2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 #include <sys/socket.h>
28 #include <sys/types.h>
32 #include <common/common.h>
33 #include <common/utils.h>
34 #include <common/compat/poll.h>
35 #include <common/kernel-ctl/kernel-ctl.h>
36 #include <common/sessiond-comm/relayd.h>
37 #include <common/sessiond-comm/sessiond-comm.h>
38 #include <common/kernel-consumer/kernel-consumer.h>
39 #include <common/relayd/relayd.h>
40 #include <common/ust-consumer/ust-consumer.h>
44 struct lttng_consumer_global_data consumer_data
= {
47 .type
= LTTNG_CONSUMER_UNKNOWN
,
51 * Flag to inform the polling thread to quit when all fd hung up. Updated by
52 * the consumer_thread_receive_fds when it notices that all fds has hung up.
53 * Also updated by the signal handler (consumer_should_exit()). Read by the
56 volatile int consumer_quit
;
59 * Global hash table containing respectively metadata and data streams. The
60 * stream element in this ht should only be updated by the metadata poll thread
61 * for the metadata and the data poll thread for the data.
63 static struct lttng_ht
*metadata_ht
;
64 static struct lttng_ht
*data_ht
;
67 * This hash table contains the mapping between the session id of the sessiond
68 * and the relayd session id. Element of the ht are indexed by sessiond session
71 * Node can be added when a relayd communication is opened in the sessiond
74 * Note that a session id of the session daemon is unique to a tracing session
75 * and not to a domain session. However, a domain session has one consumer
76 * which forces the 1-1 mapping between a consumer and a domain session (ex:
77 * UST). This means that we can't have duplicate in this ht.
79 static struct lttng_ht
*relayd_session_id_ht
;
82 * Notify a thread pipe to poll back again. This usually means that some global
83 * state has changed so we just send back the thread in a poll wait call.
85 static void notify_thread_pipe(int wpipe
)
90 struct lttng_consumer_stream
*null_stream
= NULL
;
92 ret
= write(wpipe
, &null_stream
, sizeof(null_stream
));
93 } while (ret
< 0 && errno
== EINTR
);
97 * Find a stream. The consumer_data.lock must be locked during this
100 static struct lttng_consumer_stream
*consumer_find_stream(int key
,
103 struct lttng_ht_iter iter
;
104 struct lttng_ht_node_ulong
*node
;
105 struct lttng_consumer_stream
*stream
= NULL
;
109 /* Negative keys are lookup failures */
116 lttng_ht_lookup(ht
, (void *)((unsigned long) key
), &iter
);
117 node
= lttng_ht_iter_get_node_ulong(&iter
);
119 stream
= caa_container_of(node
, struct lttng_consumer_stream
, node
);
127 void consumer_steal_stream_key(int key
, struct lttng_ht
*ht
)
129 struct lttng_consumer_stream
*stream
;
132 stream
= consumer_find_stream(key
, ht
);
136 * We don't want the lookup to match, but we still need
137 * to iterate on this stream when iterating over the hash table. Just
138 * change the node key.
140 stream
->node
.key
= -1;
146 * Return a channel object for the given key.
148 * RCU read side lock MUST be acquired before calling this function and
149 * protects the channel ptr.
151 static struct lttng_consumer_channel
*consumer_find_channel(int key
)
153 struct lttng_ht_iter iter
;
154 struct lttng_ht_node_ulong
*node
;
155 struct lttng_consumer_channel
*channel
= NULL
;
157 /* Negative keys are lookup failures */
162 lttng_ht_lookup(consumer_data
.channel_ht
, (void *)((unsigned long) key
),
164 node
= lttng_ht_iter_get_node_ulong(&iter
);
166 channel
= caa_container_of(node
, struct lttng_consumer_channel
, node
);
172 static void consumer_steal_channel_key(int key
)
174 struct lttng_consumer_channel
*channel
;
177 channel
= consumer_find_channel(key
);
181 * We don't want the lookup to match, but we still need
182 * to iterate on this channel when iterating over the hash table. Just
183 * change the node key.
185 channel
->node
.key
= -1;
191 void consumer_free_stream(struct rcu_head
*head
)
193 struct lttng_ht_node_ulong
*node
=
194 caa_container_of(head
, struct lttng_ht_node_ulong
, head
);
195 struct lttng_consumer_stream
*stream
=
196 caa_container_of(node
, struct lttng_consumer_stream
, node
);
202 * RCU protected relayd socket pair free.
204 static void consumer_rcu_free_relayd(struct rcu_head
*head
)
206 struct lttng_ht_node_ulong
*node
=
207 caa_container_of(head
, struct lttng_ht_node_ulong
, head
);
208 struct consumer_relayd_sock_pair
*relayd
=
209 caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
212 * Close all sockets. This is done in the call RCU since we don't want the
213 * socket fds to be reassigned thus potentially creating bad state of the
216 * We do not have to lock the control socket mutex here since at this stage
217 * there is no one referencing to this relayd object.
219 (void) relayd_close(&relayd
->control_sock
);
220 (void) relayd_close(&relayd
->data_sock
);
226 * Destroy and free relayd socket pair object.
228 * This function MUST be called with the consumer_data lock acquired.
230 static void destroy_relayd(struct consumer_relayd_sock_pair
*relayd
)
233 struct lttng_ht_iter iter
;
234 struct lttng_ht_node_ulong
*node
;
236 if (relayd
== NULL
) {
240 DBG("Consumer destroy and close relayd socket pair");
242 /* Loockup for a relayd node in the session id map hash table. */
243 lttng_ht_lookup(relayd_session_id_ht
,
244 (void *)((unsigned long) relayd
->sessiond_session_id
), &iter
);
245 node
= lttng_ht_iter_get_node_ulong(&iter
);
247 /* We assume the relayd is being or is destroyed */
252 * Try to delete it from the relayd session id ht. The return value is of
253 * no importance since either way we are going to try to delete the relayd
254 * from the global relayd_ht.
256 lttng_ht_del(relayd_session_id_ht
, &iter
);
258 iter
.iter
.node
= &relayd
->node
.node
;
259 ret
= lttng_ht_del(consumer_data
.relayd_ht
, &iter
);
261 /* We assume the relayd is being or is destroyed */
265 /* RCU free() call */
266 call_rcu(&relayd
->node
.head
, consumer_rcu_free_relayd
);
270 * Iterate over the relayd hash table and destroy each element. Finally,
271 * destroy the whole hash table.
273 static void cleanup_relayd_ht(void)
275 struct lttng_ht_iter iter
;
276 struct consumer_relayd_sock_pair
*relayd
;
280 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
282 destroy_relayd(relayd
);
285 lttng_ht_destroy(consumer_data
.relayd_ht
);
286 /* The destroy_relayd call makes sure that this ht is empty here. */
287 lttng_ht_destroy(relayd_session_id_ht
);
293 * Update the end point status of all streams having the given network sequence
294 * index (relayd index).
296 * It's atomically set without having the stream mutex locked which is fine
297 * because we handle the write/read race with a pipe wakeup for each thread.
299 static void update_endpoint_status_by_netidx(int net_seq_idx
,
300 enum consumer_endpoint_status status
)
302 struct lttng_ht_iter iter
;
303 struct lttng_consumer_stream
*stream
;
305 DBG("Consumer set delete flag on stream by idx %d", net_seq_idx
);
309 /* Let's begin with metadata */
310 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
311 if (stream
->net_seq_idx
== net_seq_idx
) {
312 uatomic_set(&stream
->endpoint_status
, status
);
313 DBG("Delete flag set to metadata stream %d", stream
->wait_fd
);
317 /* Follow up by the data streams */
318 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
319 if (stream
->net_seq_idx
== net_seq_idx
) {
320 uatomic_set(&stream
->endpoint_status
, status
);
321 DBG("Delete flag set to data stream %d", stream
->wait_fd
);
328 * Cleanup a relayd object by flagging every associated streams for deletion,
329 * destroying the object meaning removing it from the relayd hash table,
330 * closing the sockets and freeing the memory in a RCU call.
332 * If a local data context is available, notify the threads that the streams'
333 * state have changed.
335 static void cleanup_relayd(struct consumer_relayd_sock_pair
*relayd
,
336 struct lttng_consumer_local_data
*ctx
)
342 DBG("Cleaning up relayd sockets");
344 /* Save the net sequence index before destroying the object */
345 netidx
= relayd
->net_seq_idx
;
348 * Delete the relayd from the relayd hash table, close the sockets and free
349 * the object in a RCU call.
351 destroy_relayd(relayd
);
353 /* Set inactive endpoint to all streams */
354 update_endpoint_status_by_netidx(netidx
, CONSUMER_ENDPOINT_INACTIVE
);
357 * With a local data context, notify the threads that the streams' state
358 * have changed. The write() action on the pipe acts as an "implicit"
359 * memory barrier ordering the updates of the end point status from the
360 * read of this status which happens AFTER receiving this notify.
363 notify_thread_pipe(ctx
->consumer_data_pipe
[1]);
364 notify_thread_pipe(ctx
->consumer_metadata_pipe
[1]);
369 * Flag a relayd socket pair for destruction. Destroy it if the refcount
372 * RCU read side lock MUST be aquired before calling this function.
