< 0) {
1838 } else if (ret_splice
> len
) {
1840 * We don't expect this code path to be executed but you never know
1841 * so this is an extra protection agains a buggy splice().
1844 written
+= ret_splice
;
1845 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice
,
1849 /* All good, update current len and continue. */
1853 /* This call is useless on a socket so better save a syscall. */
1855 /* This won't block, but will start writeout asynchronously */
1856 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret_splice
,
1857 SYNC_FILE_RANGE_WRITE
);
1858 stream
->out_fd_offset
+= ret_splice
;
1860 stream
->output_written
+= ret_splice
;
1861 written
+= ret_splice
;
1863 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1868 * This is a special case that the relayd has closed its socket. Let's
1869 * cleanup the relayd object and all associated streams.
1871 if (relayd
&& relayd_hang_up
) {
1872 cleanup_relayd(relayd
, ctx
);
1873 /* Skip splice error so the consumer does not fail */
1878 /* send the appropriate error description to sessiond */
1881 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_EINVAL
);
1884 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ENOMEM
);
1887 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ESPIPE
);
1892 if (relayd
&& stream
->metadata_flag
) {
1893 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1901 * Take a snapshot for a specific fd
1903 * Returns 0 on success, < 0 on error
1905 int lttng_consumer_take_snapshot(struct lttng_consumer_stream
*stream
)
1907 switch (consumer_data
.type
) {
1908 case LTTNG_CONSUMER_KERNEL
:
1909 return lttng_kconsumer_take_snapshot(stream
);
1910 case LTTNG_CONSUMER32_UST
:
1911 case LTTNG_CONSUMER64_UST
:
1912 return lttng_ustconsumer_take_snapshot(stream
);
1914 ERR("Unknown consumer_data type");
1921 * Get the produced position
1923 * Returns 0 on success, < 0 on error
1925 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream
*stream
,
1928 switch (consumer_data
.type
) {
1929 case LTTNG_CONSUMER_KERNEL
:
1930 return lttng_kconsumer_get_produced_snapshot(stream
, pos
);
1931 case LTTNG_CONSUMER32_UST
:
1932 case LTTNG_CONSUMER64_UST
:
1933 return lttng_ustconsumer_get_produced_snapshot(stream
, pos
);
1935 ERR("Unknown consumer_data type");
1941 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data
*ctx
,
1942 int sock
, struct pollfd
*consumer_sockpoll
)
1944 switch (consumer_data
.type
) {
1945 case LTTNG_CONSUMER_KERNEL
:
1946 return lttng_kconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1947 case LTTNG_CONSUMER32_UST
:
1948 case LTTNG_CONSUMER64_UST
:
1949 return lttng_ustconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1951 ERR("Unknown consumer_data type");
1957 void lttng_consumer_close_all_metadata(void)
1959 switch (consumer_data
.type
) {
1960 case LTTNG_CONSUMER_KERNEL
:
1962 * The Kernel consumer has a different metadata scheme so we don't
1963 * close anything because the stream will be closed by the session
1967 case LTTNG_CONSUMER32_UST
:
1968 case LTTNG_CONSUMER64_UST
:
1970 * Close all metadata streams. The metadata hash table is passed and
1971 * this call iterates over it by closing all wakeup fd. This is safe
1972 * because at this point we are sure that the metadata producer is
1973 * either dead or blocked.
1975 lttng_ustconsumer_close_all_metadata(metadata_ht
);
1978 ERR("Unknown consumer_data type");
1984 * Clean up a metadata stream and free its memory.
1986 void consumer_del_metadata_stream(struct lttng_consumer_stream
*stream
,
1987 struct lttng_ht
*ht
)
1989 struct lttng_consumer_channel
*free_chan
= NULL
;
1993 * This call should NEVER receive regular stream. It must always be
1994 * metadata stream and this is crucial for data structure synchronization.
1996 assert(stream
->metadata_flag
);
1998 DBG3("Consumer delete metadata stream %d", stream
->wait_fd
);
2000 pthread_mutex_lock(&consumer_data
.lock
);
2001 pthread_mutex_lock(&stream
->chan
->lock
);
2002 pthread_mutex_lock(&stream
->lock
);
2004 /* Remove any reference to that stream. */
2005 consumer_stream_delete(stream
, ht
);
2007 /* Close down everything including the relayd if one. */
2008 consumer_stream_close(stream
);
2009 /* Destroy tracer buffers of the stream. */
2010 consumer_stream_destroy_buffers(stream
);
2012 /* Atomically decrement channel refcount since other threads can use it. */
2013 if (!uatomic_sub_return(&stream
->chan
->refcount
, 1)
2014 && !uatomic_read(&stream
->chan
->nb_init_stream_left
)) {
2015 /* Go for channel deletion! */
2016 free_chan
= stream
->chan
;
2020 * Nullify the stream reference so it is not used after deletion. The
2021 * channel lock MUST be acquired before being able to check for a NULL
2024 stream
->chan
->metadata_stream
= NULL
;
2026 pthread_mutex_unlock(&stream
->lock
);
2027 pthread_mutex_unlock(&stream
->chan
->lock
);
2028 pthread_mutex_unlock(&consumer_data
.lock
);
2031 consumer_del_channel(free_chan
);
2034 consumer_stream_free(stream
);
2038 * Action done with the metadata stream when adding it to the consumer internal
2039 * data structures to handle it.
2041 int consumer_add_metadata_stream(struct lttng_consumer_stream
*stream
)
2043 struct lttng_ht
*ht
= metadata_ht
;
2045 struct lttng_ht_iter iter
;
2046 struct lttng_ht_node_u64
*node
;
2051 DBG3("Adding metadata stream %" PRIu64
" to hash table", stream
->key
);
2053 pthread_mutex_lock(&consumer_data
.lock
);
2054 pthread_mutex_lock(&stream
->chan
->lock
);
2055 pthread_mutex_lock(&stream
->chan
->timer_lock
);
2056 pthread_mutex_lock(&stream
->lock
);
2059 * From here, refcounts are updated so be _careful_ when returning an error
2066 * Lookup the stream just to make sure it does not exist in our internal
2067 * state. This should NEVER happen.