374 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair
*relayd
)
378 /* Set destroy flag for this object */
379 uatomic_set(&relayd
->destroy_flag
, 1);
381 /* Destroy the relayd if refcount is 0 */
382 if (uatomic_read(&relayd
->refcount
) == 0) {
383 destroy_relayd(relayd
);
388 * Remove a stream from the global list protected by a mutex. This
389 * function is also responsible for freeing its data structures.
391 void consumer_del_stream(struct lttng_consumer_stream
*stream
,
395 struct lttng_ht_iter iter
;
396 struct lttng_consumer_channel
*free_chan
= NULL
;
397 struct consumer_relayd_sock_pair
*relayd
;
401 DBG("Consumer del stream %d", stream
->wait_fd
);
404 /* Means the stream was allocated but not successfully added */
408 pthread_mutex_lock(&consumer_data
.lock
);
409 pthread_mutex_lock(&stream
->lock
);
411 switch (consumer_data
.type
) {
412 case LTTNG_CONSUMER_KERNEL
:
413 if (stream
->mmap_base
!= NULL
) {
414 ret
= munmap(stream
->mmap_base
, stream
->mmap_len
);
420 case LTTNG_CONSUMER32_UST
:
421 case LTTNG_CONSUMER64_UST
:
422 lttng_ustconsumer_del_stream(stream
);
425 ERR("Unknown consumer_data type");
431 iter
.iter
.node
= &stream
->node
.node
;
432 ret
= lttng_ht_del(ht
, &iter
);
435 /* Remove node session id from the consumer_data stream ht */
436 iter
.iter
.node
= &stream
->node_session_id
.node
;
437 ret
= lttng_ht_del(consumer_data
.stream_list_ht
, &iter
);
441 assert(consumer_data
.stream_count
> 0);
442 consumer_data
.stream_count
--;
444 if (stream
->out_fd
>= 0) {
445 ret
= close(stream
->out_fd
);
450 if (stream
->wait_fd
>= 0 && !stream
->wait_fd_is_copy
) {
451 ret
= close(stream
->wait_fd
);
456 if (stream
->shm_fd
>= 0 && stream
->wait_fd
!= stream
->shm_fd
) {
457 ret
= close(stream
->shm_fd
);
463 /* Check and cleanup relayd */
465 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
466 if (relayd
!= NULL
) {
467 uatomic_dec(&relayd
->refcount
);
468 assert(uatomic_read(&relayd
->refcount
) >= 0);
470 /* Closing streams requires to lock the control socket. */
471 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
472 ret
= relayd_send_close_stream(&relayd
->control_sock
,
473 stream
->relayd_stream_id
,
474 stream
->next_net_seq_num
- 1);
475 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
477 DBG("Unable to close stream on the relayd. Continuing");
479 * Continue here. There is nothing we can do for the relayd.
480 * Chances are that the relayd has closed the socket so we just
481 * continue cleaning up.
485 /* Both conditions are met, we destroy the relayd. */
486 if (uatomic_read(&relayd
->refcount
) == 0 &&
487 uatomic_read(&relayd
->destroy_flag
)) {
488 destroy_relayd(relayd
);
493 uatomic_dec(&stream
->chan
->refcount
);
494 if (!uatomic_read(&stream
->chan
->refcount
)
495 && !uatomic_read(&stream
->chan
->nb_init_streams
)) {
496 free_chan
= stream
->chan
;
500 consumer_data
.need_update
= 1;
501 pthread_mutex_unlock(&stream
->lock
);
502 pthread_mutex_unlock(&consumer_data
.lock
);
505 consumer_del_channel(free_chan
);
509 call_rcu(&stream
->node
.head
, consumer_free_stream
);
512 struct lttng_consumer_stream
*consumer_allocate_stream(
513 int channel_key
, int stream_key
,
514 int shm_fd
, int wait_fd
,
515 enum lttng_consumer_stream_state state
,
517 enum lttng_event_output output
,
518 const char *path_name
,
526 struct lttng_consumer_stream
*stream
;
528 stream
= zmalloc(sizeof(*stream
));
529 if (stream
== NULL
) {
530 PERROR("malloc struct lttng_consumer_stream");
531 *alloc_ret
= -ENOMEM
;
538 * Get stream's channel reference. Needed when adding the stream to the
541 stream
->chan
= consumer_find_channel(channel_key
);
543 *alloc_ret
= -ENOENT
;
544 ERR("Unable to find channel for stream %d", stream_key
);
548 stream
->key
= stream_key
;
549 stream
->shm_fd
= shm_fd
;
550 stream
->wait_fd
= wait_fd
;
552 stream
->out_fd_offset
= 0;
553 stream
->state
= state
;
554 stream
->mmap_len
= mmap_len
;
555 stream
->mmap_base
= NULL
;
556 stream
->output
= output
;
559 stream
->net_seq_idx
= net_index
;
560 stream
->metadata_flag
= metadata_flag
;
561 stream
->session_id
= session_id
;
562 strncpy(stream
->path_name
, path_name
, sizeof(stream
->path_name
));
563 stream
->path_name
[sizeof(stream
->path_name
) - 1] = '\0';
564 pthread_mutex_init(&stream
->lock
, NULL
);
567 * Index differently the metadata node because the thread is using an
568 * internal hash table to match streams in the metadata_ht to the epoll set
572 lttng_ht_node_init_ulong(&stream
->node
, stream
->wait_fd
);
574 lttng_ht_node_init_ulong(&stream
->node
, stream
->key
);
577 /* Init session id node with the stream session id */
578 lttng_ht_node_init_ulong(&stream
->node_session_id
, stream
->session_id
);
581 * The cpu number is needed before using any ustctl_* actions. Ignored for
582 * the kernel so the value does not matter.
584 pthread_mutex_lock(&consumer_data
.lock
);
585 stream
->cpu
= stream
->chan
->cpucount
++;
586 pthread_mutex_unlock(&consumer_data
.lock
);
588 DBG3("Allocated stream %s (key %d, shm_fd %d, wait_fd %d, mmap_len %llu,"
589 " out_fd %d, net_seq_idx %d, session_id %" PRIu64
,
590 stream
->path_name
, stream
->key
, stream
->shm_fd
, stream
->wait_fd
,
591 (unsigned long long) stream
->mmap_len
, stream
->out_fd
,
592 stream
->net_seq_idx
, stream
->session_id
);
605 * Add a stream to the global list protected by a mutex.
607 static int consumer_add_stream(struct lttng_consumer_stream
*stream
,
611 struct consumer_relayd_sock_pair
*relayd
;
616 DBG3("Adding consumer stream %d", stream
->key
);
618 pthread_mutex_lock(&consumer_data
.lock
);
619 pthread_mutex_lock(&stream
->lock
);
622 /* Steal stream identifier to avoid having streams with the same key */
623 consumer_steal_stream_key(stream
->key
, ht
);
625 lttng_ht_add_unique_ulong(ht
, &stream
->node
);
628 * Add stream to the stream_list_ht of the consumer data. No need to steal
629 * the key since the HT does not use it and we allow to add redundant keys
632 lttng_ht_add_ulong(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
634 /* Check and cleanup relayd */
635 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
636 if (relayd
!= NULL
) {
637 uatomic_inc(&relayd
->refcount
);
640 /* Update channel refcount once added without error(s). */
641 uatomic_inc(&stream
->chan
->refcount
);
644 * When nb_init_streams reaches 0, we don't need to trigger any action in
645 * terms of destroying the associated channel, because the action that
646 * causes the count to become 0 also causes a stream to be added. The
647 * channel deletion will thus be triggered by the following removal of this
650 if (uatomic_read(&stream
->chan
->nb_init_streams
) > 0) {
651 uatomic_dec(&stream
->chan
->nb_init_streams
);
654 /* Update consumer data once the node is inserted. */
655 consumer_data
.stream_count
++;
656 consumer_data
.need_update
= 1;
659 pthread_mutex_unlock(&stream
->lock
);
660 pthread_mutex_unlock(&consumer_data
.lock
);
666 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
667 * be acquired before calling this.
669 static int add_relayd(struct consumer_relayd_sock_pair
*relayd
)
672 struct lttng_ht_node_ulong
*node
;
673 struct lttng_ht_iter iter
;
675 if (relayd
== NULL
) {
680 lttng_ht_lookup(consumer_data
.relayd_ht
,
681 (void *)((unsigned long) relayd
->net_seq_idx
), &iter
);
682 node
= lttng_ht_iter_get_node_ulong(&iter
);
684 /* Relayd already exist. Ignore the insertion */
687 lttng_ht_add_unique_ulong(consumer_data
.relayd_ht
, &relayd
->node
);
694 * Allocate and return a consumer relayd socket.