2069 lttng_ht_lookup(ht
, &stream
->key
, &iter
);
2070 node
= lttng_ht_iter_get_node_u64(&iter
);
2074 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2075 * in terms of destroying the associated channel, because the action that
2076 * causes the count to become 0 also causes a stream to be added. The
2077 * channel deletion will thus be triggered by the following removal of this
2080 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
2081 /* Increment refcount before decrementing nb_init_stream_left */
2083 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
2086 lttng_ht_add_unique_u64(ht
, &stream
->node
);
2088 lttng_ht_add_unique_u64(consumer_data
.stream_per_chan_id_ht
,
2089 &stream
->node_channel_id
);
2092 * Add stream to the stream_list_ht of the consumer data. No need to steal
2093 * the key since the HT does not use it and we allow to add redundant keys
2096 lttng_ht_add_u64(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
2100 pthread_mutex_unlock(&stream
->lock
);
2101 pthread_mutex_unlock(&stream
->chan
->lock
);
2102 pthread_mutex_unlock(&stream
->chan
->timer_lock
);
2103 pthread_mutex_unlock(&consumer_data
.lock
);
2108 * Delete data stream that are flagged for deletion (endpoint_status).
2110 static void validate_endpoint_status_data_stream(void)
2112 struct lttng_ht_iter iter
;
2113 struct lttng_consumer_stream
*stream
;
2115 DBG("Consumer delete flagged data stream");
2118 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2119 /* Validate delete flag of the stream */
2120 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2123 /* Delete it right now */
2124 consumer_del_stream(stream
, data_ht
);
2130 * Delete metadata stream that are flagged for deletion (endpoint_status).
2132 static void validate_endpoint_status_metadata_stream(
2133 struct lttng_poll_event
*pollset
)
2135 struct lttng_ht_iter iter
;
2136 struct lttng_consumer_stream
*stream
;
2138 DBG("Consumer delete flagged metadata stream");
2143 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2144 /* Validate delete flag of the stream */
2145 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2149 * Remove from pollset so the metadata thread can continue without
2150 * blocking on a deleted stream.
2152 lttng_poll_del(pollset
, stream
->wait_fd
);
2154 /* Delete it right now */
2155 consumer_del_metadata_stream(stream
, metadata_ht
);
2161 * Thread polls on metadata file descriptor and write them on disk or on the
2164 void *consumer_thread_metadata_poll(void *data
)
2166 int ret
, i
, pollfd
, err
= -1;
2167 uint32_t revents
, nb_fd
;
2168 struct lttng_consumer_stream
*stream
= NULL
;
2169 struct lttng_ht_iter iter
;
2170 struct lttng_ht_node_u64
*node
;
2171 struct lttng_poll_event events
;
2172 struct lttng_consumer_local_data
*ctx
= data
;
2175 rcu_register_thread();
2177 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_METADATA
);
2179 if (testpoint(consumerd_thread_metadata
)) {
2180 goto error_testpoint
;
2183 health_code_update();
2185 DBG("Thread metadata poll started");
2187 /* Size is set to 1 for the consumer_metadata pipe */
2188 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2190 ERR("Poll set creation failed");
2194 ret
= lttng_poll_add(&events
,
2195 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
), LPOLLIN
);
2201 DBG("Metadata main loop started");
2204 health_code_update();
2206 /* Only the metadata pipe is set */
2207 if (LTTNG_POLL_GETNB(&events
) == 0 && consumer_quit
== 1) {
2208 err
= 0; /* All is OK */
2213 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events
));
2214 health_poll_entry();
2215 ret
= lttng_poll_wait(&events
, -1);
2217 DBG("Metadata event catched in thread");
2219 if (errno
== EINTR
) {
2220 ERR("Poll EINTR catched");
2228 /* From here, the event is a metadata wait fd */
2229 for (i
= 0; i
< nb_fd
; i
++) {
2230 health_code_update();
2232 revents
= LTTNG_POLL_GETEV(&events
, i
);
2233 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2235 if (pollfd
== lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
)) {
2236 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2237 DBG("Metadata thread pipe hung up");
2239 * Remove the pipe from the poll set and continue the loop
2240 * since their might be data to consume.
2242 lttng_poll_del(&events
,
2243 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
));
2244 lttng_pipe_read_close(ctx
->consumer_metadata_pipe
);
2246 } else if (revents
& LPOLLIN
) {
2249 pipe_len
= lttng_pipe_read(ctx
->consumer_metadata_pipe
,
2250 &stream
, sizeof(stream
));
2251 if (pipe_len
< sizeof(stream
)) {
2252 PERROR("read metadata stream");
2254 * Continue here to handle the rest of the streams.
2259 /* A NULL stream means that the state has changed. */
2260 if (stream
== NULL
) {
2261 /* Check for deleted streams. */
2262 validate_endpoint_status_metadata_stream(&events
);
2266 DBG("Adding metadata stream %d to poll set",
2269 /* Add metadata stream to the global poll events list */
2270 lttng_poll_add(&events
, stream
->wait_fd
,
2271 LPOLLIN
| LPOLLPRI
| LPOLLHUP
);
2274 /* Handle other stream */
2280 uint64_t tmp_id
= (uint64_t) pollfd
;
2282 lttng_ht_lookup(metadata_ht
, &tmp_id
, &iter
);
2284 node
= lttng_ht_iter_get_node_u64(&iter
);
2287 stream
= caa_container_of(node
, struct lttng_consumer_stream
,
2290 /* Check for error event */
2291 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2292 DBG("Metadata fd %d is hup|err.", pollfd
);
2293 if (!stream
->hangup_flush_done
2294 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2295 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2296 DBG("Attempting to flush and consume the UST buffers");
2297 lttng_ustconsumer_on_stream_hangup(stream
);
2299 /* We just flushed the stream now read it. */
2301 health_code_update();
2303 len
= ctx
->on_buffer_ready(stream
, ctx
);
2305 * We don't check the return value here since if we get
2306 * a negative len, it means an error occured thus we
2307 * simply remove it from the poll set and free the
2313 lttng_poll_del(&events
, stream
->wait_fd
);
2315 * This call update the channel states, closes file descriptors
2316 * and securely free the stream.