696 struct consumer_relayd_sock_pair
*consumer_allocate_relayd_sock_pair(
699 struct consumer_relayd_sock_pair
*obj
= NULL
;
701 /* Negative net sequence index is a failure */
702 if (net_seq_idx
< 0) {
706 obj
= zmalloc(sizeof(struct consumer_relayd_sock_pair
));
708 PERROR("zmalloc relayd sock");
712 obj
->net_seq_idx
= net_seq_idx
;
714 obj
->destroy_flag
= 0;
715 lttng_ht_node_init_ulong(&obj
->node
, obj
->net_seq_idx
);
716 pthread_mutex_init(&obj
->ctrl_sock_mutex
, NULL
);
723 * Find a relayd socket pair in the global consumer data.
725 * Return the object if found else NULL.
726 * RCU read-side lock must be held across this call and while using the
729 struct consumer_relayd_sock_pair
*consumer_find_relayd(int key
)
731 struct lttng_ht_iter iter
;
732 struct lttng_ht_node_ulong
*node
;
733 struct consumer_relayd_sock_pair
*relayd
= NULL
;
735 /* Negative keys are lookup failures */
740 lttng_ht_lookup(consumer_data
.relayd_ht
, (void *)((unsigned long) key
),
742 node
= lttng_ht_iter_get_node_ulong(&iter
);
744 relayd
= caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
752 * Handle stream for relayd transmission if the stream applies for network
753 * streaming where the net sequence index is set.
755 * Return destination file descriptor or negative value on error.
757 static int write_relayd_stream_header(struct lttng_consumer_stream
*stream
,
758 size_t data_size
, unsigned long padding
,
759 struct consumer_relayd_sock_pair
*relayd
)
762 struct lttcomm_relayd_data_hdr data_hdr
;
768 /* Reset data header */
769 memset(&data_hdr
, 0, sizeof(data_hdr
));
771 if (stream
->metadata_flag
) {
772 /* Caller MUST acquire the relayd control socket lock */
773 ret
= relayd_send_metadata(&relayd
->control_sock
, data_size
);
778 /* Metadata are always sent on the control socket. */
779 outfd
= relayd
->control_sock
.fd
;
781 /* Set header with stream information */
782 data_hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
783 data_hdr
.data_size
= htobe32(data_size
);
784 data_hdr
.padding_size
= htobe32(padding
);
786 * Note that net_seq_num below is assigned with the *current* value of
787 * next_net_seq_num and only after that the next_net_seq_num will be
788 * increment. This is why when issuing a command on the relayd using
789 * this next value, 1 should always be substracted in order to compare
790 * the last seen sequence number on the relayd side to the last sent.
792 data_hdr
.net_seq_num
= htobe64(stream
->next_net_seq_num
++);
793 /* Other fields are zeroed previously */
795 ret
= relayd_send_data_hdr(&relayd
->data_sock
, &data_hdr
,
801 /* Set to go on data socket */
802 outfd
= relayd
->data_sock
.fd
;
810 void consumer_free_channel(struct rcu_head
*head
)
812 struct lttng_ht_node_ulong
*node
=
813 caa_container_of(head
, struct lttng_ht_node_ulong
, head
);
814 struct lttng_consumer_channel
*channel
=
815 caa_container_of(node
, struct lttng_consumer_channel
, node
);
821 * Remove a channel from the global list protected by a mutex. This
822 * function is also responsible for freeing its data structures.
824 void consumer_del_channel(struct lttng_consumer_channel
*channel
)
827 struct lttng_ht_iter iter
;
829 DBG("Consumer delete channel key %d", channel
->key
);
831 pthread_mutex_lock(&consumer_data
.lock
);
833 switch (consumer_data
.type
) {
834 case LTTNG_CONSUMER_KERNEL
:
836 case LTTNG_CONSUMER32_UST
:
837 case LTTNG_CONSUMER64_UST
:
838 lttng_ustconsumer_del_channel(channel
);
841 ERR("Unknown consumer_data type");
847 iter
.iter
.node
= &channel
->node
.node
;
848 ret
= lttng_ht_del(consumer_data
.channel_ht
, &iter
);
852 if (channel
->mmap_base
!= NULL
) {
853 ret
= munmap(channel
->mmap_base
, channel
->mmap_len
);
858 if (channel
->wait_fd
>= 0 && !channel
->wait_fd_is_copy
) {
859 ret
= close(channel
->wait_fd
);
864 if (channel
->shm_fd
>= 0 && channel
->wait_fd
!= channel
->shm_fd
) {
865 ret
= close(channel
->shm_fd
);
871 call_rcu(&channel
->node
.head
, consumer_free_channel
);
873 pthread_mutex_unlock(&consumer_data
.lock
);
876 struct lttng_consumer_channel
*consumer_allocate_channel(
878 int shm_fd
, int wait_fd
,
880 uint64_t max_sb_size
,
881 unsigned int nb_init_streams
)
883 struct lttng_consumer_channel
*channel
;
886 channel
= zmalloc(sizeof(*channel
));
887 if (channel
== NULL
) {
888 PERROR("malloc struct lttng_consumer_channel");
891 channel
->key
= channel_key
;
892 channel
->shm_fd
= shm_fd
;
893 channel
->wait_fd
= wait_fd
;
894 channel
->mmap_len
= mmap_len
;
895 channel
->max_sb_size
= max_sb_size
;
896 channel
->refcount
= 0;
897 channel
->nb_init_streams
= nb_init_streams
;
898 lttng_ht_node_init_ulong(&channel
->node
, channel
->key
);
900 switch (consumer_data
.type
) {
901 case LTTNG_CONSUMER_KERNEL
:
902 channel
->mmap_base
= NULL
;
903 channel
->mmap_len
= 0;
905 case LTTNG_CONSUMER32_UST
:
906 case LTTNG_CONSUMER64_UST
:
907 ret
= lttng_ustconsumer_allocate_channel(channel
);
914 ERR("Unknown consumer_data type");
918 DBG("Allocated channel (key %d, shm_fd %d, wait_fd %d, mmap_len %llu, max_sb_size %llu)",
919 channel
->key
, channel
->shm_fd
, channel
->wait_fd
,
920 (unsigned long long) channel
->mmap_len
,
921 (unsigned long long) channel
->max_sb_size
);
927 * Add a channel to the global list protected by a mutex.
929 int consumer_add_channel(struct lttng_consumer_channel
*channel
)
931 struct lttng_ht_node_ulong
*node
;
932 struct lttng_ht_iter iter
;
934 pthread_mutex_lock(&consumer_data
.lock
);
935 /* Steal channel identifier, for UST */
936 consumer_steal_channel_key(channel
->key
);
939 lttng_ht_lookup(consumer_data
.channel_ht
,
940 (void *)((unsigned long) channel
->key
), &iter
);
941 node
= lttng_ht_iter_get_node_ulong(&iter
);
943 /* Channel already exist. Ignore the insertion */
947 lttng_ht_add_unique_ulong(consumer_data
.channel_ht
, &channel
->node
);
951 pthread_mutex_unlock(&consumer_data
.lock
);
957 * Allocate the pollfd structure and the local view of the out fds to avoid
958 * doing a lookup in the linked list and concurrency issues when writing is
959 * needed. Called with consumer_data.lock held.
961 * Returns the number of fds in the structures.
963 static int consumer_update_poll_array(
964 struct lttng_consumer_local_data
*ctx
, struct pollfd
**pollfd
,
965 struct lttng_consumer_stream
**local_stream
, struct lttng_ht
*ht
)
968 struct lttng_ht_iter iter
;
969 struct lttng_consumer_stream
*stream
;
971 DBG("Updating poll fd array");
973 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
975 * Only active streams with an active end point can be added to the
976 * poll set and local stream storage of the thread.
978 * There is a potential race here for endpoint_status to be updated
979 * just after the check. However, this is OK since the stream(s) will
980 * be deleted once the thread is notified that the end point state has
981 * changed where this function will be called back again.
983 if (stream
->state
!= LTTNG_CONSUMER_ACTIVE_STREAM
||
984 stream
->endpoint_status
== CONSUMER_ENDPOINT_INACTIVE
) {
987 DBG("Active FD %d", stream
->wait_fd
);
988 (*pollfd
)[i
].fd
= stream
->wait_fd
;
989 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
990 local_stream
[i
] = stream
;
996 * Insert the consumer_data_pipe at the end of the array and don't
997 * increment i so nb_fd is the number of real FD.
999 (*pollfd
)[i
].fd
= ctx
->consumer_data_pipe
[0];
1000 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1005 * Poll on the should_quit pipe and the command socket return -1 on error and
1006 * should exit, 0 if data is available on the command socket
1008 int lttng_consumer_poll_socket(struct pollfd
*consumer_sockpoll
)
1013 num_rdy
= poll(consumer_sockpoll
, 2, -1);
1014 if (num_rdy
== -1) {
1016 * Restart interrupted system call.
1018 if (errno
== EINTR
) {
1021 PERROR("Poll error");
1024 if (consumer_sockpoll
[0].revents
& (POLLIN
| POLLPRI
)) {
1025 DBG("consumer_should_quit wake up");
1035 * Set the error socket.
1037 void lttng_consumer_set_error_sock(
1038 struct lttng_consumer_local_data
*ctx
, int sock
)
1040 ctx
->consumer_error_socket
= sock
;
1044 * Set the command socket path.
1046 void lttng_consumer_set_command_sock_path(
1047 struct lttng_consumer_local_data
*ctx
, char *sock
)
1049 ctx
->consumer_command_sock_path
= sock
;
1053 * Send return code to the session daemon.
1054 * If the socket is not defined, we return 0, it is not a fatal error
1056 int lttng_consumer_send_error(
1057 struct lttng_consumer_local_data
*ctx
, int cmd
)
1059 if (ctx
->consumer_error_socket
> 0) {
1060 return lttcomm_send_unix_sock(ctx
->consumer_error_socket
, &cmd
,
1061 sizeof(enum lttcomm_sessiond_command
));
1068 * Close all the tracefiles and stream fds and MUST be called when all
1069 * instances are destroyed i.e. when all threads were joined and are ended.
1071 void lttng_consumer_cleanup(void)
1073 struct lttng_ht_iter iter
;
1074 struct lttng_ht_node_ulong
*node
;
1078 cds_lfht_for_each_entry(consumer_data
.channel_ht
->ht
, &iter
.iter
, node
,
1080 struct lttng_consumer_channel
*channel
=
1081 caa_container_of(node
, struct lttng_consumer_channel
, node
);
1082 consumer_del_channel(channel
);
1087 lttng_ht_destroy(consumer_data
.channel_ht
);
1089 cleanup_relayd_ht();
1092 * This HT contains streams that are freed by either the metadata thread or
1093 * the data thread so we do *nothing* on the hash table and simply destroy
1096 lttng_ht_destroy(consumer_data
.stream_list_ht
);
1100 * Called from signal handler.
1102 void lttng_consumer_should_exit(struct lttng_consumer_local_data
*ctx
)
1107 ret
= write(ctx
->consumer_should_quit
[1], "4", 1);
1108 } while (ret
< 0 && errno
== EINTR
);
1110 PERROR("write consumer quit");
1113 DBG("Consumer flag that it should quit");
1116 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream
*stream
,
1119 int outfd
= stream
->out_fd
;
1122 * This does a blocking write-and-wait on any page that belongs to the
1123 * subbuffer prior to the one we just wrote.
1124 * Don't care about error values, as these are just hints and ways to
1125 * limit the amount of page cache used.
1127 if (orig_offset
< stream
->chan
->max_sb_size
) {
1130 lttng_sync_file_range(outfd
, orig_offset
- stream
->chan
->max_sb_size
,
1131 stream
->chan
->max_sb_size
,
1132 SYNC_FILE_RANGE_WAIT_BEFORE
1133 | SYNC_FILE_RANGE_WRITE
1134 | SYNC_FILE_RANGE_WAIT_AFTER
);
1136 * Give hints to the kernel about how we access the file:
1137 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1140 * We need to call fadvise again after the file grows because the
1141 * kernel does not seem to apply fadvise to non-existing parts of the
1144 * Call fadvise _after_ having waited for the page writeback to
1145 * complete because the dirty page writeback semantic is not well
1146 * defined. So it can be expected to lead to lower throughput in
1149 posix_fadvise(outfd
, orig_offset
- stream
->chan
->max_sb_size
,
1150 stream
->chan
->max_sb_size
, POSIX_FADV_DONTNEED
);
1154 * Initialise the necessary environnement :
1155 * - create a new context
1156 * - create the poll_pipe
1157 * - create the should_quit pipe (for signal handler)
1158 * - create the thread pipe (for splice)
1160 * Takes a function pointer as argument, this function is called when data is
1161 * available on a buffer. This function is responsible to do the
1162 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1163 * buffer configuration and then kernctl_put_next_subbuf at the end.
1165 * Returns a pointer to the new context or NULL on error.
1167 struct lttng_consumer_local_data
*lttng_consumer_create(
1168 enum lttng_consumer_type type
,
1169 ssize_t (*buffer_ready
)(struct lttng_consumer_stream
*stream
,
1170 struct lttng_consumer_local_data
*ctx
),
1171 int (*recv_channel
)(struct lttng_consumer_channel
*channel
),
1172 int (*recv_stream
)(struct lttng_consumer_stream
*stream
),
1173 int (*update_stream
)(int stream_key
, uint32_t state
))
1176 struct lttng_consumer_local_data
*ctx
;
1178 assert(consumer_data
.type
== LTTNG_CONSUMER_UNKNOWN
||
1179 consumer_data
.type
== type
);
1180 consumer_data
.type
= type
;
1182 ctx
= zmalloc(sizeof(struct lttng_consumer_local_data
));
1184 PERROR("allocating context");
1188 ctx
->consumer_error_socket
= -1;
1189 /* assign the callbacks */
1190 ctx
->on_buffer_ready
= buffer_ready
;
1191 ctx
->on_recv_channel
= recv_channel
;
1192 ctx
->on_recv_stream
= recv_stream
;
1193 ctx
->on_update_stream
= update_stream
;
1195 ret
= pipe(ctx
->consumer_data_pipe
);
1197 PERROR("Error creating poll pipe");
1198 goto error_poll_pipe
;
1201 /* set read end of the pipe to non-blocking */
1202 ret
= fcntl(ctx
->consumer_data_pipe
[0], F_SETFL
, O_NONBLOCK
);
1204 PERROR("fcntl O_NONBLOCK");
1205 goto error_poll_fcntl
;
1208 /* set write end of the pipe to non-blocking */
1209 ret
= fcntl(ctx
->consumer_data_pipe
[1], F_SETFL
, O_NONBLOCK
);
1211 PERROR("fcntl O_NONBLOCK");
1212 goto error_poll_fcntl
;
1215 ret
= pipe(ctx
->consumer_should_quit
);
1217 PERROR("Error creating recv pipe");
1218 goto error_quit_pipe
;
1221 ret
= pipe(ctx
->consumer_thread_pipe
);
1223 PERROR("Error creating thread pipe");
1224 goto error_thread_pipe
;
1227 ret
= utils_create_pipe(ctx
->consumer_metadata_pipe
);
1229 goto error_metadata_pipe
;
1232 ret
= utils_create_pipe(ctx
->consumer_splice_metadata_pipe
);
1234 goto error_splice_pipe
;
1240 utils_close_pipe(ctx
->consumer_metadata_pipe
);
1241 error_metadata_pipe
:
1242 utils_close_pipe(ctx
->consumer_thread_pipe
);
1244 for (i
= 0; i
< 2; i
++) {
1247 err
= close(ctx
->consumer_should_quit
[i
]);
1254 for (i
= 0; i
< 2; i
++) {
1257 err
= close(ctx
->consumer_data_pipe
[i
]);
1269 * Close all fds associated with the instance and free the context.
1271 void lttng_consumer_destroy(struct lttng_consumer_local_data
*ctx
)
1275 DBG("Consumer destroying it. Closing everything.");
1277 ret
= close(ctx
->consumer_error_socket
);
1281 ret
= close(ctx
->consumer_thread_pipe
[0]);
1285 ret
= close(ctx
->consumer_thread_pipe
[1]);
1289 ret
= close(ctx
->consumer_data_pipe
[0]);
1293 ret
= close(ctx
->consumer_data_pipe
[1]);
1297 ret
= close(ctx
->consumer_should_quit
[0]);
1301 ret
= close(ctx
->consumer_should_quit
[1]);
1305 utils_close_pipe(ctx
->consumer_splice_metadata_pipe
);
1307 unlink(ctx
->consumer_command_sock_path
);
1312 * Write the metadata stream id on the specified file descriptor.
1314 static int write_relayd_metadata_id(int fd
,
1315 struct lttng_consumer_stream
*stream
,
1316 struct consumer_relayd_sock_pair
*relayd
,
1317 unsigned long padding
)
1320 struct lttcomm_relayd_metadata_payload hdr
;
1322 hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
1323 hdr
.padding_size
= htobe32(padding
);
1325 ret
= write(fd
, (void *) &hdr
, sizeof(hdr
));
1326 } while (ret
< 0 && errno
== EINTR
);
1329 * This error means that the fd's end is closed so ignore the perror
1330 * not to clubber the error output since this can happen in a normal
1333 if (errno
!= EPIPE
) {
1334 PERROR("write metadata stream id");
1336 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno
);
1339 DBG("Metadata stream id %" PRIu64
" with padding %lu written before data",
1340 stream
->relayd_stream_id
, padding
);
1347 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1348 * core function for writing trace buffers to either the local filesystem or
1351 * It must be called with the stream lock held.
1353 * Careful review MUST be put if any changes occur!