2318 consumer_del_metadata_stream(stream
, metadata_ht
);
2319 } else if (revents
& (LPOLLIN
| LPOLLPRI
)) {
2320 /* Get the data out of the metadata file descriptor */
2321 DBG("Metadata available on fd %d", pollfd
);
2322 assert(stream
->wait_fd
== pollfd
);
2325 health_code_update();
2327 len
= ctx
->on_buffer_ready(stream
, ctx
);
2329 * We don't check the return value here since if we get
2330 * a negative len, it means an error occured thus we
2331 * simply remove it from the poll set and free the
2336 /* It's ok to have an unavailable sub-buffer */
2337 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2338 /* Clean up stream from consumer and free it. */
2339 lttng_poll_del(&events
, stream
->wait_fd
);
2340 consumer_del_metadata_stream(stream
, metadata_ht
);
2344 /* Release RCU lock for the stream looked up */
2353 DBG("Metadata poll thread exiting");
2355 lttng_poll_clean(&events
);
2360 ERR("Health error occurred in %s", __func__
);
2362 health_unregister(health_consumerd
);
2363 rcu_unregister_thread();
2368 * This thread polls the fds in the set to consume the data and write
2369 * it to tracefile if necessary.
2371 void *consumer_thread_data_poll(void *data
)
2373 int num_rdy
, num_hup
, high_prio
, ret
, i
, err
= -1;
2374 struct pollfd
*pollfd
= NULL
;
2375 /* local view of the streams */
2376 struct lttng_consumer_stream
**local_stream
= NULL
, *new_stream
= NULL
;
2377 /* local view of consumer_data.fds_count */
2379 struct lttng_consumer_local_data
*ctx
= data
;
2382 rcu_register_thread();
2384 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_DATA
);
2386 if (testpoint(consumerd_thread_data
)) {
2387 goto error_testpoint
;
2390 health_code_update();
2392 local_stream
= zmalloc(sizeof(struct lttng_consumer_stream
*));
2393 if (local_stream
== NULL
) {
2394 PERROR("local_stream malloc");
2399 health_code_update();
2405 * the fds set has been updated, we need to update our
2406 * local array as well
2408 pthread_mutex_lock(&consumer_data
.lock
);
2409 if (consumer_data
.need_update
) {
2414 local_stream
= NULL
;
2417 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2420 pollfd
= zmalloc((consumer_data
.stream_count
+ 2) * sizeof(struct pollfd
));
2421 if (pollfd
== NULL
) {
2422 PERROR("pollfd malloc");
2423 pthread_mutex_unlock(&consumer_data
.lock
);
2427 local_stream
= zmalloc((consumer_data
.stream_count
+ 2) *
2428 sizeof(struct lttng_consumer_stream
*));
2429 if (local_stream
== NULL
) {
2430 PERROR("local_stream malloc");
2431 pthread_mutex_unlock(&consumer_data
.lock
);
2434 ret
= update_poll_array(ctx
, &pollfd
, local_stream
,
2437 ERR("Error in allocating pollfd or local_outfds");
2438 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2439 pthread_mutex_unlock(&consumer_data
.lock
);
2443 consumer_data
.need_update
= 0;
2445 pthread_mutex_unlock(&consumer_data
.lock
);
2447 /* No FDs and consumer_quit, consumer_cleanup the thread */
2448 if (nb_fd
== 0 && consumer_quit
== 1) {
2449 err
= 0; /* All is OK */
2452 /* poll on the array of fds */
2454 DBG("polling on %d fd", nb_fd
+ 2);
2455 health_poll_entry();
2456 num_rdy
= poll(pollfd
, nb_fd
+ 2, -1);
2458 DBG("poll num_rdy : %d", num_rdy
);
2459 if (num_rdy
== -1) {
2461 * Restart interrupted system call.
2463 if (errno
== EINTR
) {
2466 PERROR("Poll error");
2467 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2469 } else if (num_rdy
== 0) {
2470 DBG("Polling thread timed out");
2475 * If the consumer_data_pipe triggered poll go directly to the
2476 * beginning of the loop to update the array. We want to prioritize
2477 * array update over low-priority reads.
2479 if (pollfd
[nb_fd
].revents
& (POLLIN
| POLLPRI
)) {
2480 ssize_t pipe_readlen
;
2482 DBG("consumer_data_pipe wake up");
2483 pipe_readlen
= lttng_pipe_read(ctx
->consumer_data_pipe
,
2484 &new_stream
, sizeof(new_stream
));
2485 if (pipe_readlen
< sizeof(new_stream
)) {
2486 PERROR("Consumer data pipe");
2487 /* Continue so we can at least handle the current stream(s). */
2492 * If the stream is NULL, just ignore it. It's also possible that
2493 * the sessiond poll thread changed the consumer_quit state and is
2494 * waking us up to test it.
2496 if (new_stream
== NULL
) {
2497 validate_endpoint_status_data_stream();
2501 /* Continue to update the local streams and handle prio ones */
2505 /* Handle wakeup pipe. */
2506 if (pollfd
[nb_fd
+ 1].revents
& (POLLIN
| POLLPRI
)) {
2508 ssize_t pipe_readlen
;
2510 pipe_readlen
= lttng_pipe_read(ctx
->consumer_wakeup_pipe
, &dummy
,
2512 if (pipe_readlen
< 0) {
2513 PERROR("Consumer data wakeup pipe");
2515 /* We've been awakened to handle stream(s). */
2516 ctx
->has_wakeup
= 0;
2519 /* Take care of high priority channels first. */
2520 for (i
= 0; i
< nb_fd
; i
++) {
2521 health_code_update();
2523 if (local_stream
[i
] == NULL
) {
2526 if (pollfd
[i
].revents
& POLLPRI
) {
2527 DBG("Urgent read on fd %d", pollfd
[i
].fd
);
2529 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2530 /* it's ok to have an unavailable sub-buffer */
2531 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2532 /* Clean the stream and free it. */
2533 consumer_del_stream(local_stream
[i
], data_ht
);
2534 local_stream
[i
] = NULL
;
2535 } else if (len
> 0) {
2536 local_stream
[i
]->data_read
= 1;
2542 * If we read high prio channel in this loop, try again
2543 * for more high prio data.