1355 * Returns the number of bytes written
1357 ssize_t
lttng_consumer_on_read_subbuffer_mmap(
1358 struct lttng_consumer_local_data
*ctx
,
1359 struct lttng_consumer_stream
*stream
, unsigned long len
,
1360 unsigned long padding
)
1362 unsigned long mmap_offset
;
1363 ssize_t ret
= 0, written
= 0;
1364 off_t orig_offset
= stream
->out_fd_offset
;
1365 /* Default is on the disk */
1366 int outfd
= stream
->out_fd
;
1367 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1368 unsigned int relayd_hang_up
= 0;
1370 /* RCU lock for the relayd pointer */
1373 /* Flag that the current stream if set for network streaming. */
1374 if (stream
->net_seq_idx
!= -1) {
1375 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1376 if (relayd
== NULL
) {
1381 /* get the offset inside the fd to mmap */
1382 switch (consumer_data
.type
) {
1383 case LTTNG_CONSUMER_KERNEL
:
1384 ret
= kernctl_get_mmap_read_offset(stream
->wait_fd
, &mmap_offset
);
1386 case LTTNG_CONSUMER32_UST
:
1387 case LTTNG_CONSUMER64_UST
:
1388 ret
= lttng_ustctl_get_mmap_read_offset(stream
->chan
->handle
,
1389 stream
->buf
, &mmap_offset
);
1392 ERR("Unknown consumer_data type");
1397 PERROR("tracer ctl get_mmap_read_offset");
1402 /* Handle stream on the relayd if the output is on the network */
1404 unsigned long netlen
= len
;
1407 * Lock the control socket for the complete duration of the function
1408 * since from this point on we will use the socket.
1410 if (stream
->metadata_flag
) {
1411 /* Metadata requires the control socket. */
1412 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1413 netlen
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1416 ret
= write_relayd_stream_header(stream
, netlen
, padding
, relayd
);
1418 /* Use the returned socket. */
1421 /* Write metadata stream id before payload */
1422 if (stream
->metadata_flag
) {
1423 ret
= write_relayd_metadata_id(outfd
, stream
, relayd
, padding
);
1426 /* Socket operation failed. We consider the relayd dead */
1427 if (ret
== -EPIPE
|| ret
== -EINVAL
) {
1435 /* Socket operation failed. We consider the relayd dead */
1436 if (ret
== -EPIPE
|| ret
== -EINVAL
) {
1440 /* Else, use the default set before which is the filesystem. */
1443 /* No streaming, we have to set the len with the full padding */
1449 ret
= write(outfd
, stream
->mmap_base
+ mmap_offset
, len
);
1450 } while (ret
< 0 && errno
== EINTR
);
1451 DBG("Consumer mmap write() ret %zd (len %lu)", ret
, len
);
1454 * This is possible if the fd is closed on the other side (outfd)
1455 * or any write problem. It can be verbose a bit for a normal
1456 * execution if for instance the relayd is stopped abruptly. This
1457 * can happen so set this to a DBG statement.
1459 DBG("Error in file write mmap");
1463 /* Socket operation failed. We consider the relayd dead */
1464 if (errno
== EPIPE
|| errno
== EINVAL
) {
1469 } else if (ret
> len
) {
1470 PERROR("Error in file write (ret %zd > len %lu)", ret
, len
);
1478 /* This call is useless on a socket so better save a syscall. */
1480 /* This won't block, but will start writeout asynchronously */
1481 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret
,
1482 SYNC_FILE_RANGE_WRITE
);
1483 stream
->out_fd_offset
+= ret
;
1487 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1491 * This is a special case that the relayd has closed its socket. Let's
1492 * cleanup the relayd object and all associated streams.
1494 if (relayd
&& relayd_hang_up
) {
1495 cleanup_relayd(relayd
, ctx
);
1499 /* Unlock only if ctrl socket used */
1500 if (relayd
&& stream
->metadata_flag
) {
1501 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1509 * Splice the data from the ring buffer to the tracefile.
1511 * It must be called with the stream lock held.
1513 * Returns the number of bytes spliced.
1515 ssize_t
lttng_consumer_on_read_subbuffer_splice(
1516 struct lttng_consumer_local_data
*ctx
,
1517 struct lttng_consumer_stream
*stream
, unsigned long len
,
1518 unsigned long padding
)
1520 ssize_t ret
= 0, written
= 0, ret_splice
= 0;
1522 off_t orig_offset
= stream
->out_fd_offset
;
1523 int fd
= stream
->wait_fd
;
1524 /* Default is on the disk */
1525 int outfd
= stream
->out_fd
;
1526 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1528 unsigned int relayd_hang_up
= 0;
1530 switch (consumer_data
.type
) {
1531 case LTTNG_CONSUMER_KERNEL
:
1533 case LTTNG_CONSUMER32_UST
:
1534 case LTTNG_CONSUMER64_UST
:
1535 /* Not supported for user space tracing */
1538 ERR("Unknown consumer_data type");
1542 /* RCU lock for the relayd pointer */
1545 /* Flag that the current stream if set for network streaming. */
1546 if (stream
->net_seq_idx
!= -1) {
1547 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1548 if (relayd
== NULL
) {
1554 * Choose right pipe for splice. Metadata and trace data are handled by
1555 * different threads hence the use of two pipes in order not to race or
1556 * corrupt the written data.
1558 if (stream
->metadata_flag
) {
1559 splice_pipe
= ctx
->consumer_splice_metadata_pipe
;
1561 splice_pipe
= ctx
->consumer_thread_pipe
;
1564 /* Write metadata stream id before payload */
1566 int total_len
= len
;
1568 if (stream
->metadata_flag
) {
1570 * Lock the control socket for the complete duration of the function
1571 * since from this point on we will use the socket.
1573 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1575 ret
= write_relayd_metadata_id(splice_pipe
[1], stream
, relayd
,
1579 /* Socket operation failed. We consider the relayd dead */
1580 if (ret
== -EBADF
) {
1581 WARN("Remote relayd disconnected. Stopping");
1588 total_len
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1591 ret
= write_relayd_stream_header(stream
, total_len
, padding
, relayd
);
1593 /* Use the returned socket. */
1596 /* Socket operation failed. We consider the relayd dead */
1597 if (ret
== -EBADF
) {
1598 WARN("Remote relayd disconnected. Stopping");
1605 /* No streaming, we have to set the len with the full padding */
1610 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1611 (unsigned long)offset
, len
, fd
, splice_pipe
[1]);
1612 ret_splice
= splice(fd
, &offset
, splice_pipe
[1], NULL
, len
,
1613 SPLICE_F_MOVE
| SPLICE_F_MORE
);
1614 DBG("splice chan to pipe, ret %zd", ret_splice
);
1615 if (ret_splice
< 0) {
1616 PERROR("Error in relay splice");
1618 written
= ret_splice
;
1624 /* Handle stream on the relayd if the output is on the network */
1626 if (stream
->metadata_flag
) {
1627 size_t metadata_payload_size
=
1628 sizeof(struct lttcomm_relayd_metadata_payload
);
1630 /* Update counter to fit the spliced data */
1631 ret_splice
+= metadata_payload_size
;
1632 len
+= metadata_payload_size
;
1634 * We do this so the return value can match the len passed as
1635 * argument to this function.
1637 written
-= metadata_payload_size
;
1641 /* Splice data out */
1642 ret_splice
= splice(splice_pipe
[0], NULL
, outfd
, NULL
,
1643 ret_splice
, SPLICE_F_MOVE
| SPLICE_F_MORE
);
1644 DBG("Consumer splice pipe to file, ret %zd", ret_splice
);
1645 if (ret_splice
< 0) {
1646 PERROR("Error in file splice");
1648 written
= ret_splice
;
1650 /* Socket operation failed. We consider the relayd dead */
1651 if (errno
== EBADF
|| errno
== EPIPE
) {
1652 WARN("Remote relayd disconnected. Stopping");
1658 } else if (ret_splice
> len
) {
1660 PERROR("Wrote more data than requested %zd (len: %lu)",
1662 written
+= ret_splice
;
1668 /* This call is useless on a socket so better save a syscall. */
1670 /* This won't block, but will start writeout asynchronously */
1671 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret_splice
,
1672 SYNC_FILE_RANGE_WRITE
);
1673 stream
->out_fd_offset
+= ret_splice
;
1675 written
+= ret_splice
;
1677 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1685 * This is a special case that the relayd has closed its socket. Let's
1686 * cleanup the relayd object and all associated streams.
1688 if (relayd
&& relayd_hang_up
) {
1689 cleanup_relayd(relayd
, ctx
);
1690 /* Skip splice error so the consumer does not fail */
1695 /* send the appropriate error description to sessiond */
1698 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_EINVAL
);
1701 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ENOMEM
);
1704 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ESPIPE
);
1709 if (relayd
&& stream
->metadata_flag
) {
1710 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1718 * Take a snapshot for a specific fd
1720 * Returns 0 on success, < 0 on error
1722 int lttng_consumer_take_snapshot(struct lttng_consumer_local_data
*ctx
,
1723 struct lttng_consumer_stream
*stream
)
1725 switch (consumer_data
.type
) {
1726 case LTTNG_CONSUMER_KERNEL
:
1727 return lttng_kconsumer_take_snapshot(ctx
, stream
);
1728 case LTTNG_CONSUMER32_UST
:
1729 case LTTNG_CONSUMER64_UST
:
1730 return lttng_ustconsumer_take_snapshot(ctx
, stream
);
1732 ERR("Unknown consumer_data type");
1740 * Get the produced position
1742 * Returns 0 on success, < 0 on error
1744 int lttng_consumer_get_produced_snapshot(
1745 struct lttng_consumer_local_data
*ctx
,
1746 struct lttng_consumer_stream
*stream
,
1749 switch (consumer_data
.type
) {
1750 case LTTNG_CONSUMER_KERNEL
:
1751 return lttng_kconsumer_get_produced_snapshot(ctx
, stream
, pos
);
1752 case LTTNG_CONSUMER32_UST
:
1753 case LTTNG_CONSUMER64_UST
:
1754 return lttng_ustconsumer_get_produced_snapshot(ctx
, stream
, pos
);
1756 ERR("Unknown consumer_data type");
1762 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data
*ctx
,
1763 int sock
, struct pollfd
*consumer_sockpoll
)
1765 switch (consumer_data
.type
) {
1766 case LTTNG_CONSUMER_KERNEL
:
1767 return lttng_kconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1768 case LTTNG_CONSUMER32_UST
:
1769 case LTTNG_CONSUMER64_UST
:
1770 return lttng_ustconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1772 ERR("Unknown consumer_data type");
1779 * Iterate over all streams of the hashtable and free them properly.