2549 /* Take care of low priority channels. */
2550 for (i
= 0; i
< nb_fd
; i
++) {
2551 health_code_update();
2553 if (local_stream
[i
] == NULL
) {
2556 if ((pollfd
[i
].revents
& POLLIN
) ||
2557 local_stream
[i
]->hangup_flush_done
||
2558 local_stream
[i
]->has_data
) {
2559 DBG("Normal read on fd %d", pollfd
[i
].fd
);
2560 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2561 /* it's ok to have an unavailable sub-buffer */
2562 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2563 /* Clean the stream and free it. */
2564 consumer_del_stream(local_stream
[i
], data_ht
);
2565 local_stream
[i
] = NULL
;
2566 } else if (len
> 0) {
2567 local_stream
[i
]->data_read
= 1;
2572 /* Handle hangup and errors */
2573 for (i
= 0; i
< nb_fd
; i
++) {
2574 health_code_update();
2576 if (local_stream
[i
] == NULL
) {
2579 if (!local_stream
[i
]->hangup_flush_done
2580 && (pollfd
[i
].revents
& (POLLHUP
| POLLERR
| POLLNVAL
))
2581 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2582 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2583 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2585 lttng_ustconsumer_on_stream_hangup(local_stream
[i
]);
2586 /* Attempt read again, for the data we just flushed. */
2587 local_stream
[i
]->data_read
= 1;
2590 * If the poll flag is HUP/ERR/NVAL and we have
2591 * read no data in this pass, we can remove the
2592 * stream from its hash table.
2594 if ((pollfd
[i
].revents
& POLLHUP
)) {
2595 DBG("Polling fd %d tells it has hung up.", pollfd
[i
].fd
);
2596 if (!local_stream
[i
]->data_read
) {
2597 consumer_del_stream(local_stream
[i
], data_ht
);
2598 local_stream
[i
] = NULL
;
2601 } else if (pollfd
[i
].revents
& POLLERR
) {
2602 ERR("Error returned in polling fd %d.", pollfd
[i
].fd
);
2603 if (!local_stream
[i
]->data_read
) {
2604 consumer_del_stream(local_stream
[i
], data_ht
);
2605 local_stream
[i
] = NULL
;
2608 } else if (pollfd
[i
].revents
& POLLNVAL
) {
2609 ERR("Polling fd %d tells fd is not open.", pollfd
[i
].fd
);
2610 if (!local_stream
[i
]->data_read
) {
2611 consumer_del_stream(local_stream
[i
], data_ht
);
2612 local_stream
[i
] = NULL
;
2616 if (local_stream
[i
] != NULL
) {
2617 local_stream
[i
]->data_read
= 0;
2624 DBG("polling thread exiting");
2629 * Close the write side of the pipe so epoll_wait() in
2630 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2631 * read side of the pipe. If we close them both, epoll_wait strangely does
2632 * not return and could create a endless wait period if the pipe is the
2633 * only tracked fd in the poll set. The thread will take care of closing
2636 (void) lttng_pipe_write_close(ctx
->consumer_metadata_pipe
);
2641 ERR("Health error occurred in %s", __func__
);
2643 health_unregister(health_consumerd
);
2645 rcu_unregister_thread();
2650 * Close wake-up end of each stream belonging to the channel. This will
2651 * allow the poll() on the stream read-side to detect when the
2652 * write-side (application) finally closes them.
2655 void consumer_close_channel_streams(struct lttng_consumer_channel
*channel
)
2657 struct lttng_ht
*ht
;
2658 struct lttng_consumer_stream
*stream
;
2659 struct lttng_ht_iter iter
;
2661 ht
= consumer_data
.stream_per_chan_id_ht
;
2664 cds_lfht_for_each_entry_duplicate(ht
->ht
,
2665 ht
->hash_fct(&channel
->key
, lttng_ht_seed
),
2666 ht
->match_fct
, &channel
->key
,
2667 &iter
.iter
, stream
, node_channel_id
.node
) {
2669 * Protect against teardown with mutex.
2671 pthread_mutex_lock(&stream
->lock
);
2672 if (cds_lfht_is_node_deleted(&stream
->node
.node
)) {
2675 switch (consumer_data
.type
) {
2676 case LTTNG_CONSUMER_KERNEL
:
2678 case LTTNG_CONSUMER32_UST
:
2679 case LTTNG_CONSUMER64_UST
:
2680 if (stream
->metadata_flag
) {
2681 /* Safe and protected by the stream lock. */
2682 lttng_ustconsumer_close_metadata(stream
->chan
);
2685 * Note: a mutex is taken internally within
2686 * liblttng-ust-ctl to protect timer wakeup_fd
2687 * use from concurrent close.
2689 lttng_ustconsumer_close_stream_wakeup(stream
);
2693 ERR("Unknown consumer_data type");
2697 pthread_mutex_unlock(&stream
->lock
);
2702 static void destroy_channel_ht(struct lttng_ht
*ht
)
2704 struct lttng_ht_iter iter
;
2705 struct lttng_consumer_channel
*channel
;
2713 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, channel
, wait_fd_node
.node
) {
2714 ret
= lttng_ht_del(ht
, &iter
);
2719 lttng_ht_destroy(ht
);
2723 * This thread polls the channel fds to detect when they are being
2724 * closed. It closes all related streams if the channel is detected as
2725 * closed. It is currently only used as a shim layer for UST because the
2726 * consumerd needs to keep the per-stream wakeup end of pipes open for
2729 void *consumer_thread_channel_poll(void *data
)
2731 int ret
, i
, pollfd
, err
= -1;
2732 uint32_t revents
, nb_fd
;
2733 struct lttng_consumer_channel
*chan
= NULL
;
2734 struct lttng_ht_iter iter
;
2735 struct lttng_ht_node_u64
*node
;
2736 struct lttng_poll_event events
;
2737 struct lttng_consumer_local_data
*ctx
= data
;
2738 struct lttng_ht
*channel_ht
;
2740 rcu_register_thread();
2742 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_CHANNEL
);
2744 if (testpoint(consumerd_thread_channel
)) {
2745 goto error_testpoint
;
2748 health_code_update();
2750 channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
2752 /* ENOMEM at this point. Better to bail out. */
2756 DBG("Thread channel poll started");
2758 /* Size is set to 1 for the consumer_channel pipe */
2759 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2761 ERR("Poll set creation failed");
2765 ret
= lttng_poll_add(&events
, ctx
->consumer_channel_pipe
[0], LPOLLIN
);
2771 DBG("Channel main loop started");
2774 health_code_update();
2776 /* Only the channel pipe is set */
2777 if (LTTNG_POLL_GETNB(&events
) == 0 && consumer_quit
== 1) {
2778 err
= 0; /* All is OK */
2783 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events
));
2784 health_poll_entry();
2785 ret
= lttng_poll_wait(&events
, -1);
2787 DBG("Channel event catched in thread");
2789 if (errno
== EINTR
) {
2790 ERR("Poll EINTR catched");
2798 /* From here, the event is a channel wait fd */
2799 for (i
= 0; i
< nb_fd
; i
++) {
2800 health_code_update();
2802 revents
= LTTNG_POLL_GETEV(&events
, i
);
2803 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2805 /* Just don't waste time if no returned events for the fd */
2809 if (pollfd
== ctx
->consumer_channel_pipe
[0]) {
2810 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2811 DBG("Channel thread pipe hung up");
2813 * Remove the pipe from the poll set and continue the loop
2814 * since their might be data to consume.
2816 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
2818 } else if (revents
& LPOLLIN
) {
2819 enum consumer_channel_action action
;
2822 ret
= read_channel_pipe(ctx
, &chan
, &key
, &action
);
2824 ERR("Error reading channel pipe");
2829 case CONSUMER_CHANNEL_ADD
:
2830 DBG("Adding channel %d to poll set",
2833 lttng_ht_node_init_u64(&chan
->wait_fd_node
,
2836 lttng_ht_add_unique_u64(channel_ht
,
2837 &chan
->wait_fd_node
);
2839 /* Add channel to the global poll events list */
2840 lttng_poll_add(&events
, chan
->wait_fd
,
2841 LPOLLIN
| LPOLLPRI
);
2843 case CONSUMER_CHANNEL_DEL
:
2846 * This command should never be called if the channel
2847 * has streams monitored by either the data or metadata
2848 * thread. The consumer only notify this thread with a
2849 * channel del. command if it receives a destroy
2850 * channel command from the session daemon that send it
2851 * if a command prior to the GET_CHANNEL failed.
2855 chan
= consumer_find_channel(key
);
2858 ERR("UST consumer get channel key %" PRIu64
" not found for del channel", key
);
2861 lttng_poll_del(&events
, chan
->wait_fd
);
2862 iter
.iter
.node
= &chan
->wait_fd_node
.node
;
2863 ret
= lttng_ht_del(channel_ht
, &iter
);
2866 switch (consumer_data
.type
) {
2867 case LTTNG_CONSUMER_KERNEL
:
2869 case LTTNG_CONSUMER32_UST
:
2870 case LTTNG_CONSUMER64_UST
:
2871 health_code_update();
2872 /* Destroy streams that might have been left in the stream list. */
2873 clean_channel_stream_list(chan
);
2876 ERR("Unknown consumer_data type");
2881 * Release our own refcount. Force channel deletion even if
2882 * streams were not initialized.
2884 if (!uatomic_sub_return(&chan
->refcount
, 1)) {
2885 consumer_del_channel(chan
);
2890 case CONSUMER_CHANNEL_QUIT
:
2892 * Remove the pipe from the poll set and continue the loop
2893 * since their might be data to consume.
2895 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
2898 ERR("Unknown action");
2903 /* Handle other stream */
2909 uint64_t tmp_id
= (uint64_t) pollfd
;
2911 lttng_ht_lookup(channel_ht
, &tmp_id
, &iter
);
2913 node
= lttng_ht_iter_get_node_u64(&iter
);
2916 chan
= caa_container_of(node
, struct lttng_consumer_channel
,
2919 /* Check for error event */
2920 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2921 DBG("Channel fd %d is hup|err.", pollfd
);
2923 lttng_poll_del(&events
, chan
->wait_fd
);
2924 ret
= lttng_ht_del(channel_ht
, &iter
);
2928 * This will close the wait fd for each stream associated to
2929 * this channel AND monitored by the data/metadata thread thus
2930 * will be clean by the right thread.
2932 consumer_close_channel_streams(chan
);
2934 /* Release our own refcount */
2935 if (!uatomic_sub_return(&chan
->refcount
, 1)
2936 && !uatomic_read(&chan
->nb_init_stream_left
)) {
2937 consumer_del_channel(chan
);
2941 /* Release RCU lock for the channel looked up */
2949 lttng_poll_clean(&events
);
2951 destroy_channel_ht(channel_ht
);
2954 DBG("Channel poll thread exiting");
2957 ERR("Health error occurred in %s", __func__
);
2959 health_unregister(health_consumerd
);
2960 rcu_unregister_thread();
2964 static int set_metadata_socket(struct lttng_consumer_local_data
*ctx
,
2965 struct pollfd
*sockpoll
, int client_socket
)
2972 ret
= lttng_consumer_poll_socket(sockpoll
);
2976 DBG("Metadata connection on client_socket");
2978 /* Blocking call, waiting for transmission */
2979 ctx
->consumer_metadata_socket
= lttcomm_accept_unix_sock(client_socket
);
2980 if (ctx
->consumer_metadata_socket
< 0) {
2981 WARN("On accept metadata");
2992 * This thread listens on the consumerd socket and receives the file
2993 * descriptors from the session daemon.