1781 * WARNING: *MUST* be used with data stream only.
1783 static void destroy_data_stream_ht(struct lttng_ht
*ht
)
1785 struct lttng_ht_iter iter
;
1786 struct lttng_consumer_stream
*stream
;
1793 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1795 * Ignore return value since we are currently cleaning up so any error
1798 (void) consumer_del_stream(stream
, ht
);
1802 lttng_ht_destroy(ht
);
1806 * Iterate over all streams of the hashtable and free them properly.
1808 * XXX: Should not be only for metadata stream or else use an other name.
1810 static void destroy_stream_ht(struct lttng_ht
*ht
)
1812 struct lttng_ht_iter iter
;
1813 struct lttng_consumer_stream
*stream
;
1820 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1822 * Ignore return value since we are currently cleaning up so any error
1825 (void) consumer_del_metadata_stream(stream
, ht
);
1829 lttng_ht_destroy(ht
);
1833 * Clean up a metadata stream and free its memory.
1835 void consumer_del_metadata_stream(struct lttng_consumer_stream
*stream
,
1836 struct lttng_ht
*ht
)
1839 struct lttng_ht_iter iter
;
1840 struct lttng_consumer_channel
*free_chan
= NULL
;
1841 struct consumer_relayd_sock_pair
*relayd
;
1845 * This call should NEVER receive regular stream. It must always be
1846 * metadata stream and this is crucial for data structure synchronization.
1848 assert(stream
->metadata_flag
);
1850 DBG3("Consumer delete metadata stream %d", stream
->wait_fd
);
1853 /* Means the stream was allocated but not successfully added */
1857 pthread_mutex_lock(&consumer_data
.lock
);
1858 pthread_mutex_lock(&stream
->lock
);
1860 switch (consumer_data
.type
) {
1861 case LTTNG_CONSUMER_KERNEL
:
1862 if (stream
->mmap_base
!= NULL
) {
1863 ret
= munmap(stream
->mmap_base
, stream
->mmap_len
);
1865 PERROR("munmap metadata stream");
1869 case LTTNG_CONSUMER32_UST
:
1870 case LTTNG_CONSUMER64_UST
:
1871 lttng_ustconsumer_del_stream(stream
);
1874 ERR("Unknown consumer_data type");
1880 iter
.iter
.node
= &stream
->node
.node
;
1881 ret
= lttng_ht_del(ht
, &iter
);
1884 /* Remove node session id from the consumer_data stream ht */
1885 iter
.iter
.node
= &stream
->node_session_id
.node
;
1886 ret
= lttng_ht_del(consumer_data
.stream_list_ht
, &iter
);
1890 if (stream
->out_fd
>= 0) {
1891 ret
= close(stream
->out_fd
);
1897 if (stream
->wait_fd
>= 0 && !stream
->wait_fd_is_copy
) {
1898 ret
= close(stream
->wait_fd
);
1904 if (stream
->shm_fd
>= 0 && stream
->wait_fd
!= stream
->shm_fd
) {
1905 ret
= close(stream
->shm_fd
);
1911 /* Check and cleanup relayd */
1913 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1914 if (relayd
!= NULL
) {
1915 uatomic_dec(&relayd
->refcount
);
1916 assert(uatomic_read(&relayd
->refcount
) >= 0);
1918 /* Closing streams requires to lock the control socket. */
1919 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1920 ret
= relayd_send_close_stream(&relayd
->control_sock
,
1921 stream
->relayd_stream_id
, stream
->next_net_seq_num
- 1);
1922 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1924 DBG("Unable to close stream on the relayd. Continuing");
1926 * Continue here. There is nothing we can do for the relayd.
1927 * Chances are that the relayd has closed the socket so we just
1928 * continue cleaning up.
1932 /* Both conditions are met, we destroy the relayd. */
1933 if (uatomic_read(&relayd
->refcount
) == 0 &&
1934 uatomic_read(&relayd
->destroy_flag
)) {
1935 destroy_relayd(relayd
);
1940 /* Atomically decrement channel refcount since other threads can use it. */
1941 uatomic_dec(&stream
->chan
->refcount
);
1942 if (!uatomic_read(&stream
->chan
->refcount
)
1943 && !uatomic_read(&stream
->chan
->nb_init_streams
)) {
1944 /* Go for channel deletion! */
1945 free_chan
= stream
->chan
;
1949 pthread_mutex_unlock(&stream
->lock
);
1950 pthread_mutex_unlock(&consumer_data
.lock
);
1953 consumer_del_channel(free_chan
);
1957 call_rcu(&stream
->node
.head
, consumer_free_stream
);
1961 * Action done with the metadata stream when adding it to the consumer internal
1962 * data structures to handle it.
1964 static int consumer_add_metadata_stream(struct lttng_consumer_stream
*stream
,
1965 struct lttng_ht
*ht
)
1968 struct consumer_relayd_sock_pair
*relayd
;
1969 struct lttng_ht_iter iter
;
1970 struct lttng_ht_node_ulong
*node
;
1975 DBG3("Adding metadata stream %d to hash table", stream
->wait_fd
);
1977 pthread_mutex_lock(&consumer_data
.lock
);
1978 pthread_mutex_lock(&stream
->lock
);
1981 * From here, refcounts are updated so be _careful_ when returning an error
1988 * Lookup the stream just to make sure it does not exist in our internal
1989 * state. This should NEVER happen.
1991 lttng_ht_lookup(ht
, (void *)((unsigned long) stream
->wait_fd
), &iter
);
1992 node
= lttng_ht_iter_get_node_ulong(&iter
);
1995 /* Find relayd and, if one is found, increment refcount. */
1996 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1997 if (relayd
!= NULL
) {
1998 uatomic_inc(&relayd
->refcount
);
2001 /* Update channel refcount once added without error(s). */
2002 uatomic_inc(&stream
->chan
->refcount
);
2005 * When nb_init_streams reaches 0, we don't need to trigger any action in
2006 * terms of destroying the associated channel, because the action that
2007 * causes the count to become 0 also causes a stream to be added. The
2008 * channel deletion will thus be triggered by the following removal of this
2011 if (uatomic_read(&stream
->chan
->nb_init_streams
) > 0) {
2012 uatomic_dec(&stream
->chan
->nb_init_streams
);
2015 lttng_ht_add_unique_ulong(ht
, &stream
->node
);
2018 * Add stream to the stream_list_ht of the consumer data. No need to steal
2019 * the key since the HT does not use it and we allow to add redundant keys
2022 lttng_ht_add_ulong(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
2026 pthread_mutex_unlock(&stream
->lock
);
2027 pthread_mutex_unlock(&consumer_data
.lock
);
2032 * Delete data stream that are flagged for deletion (endpoint_status).
2034 static void validate_endpoint_status_data_stream(void)
2036 struct lttng_ht_iter iter
;
2037 struct lttng_consumer_stream
*stream
;
2039 DBG("Consumer delete flagged data stream");
2042 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2043 /* Validate delete flag of the stream */
2044 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2047 /* Delete it right now */
2048 consumer_del_stream(stream
, data_ht
);
2054 * Delete metadata stream that are flagged for deletion (endpoint_status).
2056 static void validate_endpoint_status_metadata_stream(
2057 struct lttng_poll_event
*pollset
)
2059 struct lttng_ht_iter iter
;
2060 struct lttng_consumer_stream
*stream
;
2062 DBG("Consumer delete flagged metadata stream");
2067 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2068 /* Validate delete flag of the stream */
2069 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2073 * Remove from pollset so the metadata thread can continue without
2074 * blocking on a deleted stream.