2995 void *consumer_thread_sessiond_poll(void *data
)
2997 int sock
= -1, client_socket
, ret
, err
= -1;
2999 * structure to poll for incoming data on communication socket avoids
3000 * making blocking sockets.
3002 struct pollfd consumer_sockpoll
[2];
3003 struct lttng_consumer_local_data
*ctx
= data
;
3005 rcu_register_thread();
3007 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_SESSIOND
);
3009 if (testpoint(consumerd_thread_sessiond
)) {
3010 goto error_testpoint
;
3013 health_code_update();
3015 DBG("Creating command socket %s", ctx
->consumer_command_sock_path
);
3016 unlink(ctx
->consumer_command_sock_path
);
3017 client_socket
= lttcomm_create_unix_sock(ctx
->consumer_command_sock_path
);
3018 if (client_socket
< 0) {
3019 ERR("Cannot create command socket");
3023 ret
= lttcomm_listen_unix_sock(client_socket
);
3028 DBG("Sending ready command to lttng-sessiond");
3029 ret
= lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY
);
3030 /* return < 0 on error, but == 0 is not fatal */
3032 ERR("Error sending ready command to lttng-sessiond");
3036 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3037 consumer_sockpoll
[0].fd
= ctx
->consumer_should_quit
[0];
3038 consumer_sockpoll
[0].events
= POLLIN
| POLLPRI
;
3039 consumer_sockpoll
[1].fd
= client_socket
;
3040 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
3042 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3050 DBG("Connection on client_socket");
3052 /* Blocking call, waiting for transmission */
3053 sock
= lttcomm_accept_unix_sock(client_socket
);
3060 * Setup metadata socket which is the second socket connection on the
3061 * command unix socket.
3063 ret
= set_metadata_socket(ctx
, consumer_sockpoll
, client_socket
);
3072 /* This socket is not useful anymore. */
3073 ret
= close(client_socket
);
3075 PERROR("close client_socket");
3079 /* update the polling structure to poll on the established socket */
3080 consumer_sockpoll
[1].fd
= sock
;
3081 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
3084 health_code_update();
3086 health_poll_entry();
3087 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3096 DBG("Incoming command on sock");
3097 ret
= lttng_consumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
3100 * This could simply be a session daemon quitting. Don't output
3103 DBG("Communication interrupted on command socket");
3107 if (consumer_quit
) {
3108 DBG("consumer_thread_receive_fds received quit from signal");
3109 err
= 0; /* All is OK */
3112 DBG("received command on sock");
3118 DBG("Consumer thread sessiond poll exiting");
3121 * Close metadata streams since the producer is the session daemon which
3124 * NOTE: for now, this only applies to the UST tracer.
3126 lttng_consumer_close_all_metadata();
3129 * when all fds have hung up, the polling thread
3135 * Notify the data poll thread to poll back again and test the
3136 * consumer_quit state that we just set so to quit gracefully.
3138 notify_thread_lttng_pipe(ctx
->consumer_data_pipe
);
3140 notify_channel_pipe(ctx
, NULL
, -1, CONSUMER_CHANNEL_QUIT
);
3142 notify_health_quit_pipe(health_quit_pipe
);
3144 /* Cleaning up possibly open sockets. */
3148 PERROR("close sock sessiond poll");
3151 if (client_socket
>= 0) {
3152 ret
= close(client_socket
);
3154 PERROR("close client_socket sessiond poll");
3161 ERR("Health error occurred in %s", __func__
);
3163 health_unregister(health_consumerd
);
3165 rcu_unregister_thread();
3169 ssize_t
lttng_consumer_read_subbuffer(struct lttng_consumer_stream
*stream
,
3170 struct lttng_consumer_local_data
*ctx
)
3174 pthread_mutex_lock(&stream
->lock
);
3175 if (stream
->metadata_flag
) {
3176 pthread_mutex_lock(&stream
->metadata_rdv_lock
);
3179 switch (consumer_data
.type
) {
3180 case LTTNG_CONSUMER_KERNEL
:
3181 ret
= lttng_kconsumer_read_subbuffer(stream
, ctx
);
3183 case LTTNG_CONSUMER32_UST
:
3184 case LTTNG_CONSUMER64_UST
:
3185 ret
= lttng_ustconsumer_read_subbuffer(stream
, ctx
);
3188 ERR("Unknown consumer_data type");
3194 if (stream
->metadata_flag
) {
3195 pthread_cond_broadcast(&stream
->metadata_rdv
);
3196 pthread_mutex_unlock(&stream
->metadata_rdv_lock
);
3198 pthread_mutex_unlock(&stream
->lock
);
3202 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream
*stream
)
3204 switch (consumer_data
.type
) {
3205 case LTTNG_CONSUMER_KERNEL
:
3206 return lttng_kconsumer_on_recv_stream(stream
);
3207 case LTTNG_CONSUMER32_UST
:
3208 case LTTNG_CONSUMER64_UST
:
3209 return lttng_ustconsumer_on_recv_stream(stream
);
3211 ERR("Unknown consumer_data type");
3218 * Allocate and set consumer data hash tables.
3220 int lttng_consumer_init(void)
3222 consumer_data
.channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3223 if (!consumer_data
.channel_ht
) {
3227 consumer_data
.relayd_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3228 if (!consumer_data
.relayd_ht
) {
3232 consumer_data
.stream_list_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3233 if (!consumer_data
.stream_list_ht
) {
3237 consumer_data
.stream_per_chan_id_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3238 if (!consumer_data
.stream_per_chan_id_ht
) {
3242 data_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3247 metadata_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3259 * Process the ADD_RELAYD command receive by a consumer.
3261 * This will create a relayd socket pair and add it to the relayd hash table.
3262 * The caller MUST acquire a RCU read side lock before calling it.
3264 int consumer_add_relayd_socket(uint64_t net_seq_idx
, int sock_type
,
3265 struct lttng_consumer_local_data
*ctx
, int sock
,
3266 struct pollfd
*consumer_sockpoll
,
3267 struct lttcomm_relayd_sock
*relayd_sock
, uint64_t sessiond_id
,
3268 uint64_t relayd_session_id
)
3270 int fd
= -1, ret
= -1, relayd_created
= 0;
3271 enum lttcomm_return_code ret_code
= LTTCOMM_CONSUMERD_SUCCESS
;
3272 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3275 assert(relayd_sock
);
3277 DBG("Consumer adding relayd socket (idx: %" PRIu64
")", net_seq_idx
);
3279 /* Get relayd reference if exists. */
3280 relayd
= consumer_find_relayd(net_seq_idx
);
3281 if (relayd
== NULL
) {
3282 assert(sock_type
== LTTNG_STREAM_CONTROL
);
3283 /* Not found. Allocate one. */
3284 relayd
= consumer_allocate_relayd_sock_pair(net_seq_idx
);
3285 if (relayd
== NULL
) {
3287 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3290 relayd
->sessiond_session_id
= sessiond_id
;
3295 * This code path MUST continue to the consumer send status message to
3296 * we can notify the session daemon and continue our work without
3297 * killing everything.
3301 * relayd key should never be found for control socket.
3303 assert(sock_type
!= LTTNG_STREAM_CONTROL
);
3306 /* First send a status message before receiving the fds. */
3307 ret
= consumer_send_status_msg(sock
, LTTCOMM_CONSUMERD_SUCCESS
);
3309 /* Somehow, the session daemon is not responding anymore. */
3310 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3311 goto error_nosignal
;
3314 /* Poll on consumer socket. */
3315 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3317 /* Needing to exit in the middle of a command: error. */
3318 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
3320 goto error_nosignal
;
3323 /* Get relayd socket from session daemon */
3324 ret
= lttcomm_recv_fds_unix_sock(sock
, &fd
, 1);
3325 if (ret
!= sizeof(fd
)) {
3327 fd
= -1; /* Just in case it gets set with an invalid value. */
3330 * Failing to receive FDs might indicate a major problem such as
3331 * reaching a fd limit during the receive where the kernel returns a
3332 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3333 * don't take any chances and stop everything.
3335 * XXX: Feature request #558 will fix that and avoid this possible
3336 * issue when reaching the fd limit.
3338 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_ERROR_RECV_FD
);
3339 ret_code
= LTTCOMM_CONSUMERD_ERROR_RECV_FD
;
3343 /* Copy socket information and received FD */
3344 switch (sock_type
) {
3345 case LTTNG_STREAM_CONTROL
:
3346 /* Copy received lttcomm socket */
3347 lttcomm_copy_sock(&relayd
->control_sock
.sock
, &relayd_sock
->sock
);
3348 ret
= lttcomm_create_sock(&relayd
->control_sock
.sock
);
3349 /* Handle create_sock error. */
3351 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3355 * Close the socket created internally by
3356 * lttcomm_create_sock, so we can replace it by the one
3357 * received from sessiond.
3359 if (close(relayd
->control_sock
.sock
.fd
)) {
3363 /* Assign new file descriptor */
3364 relayd
->control_sock
.sock
.fd
= fd
;
3365 fd
= -1; /* For error path */
3366 /* Assign version values. */
3367 relayd
->control_sock
.major
= relayd_sock
->major
;
3368 relayd
->control_sock
.minor
= relayd_sock
->minor
;
3370 relayd
->relayd_session_id
= relayd_session_id
;
3373 case LTTNG_STREAM_DATA
:
3374 /* Copy received lttcomm socket */
3375 lttcomm_copy_sock(&relayd
->data_sock
.sock
, &relayd_sock
->sock
);
3376 ret
= lttcomm_create_sock(&relayd
->data_sock
.sock
);
3377 /* Handle create_sock error. */
3379 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3383 * Close the socket created internally by
3384 * lttcomm_create_sock, so we can replace it by the one
3385 * received from sessiond.
3387 if (close(relayd
->data_sock
.sock
.fd
)) {
3391 /* Assign new file descriptor */
3392 relayd
->data_sock
.sock
.fd
= fd
;
3393 fd
= -1; /* for eventual error paths */
3394 /* Assign version values. */
3395 relayd
->data_sock
.major
= relayd_sock
->major
;
3396 relayd
->data_sock
.minor
= relayd_sock
->minor
;
3399 ERR("Unknown relayd socket type (%d)", sock_type
);
3401 ret_code
= LTTCOMM_CONSUMERD_FATAL
;
3405 DBG("Consumer %s socket created successfully with net idx %" PRIu64
" (fd: %d)",
3406 sock_type
== LTTNG_STREAM_CONTROL
? "control" : "data",
3407 relayd
->net_seq_idx
, fd
);
3409 /* We successfully added the socket. Send status back. */
3410 ret
= consumer_send_status_msg(sock
, ret_code
);
3412 /* Somehow, the session daemon is not responding anymore. */
3413 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3414 goto error_nosignal
;
3418 * Add relayd socket pair to consumer data hashtable. If object already
3419 * exists or on error, the function gracefully returns.
3427 if (consumer_send_status_msg(sock
, ret_code
) < 0) {
3428 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3432 /* Close received socket if valid. */
3435 PERROR("close received socket");
3439 if (relayd_created
) {
3447 * Try to lock the stream mutex.
3449 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3451 static int stream_try_lock(struct lttng_consumer_stream
*stream
)
3458 * Try to lock the stream mutex. On failure, we know that the stream is
3459 * being used else where hence there is data still being extracted.