2076 lttng_poll_del(pollset
, stream
->wait_fd
);
2078 /* Delete it right now */
2079 consumer_del_metadata_stream(stream
, metadata_ht
);
2085 * Thread polls on metadata file descriptor and write them on disk or on the
2088 void *consumer_thread_metadata_poll(void *data
)
2091 uint32_t revents
, nb_fd
;
2092 struct lttng_consumer_stream
*stream
= NULL
;
2093 struct lttng_ht_iter iter
;
2094 struct lttng_ht_node_ulong
*node
;
2095 struct lttng_poll_event events
;
2096 struct lttng_consumer_local_data
*ctx
= data
;
2099 rcu_register_thread();
2101 metadata_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2103 /* ENOMEM at this point. Better to bail out. */
2107 DBG("Thread metadata poll started");
2109 /* Size is set to 1 for the consumer_metadata pipe */
2110 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2112 ERR("Poll set creation failed");
2116 ret
= lttng_poll_add(&events
, ctx
->consumer_metadata_pipe
[0], LPOLLIN
);
2122 DBG("Metadata main loop started");
2125 /* Only the metadata pipe is set */
2126 if (LTTNG_POLL_GETNB(&events
) == 0 && consumer_quit
== 1) {
2131 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events
));
2132 ret
= lttng_poll_wait(&events
, -1);
2133 DBG("Metadata event catched in thread");
2135 if (errno
== EINTR
) {
2136 ERR("Poll EINTR catched");
2144 /* From here, the event is a metadata wait fd */
2145 for (i
= 0; i
< nb_fd
; i
++) {
2146 revents
= LTTNG_POLL_GETEV(&events
, i
);
2147 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2149 /* Just don't waste time if no returned events for the fd */
2154 if (pollfd
== ctx
->consumer_metadata_pipe
[0]) {
2155 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2156 DBG("Metadata thread pipe hung up");
2158 * Remove the pipe from the poll set and continue the loop
2159 * since their might be data to consume.
2161 lttng_poll_del(&events
, ctx
->consumer_metadata_pipe
[0]);
2162 ret
= close(ctx
->consumer_metadata_pipe
[0]);
2164 PERROR("close metadata pipe");
2167 } else if (revents
& LPOLLIN
) {
2169 /* Get the stream pointer received */
2170 ret
= read(pollfd
, &stream
, sizeof(stream
));
2171 } while (ret
< 0 && errno
== EINTR
);
2173 ret
< sizeof(struct lttng_consumer_stream
*)) {
2174 PERROR("read metadata stream");
2176 * Let's continue here and hope we can still work
2177 * without stopping the consumer. XXX: Should we?
2182 /* A NULL stream means that the state has changed. */
2183 if (stream
== NULL
) {
2184 /* Check for deleted streams. */
2185 validate_endpoint_status_metadata_stream(&events
);
2189 DBG("Adding metadata stream %d to poll set",
2192 ret
= consumer_add_metadata_stream(stream
, metadata_ht
);
2194 ERR("Unable to add metadata stream");
2195 /* Stream was not setup properly. Continuing. */
2196 consumer_del_metadata_stream(stream
, NULL
);
2200 /* Add metadata stream to the global poll events list */
2201 lttng_poll_add(&events
, stream
->wait_fd
,
2202 LPOLLIN
| LPOLLPRI
);
2205 /* Handle other stream */
2210 lttng_ht_lookup(metadata_ht
, (void *)((unsigned long) pollfd
),
2212 node
= lttng_ht_iter_get_node_ulong(&iter
);
2215 stream
= caa_container_of(node
, struct lttng_consumer_stream
,
2218 /* Check for error event */
2219 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2220 DBG("Metadata fd %d is hup|err.", pollfd
);
2221 if (!stream
->hangup_flush_done
2222 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2223 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2224 DBG("Attempting to flush and consume the UST buffers");
2225 lttng_ustconsumer_on_stream_hangup(stream
);
2227 /* We just flushed the stream now read it. */
2229 len
= ctx
->on_buffer_ready(stream
, ctx
);
2231 * We don't check the return value here since if we get
2232 * a negative len, it means an error occured thus we
2233 * simply remove it from the poll set and free the
2239 lttng_poll_del(&events
, stream
->wait_fd
);
2241 * This call update the channel states, closes file descriptors
2242 * and securely free the stream.
2244 consumer_del_metadata_stream(stream
, metadata_ht
);
2245 } else if (revents
& (LPOLLIN
| LPOLLPRI
)) {
2246 /* Get the data out of the metadata file descriptor */
2247 DBG("Metadata available on fd %d", pollfd
);
2248 assert(stream
->wait_fd
== pollfd
);
2250 len
= ctx
->on_buffer_ready(stream
, ctx
);
2251 /* It's ok to have an unavailable sub-buffer */
2252 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2253 /* Clean up stream from consumer and free it. */
2254 lttng_poll_del(&events
, stream
->wait_fd
);
2255 consumer_del_metadata_stream(stream
, metadata_ht
);
2256 } else if (len
> 0) {
2257 stream
->data_read
= 1;
2261 /* Release RCU lock for the stream looked up */
2268 DBG("Metadata poll thread exiting");
2269 lttng_poll_clean(&events
);
2271 destroy_stream_ht(metadata_ht
);
2273 rcu_unregister_thread();
2278 * This thread polls the fds in the set to consume the data and write
2279 * it to tracefile if necessary.
2281 void *consumer_thread_data_poll(void *data
)
2283 int num_rdy
, num_hup
, high_prio
, ret
, i
;
2284 struct pollfd
*pollfd
= NULL
;
2285 /* local view of the streams */
2286 struct lttng_consumer_stream
**local_stream
= NULL
, *new_stream
= NULL
;
2287 /* local view of consumer_data.fds_count */
2289 struct lttng_consumer_local_data
*ctx
= data
;
2292 rcu_register_thread();
2294 data_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2295 if (data_ht
== NULL
) {
2296 /* ENOMEM at this point. Better to bail out. */
2300 local_stream
= zmalloc(sizeof(struct lttng_consumer_stream
));
2307 * the fds set has been updated, we need to update our
2308 * local array as well
2310 pthread_mutex_lock(&consumer_data
.lock
);
2311 if (consumer_data
.need_update
) {
2312 if (pollfd
!= NULL
) {
2316 if (local_stream
!= NULL
) {
2318 local_stream
= NULL
;
2321 /* allocate for all fds + 1 for the consumer_data_pipe */
2322 pollfd
= zmalloc((consumer_data
.stream_count
+ 1) * sizeof(struct pollfd
));
2323 if (pollfd
== NULL
) {
2324 PERROR("pollfd malloc");
2325 pthread_mutex_unlock(&consumer_data
.lock
);
2329 /* allocate for all fds + 1 for the consumer_data_pipe */
2330 local_stream
= zmalloc((consumer_data
.stream_count
+ 1) *
2331 sizeof(struct lttng_consumer_stream
));
2332 if (local_stream
== NULL
) {
2333 PERROR("local_stream malloc");
2334 pthread_mutex_unlock(&consumer_data
.lock
);
2337 ret
= consumer_update_poll_array(ctx
, &pollfd
, local_stream
,
2340 ERR("Error in allocating pollfd or local_outfds");
2341 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2342 pthread_mutex_unlock(&consumer_data
.lock
);
2346 consumer_data
.need_update
= 0;
2348 pthread_mutex_unlock(&consumer_data
.lock
);
2350 /* No FDs and consumer_quit, consumer_cleanup the thread */
2351 if (nb_fd
== 0 && consumer_quit
== 1) {
2354 /* poll on the array of fds */
2356 DBG("polling on %d fd", nb_fd
+ 1);
2357 num_rdy
= poll(pollfd
, nb_fd
+ 1, -1);
2358 DBG("poll num_rdy : %d", num_rdy
);
2359 if (num_rdy
== -1) {
2361 * Restart interrupted system call.
2363 if (errno
== EINTR
) {
2366 PERROR("Poll error");
2367 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2369 } else if (num_rdy
== 0) {
2370 DBG("Polling thread timed out");
2375 * If the consumer_data_pipe triggered poll go directly to the
2376 * beginning of the loop to update the array. We want to prioritize
2377 * array update over low-priority reads.
2379 if (pollfd
[nb_fd
].revents
& (POLLIN
| POLLPRI
)) {
2380 size_t pipe_readlen
;
2382 DBG("consumer_data_pipe wake up");
2383 /* Consume 1 byte of pipe data */
2385 pipe_readlen
= read(ctx
->consumer_data_pipe
[0], &new_stream
,
2386 sizeof(new_stream
));
2387 } while (pipe_readlen
== -1 && errno
== EINTR
);
2388 if (pipe_readlen
< 0) {
2389 PERROR("read consumer data pipe");
2390 /* Continue so we can at least handle the current stream(s). */
2395 * If the stream is NULL, just ignore it. It's also possible that
2396 * the sessiond poll thread changed the consumer_quit state and is
2397 * waking us up to test it.
2399 if (new_stream
== NULL
) {
2400 validate_endpoint_status_data_stream();
2404 ret
= consumer_add_stream(new_stream
, data_ht
);
2406 ERR("Consumer add stream %d failed. Continuing",
2409 * At this point, if the add_stream fails, it is not in the
2410 * hash table thus passing the NULL value here.
2412 consumer_del_stream(new_stream
, NULL
);
2415 /* Continue to update the local streams and handle prio ones */
2419 /* Take care of high priority channels first. */
2420 for (i
= 0; i
< nb_fd
; i
++) {
2421 if (local_stream
[i
] == NULL
) {
2424 if (pollfd
[i
].revents
& POLLPRI
) {
2425 DBG("Urgent read on fd %d", pollfd
[i
].fd
);
2427 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2428 /* it's ok to have an unavailable sub-buffer */
2429 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2430 /* Clean the stream and free it. */
2431 consumer_del_stream(local_stream
[i
], data_ht
);
2432 local_stream
[i
] = NULL
;
2433 } else if (len
> 0) {
2434 local_stream
[i
]->data_read
= 1;
2440 * If we read high prio channel in this loop, try again
2441 * for more high prio data.