3461 ret
= pthread_mutex_trylock(&stream
->lock
);
3463 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3475 * Search for a relayd associated to the session id and return the reference.
3477 * A rcu read side lock MUST be acquire before calling this function and locked
3478 * until the relayd object is no longer necessary.
3480 static struct consumer_relayd_sock_pair
*find_relayd_by_session_id(uint64_t id
)
3482 struct lttng_ht_iter iter
;
3483 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3485 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3486 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
3489 * Check by sessiond id which is unique here where the relayd session
3490 * id might not be when having multiple relayd.
3492 if (relayd
->sessiond_session_id
== id
) {
3493 /* Found the relayd. There can be only one per id. */
3505 * Check if for a given session id there is still data needed to be extract
3508 * Return 1 if data is pending or else 0 meaning ready to be read.
3510 int consumer_data_pending(uint64_t id
)
3513 struct lttng_ht_iter iter
;
3514 struct lttng_ht
*ht
;
3515 struct lttng_consumer_stream
*stream
;
3516 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3517 int (*data_pending
)(struct lttng_consumer_stream
*);
3519 DBG("Consumer data pending command on session id %" PRIu64
, id
);
3522 pthread_mutex_lock(&consumer_data
.lock
);
3524 switch (consumer_data
.type
) {
3525 case LTTNG_CONSUMER_KERNEL
:
3526 data_pending
= lttng_kconsumer_data_pending
;
3528 case LTTNG_CONSUMER32_UST
:
3529 case LTTNG_CONSUMER64_UST
:
3530 data_pending
= lttng_ustconsumer_data_pending
;
3533 ERR("Unknown consumer data type");
3537 /* Ease our life a bit */
3538 ht
= consumer_data
.stream_list_ht
;
3540 relayd
= find_relayd_by_session_id(id
);
3542 /* Send init command for data pending. */
3543 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3544 ret
= relayd_begin_data_pending(&relayd
->control_sock
,
3545 relayd
->relayd_session_id
);
3546 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3548 /* Communication error thus the relayd so no data pending. */
3549 goto data_not_pending
;
3553 cds_lfht_for_each_entry_duplicate(ht
->ht
,
3554 ht
->hash_fct(&id
, lttng_ht_seed
),
3556 &iter
.iter
, stream
, node_session_id
.node
) {
3557 /* If this call fails, the stream is being used hence data pending. */
3558 ret
= stream_try_lock(stream
);
3564 * A removed node from the hash table indicates that the stream has
3565 * been deleted thus having a guarantee that the buffers are closed
3566 * on the consumer side. However, data can still be transmitted
3567 * over the network so don't skip the relayd check.
3569 ret
= cds_lfht_is_node_deleted(&stream
->node
.node
);
3572 * An empty output file is not valid. We need at least one packet
3573 * generated per stream, even if it contains no event, so it
3574 * contains at least one packet header.
3576 if (stream
->output_written
== 0) {
3577 pthread_mutex_unlock(&stream
->lock
);
3580 /* Check the stream if there is data in the buffers. */
3581 ret
= data_pending(stream
);
3583 pthread_mutex_unlock(&stream
->lock
);
3590 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3591 if (stream
->metadata_flag
) {
3592 ret
= relayd_quiescent_control(&relayd
->control_sock
,
3593 stream
->relayd_stream_id
);
3595 ret
= relayd_data_pending(&relayd
->control_sock
,
3596 stream
->relayd_stream_id
,
3597 stream
->next_net_seq_num
- 1);
3599 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3601 pthread_mutex_unlock(&stream
->lock
);
3605 pthread_mutex_unlock(&stream
->lock
);
3609 unsigned int is_data_inflight
= 0;
3611 /* Send init command for data pending. */
3612 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3613 ret
= relayd_end_data_pending(&relayd
->control_sock
,
3614 relayd
->relayd_session_id
, &is_data_inflight
);
3615 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3617 goto data_not_pending
;
3619 if (is_data_inflight
) {
3625 * Finding _no_ node in the hash table and no inflight data means that the
3626 * stream(s) have been removed thus data is guaranteed to be available for
3627 * analysis from the trace files.
3631 /* Data is available to be read by a viewer. */
3632 pthread_mutex_unlock(&consumer_data
.lock
);
3637 /* Data is still being extracted from buffers. */
3638 pthread_mutex_unlock(&consumer_data
.lock
);
3644 * Send a ret code status message to the sessiond daemon.
3646 * Return the sendmsg() return value.
3648 int consumer_send_status_msg(int sock
, int ret_code
)
3650 struct lttcomm_consumer_status_msg msg
;
3652 memset(&msg
, 0, sizeof(msg
));
3653 msg
.ret_code
= ret_code
;
3655 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));
3659 * Send a channel status message to the sessiond daemon.
3661 * Return the sendmsg() return value.
3663 int consumer_send_status_channel(int sock
,
3664 struct lttng_consumer_channel
*channel
)
3666 struct lttcomm_consumer_status_channel msg
;
3670 memset(&msg
, 0, sizeof(msg
));
3672 msg
.ret_code
= LTTCOMM_CONSUMERD_CHANNEL_FAIL
;
3674 msg
.ret_code
= LTTCOMM_CONSUMERD_SUCCESS
;
3675 msg
.key
= channel
->key
;
3676 msg
.stream_count
= channel
->streams
.count
;
3679 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));
3683 * Using a maximum stream size with the produced and consumed position of a
3684 * stream, computes the new consumed position to be as close as possible to the
3685 * maximum possible stream size.
3687 * If maximum stream size is lower than the possible buffer size (produced -
3688 * consumed), the consumed_pos given is returned untouched else the new value
3691 unsigned long consumer_get_consumed_maxsize(unsigned long consumed_pos
,
3692 unsigned long produced_pos
, uint64_t max_stream_size
)
3694 if (max_stream_size
&& max_stream_size
< (produced_pos
- consumed_pos
)) {
3695 /* Offset from the produced position to get the latest buffers. */
3696 return produced_pos
- max_stream_size
;
3699 return consumed_pos
;