2447 /* Take care of low priority channels. */
2448 for (i
= 0; i
< nb_fd
; i
++) {
2449 if (local_stream
[i
] == NULL
) {
2452 if ((pollfd
[i
].revents
& POLLIN
) ||
2453 local_stream
[i
]->hangup_flush_done
) {
2454 DBG("Normal read on fd %d", pollfd
[i
].fd
);
2455 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2456 /* it's ok to have an unavailable sub-buffer */
2457 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2458 /* Clean the stream and free it. */
2459 consumer_del_stream(local_stream
[i
], data_ht
);
2460 local_stream
[i
] = NULL
;
2461 } else if (len
> 0) {
2462 local_stream
[i
]->data_read
= 1;
2467 /* Handle hangup and errors */
2468 for (i
= 0; i
< nb_fd
; i
++) {
2469 if (local_stream
[i
] == NULL
) {
2472 if (!local_stream
[i
]->hangup_flush_done
2473 && (pollfd
[i
].revents
& (POLLHUP
| POLLERR
| POLLNVAL
))
2474 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2475 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2476 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2478 lttng_ustconsumer_on_stream_hangup(local_stream
[i
]);
2479 /* Attempt read again, for the data we just flushed. */
2480 local_stream
[i
]->data_read
= 1;
2483 * If the poll flag is HUP/ERR/NVAL and we have
2484 * read no data in this pass, we can remove the
2485 * stream from its hash table.
2487 if ((pollfd
[i
].revents
& POLLHUP
)) {
2488 DBG("Polling fd %d tells it has hung up.", pollfd
[i
].fd
);
2489 if (!local_stream
[i
]->data_read
) {
2490 consumer_del_stream(local_stream
[i
], data_ht
);
2491 local_stream
[i
] = NULL
;
2494 } else if (pollfd
[i
].revents
& POLLERR
) {
2495 ERR("Error returned in polling fd %d.", pollfd
[i
].fd
);
2496 if (!local_stream
[i
]->data_read
) {
2497 consumer_del_stream(local_stream
[i
], data_ht
);
2498 local_stream
[i
] = NULL
;
2501 } else if (pollfd
[i
].revents
& POLLNVAL
) {
2502 ERR("Polling fd %d tells fd is not open.", pollfd
[i
].fd
);
2503 if (!local_stream
[i
]->data_read
) {
2504 consumer_del_stream(local_stream
[i
], data_ht
);
2505 local_stream
[i
] = NULL
;
2509 if (local_stream
[i
] != NULL
) {
2510 local_stream
[i
]->data_read
= 0;
2515 DBG("polling thread exiting");
2516 if (pollfd
!= NULL
) {
2520 if (local_stream
!= NULL
) {
2522 local_stream
= NULL
;
2526 * Close the write side of the pipe so epoll_wait() in
2527 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2528 * read side of the pipe. If we close them both, epoll_wait strangely does
2529 * not return and could create a endless wait period if the pipe is the
2530 * only tracked fd in the poll set. The thread will take care of closing
2533 ret
= close(ctx
->consumer_metadata_pipe
[1]);
2535 PERROR("close data pipe");
2538 destroy_data_stream_ht(data_ht
);
2540 rcu_unregister_thread();
2545 * This thread listens on the consumerd socket and receives the file
2546 * descriptors from the session daemon.
2548 void *consumer_thread_sessiond_poll(void *data
)
2550 int sock
= -1, client_socket
, ret
;
2552 * structure to poll for incoming data on communication socket avoids
2553 * making blocking sockets.
2555 struct pollfd consumer_sockpoll
[2];
2556 struct lttng_consumer_local_data
*ctx
= data
;
2558 rcu_register_thread();
2560 DBG("Creating command socket %s", ctx
->consumer_command_sock_path
);
2561 unlink(ctx
->consumer_command_sock_path
);
2562 client_socket
= lttcomm_create_unix_sock(ctx
->consumer_command_sock_path
);
2563 if (client_socket
< 0) {
2564 ERR("Cannot create command socket");
2568 ret
= lttcomm_listen_unix_sock(client_socket
);
2573 DBG("Sending ready command to lttng-sessiond");
2574 ret
= lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY
);
2575 /* return < 0 on error, but == 0 is not fatal */
2577 ERR("Error sending ready command to lttng-sessiond");
2581 ret
= fcntl(client_socket
, F_SETFL
, O_NONBLOCK
);
2583 PERROR("fcntl O_NONBLOCK");
2587 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2588 consumer_sockpoll
[0].fd
= ctx
->consumer_should_quit
[0];
2589 consumer_sockpoll
[0].events
= POLLIN
| POLLPRI
;
2590 consumer_sockpoll
[1].fd
= client_socket
;
2591 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
2593 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2596 DBG("Connection on client_socket");
2598 /* Blocking call, waiting for transmission */
2599 sock
= lttcomm_accept_unix_sock(client_socket
);
2604 ret
= fcntl(sock
, F_SETFL
, O_NONBLOCK
);
2606 PERROR("fcntl O_NONBLOCK");
2610 /* This socket is not useful anymore. */
2611 ret
= close(client_socket
);
2613 PERROR("close client_socket");
2617 /* update the polling structure to poll on the established socket */
2618 consumer_sockpoll
[1].fd
= sock
;
2619 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
2622 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2625 DBG("Incoming command on sock");
2626 ret
= lttng_consumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
2627 if (ret
== -ENOENT
) {
2628 DBG("Received STOP command");
2633 * This could simply be a session daemon quitting. Don't output
2636 DBG("Communication interrupted on command socket");
2639 if (consumer_quit
) {
2640 DBG("consumer_thread_receive_fds received quit from signal");
2643 DBG("received fds on sock");
2646 DBG("consumer_thread_receive_fds exiting");
2649 * when all fds have hung up, the polling thread
2655 * Notify the data poll thread to poll back again and test the
2656 * consumer_quit state that we just set so to quit gracefully.
2658 notify_thread_pipe(ctx
->consumer_data_pipe
[1]);
2660 /* Cleaning up possibly open sockets. */
2664 PERROR("close sock sessiond poll");
2667 if (client_socket
>= 0) {
2670 PERROR("close client_socket sessiond poll");
2674 rcu_unregister_thread();
2678 ssize_t
lttng_consumer_read_subbuffer(struct lttng_consumer_stream
*stream
,
2679 struct lttng_consumer_local_data
*ctx
)
2683 pthread_mutex_lock(&stream
->lock
);
2685 switch (consumer_data
.type
) {
2686 case LTTNG_CONSUMER_KERNEL
:
2687 ret
= lttng_kconsumer_read_subbuffer(stream
, ctx
);
2689 case LTTNG_CONSUMER32_UST
:
2690 case LTTNG_CONSUMER64_UST
:
2691 ret
= lttng_ustconsumer_read_subbuffer(stream
, ctx
);
2694 ERR("Unknown consumer_data type");
2700 pthread_mutex_unlock(&stream
->lock
);
2704 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream
*stream
)
2706 switch (consumer_data
.type
) {
2707 case LTTNG_CONSUMER_KERNEL
:
2708 return lttng_kconsumer_on_recv_stream(stream
);
2709 case LTTNG_CONSUMER32_UST
:
2710 case LTTNG_CONSUMER64_UST
:
2711 return lttng_ustconsumer_on_recv_stream(stream
);
2713 ERR("Unknown consumer_data type");
2720 * Allocate and set consumer data hash tables.
2722 void lttng_consumer_init(void)
2724 consumer_data
.channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2725 consumer_data
.relayd_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2726 consumer_data
.stream_list_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2727 relayd_session_id_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2731 * Process the ADD_RELAYD command receive by a consumer.
2733 * This will create a relayd socket pair and add it to the relayd hash table.
2734 * The caller MUST acquire a RCU read side lock before calling it.
2736 int consumer_add_relayd_socket(int net_seq_idx
, int sock_type
,
2737 struct lttng_consumer_local_data
*ctx
, int sock
,
2738 struct pollfd
*consumer_sockpoll
, struct lttcomm_sock
*relayd_sock
,
2739 unsigned int sessiond_id
)
2741 int fd
= -1, ret
= -1, relayd_created
= 0;
2742 enum lttng_error_code ret_code
= LTTNG_OK
;
2743 struct consumer_relayd_sock_pair
*relayd
;
2744 struct consumer_relayd_session_id
*relayd_id_node
;
2746 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx
);
2748 /* First send a status message before receiving the fds. */
2749 ret
= consumer_send_status_msg(sock
, ret_code
);
2751 /* Somehow, the session daemon is not responding anymore. */
2755 /* Get relayd reference if exists. */
2756 relayd
= consumer_find_relayd(net_seq_idx
);
2757 if (relayd
== NULL
) {
2758 /* Not found. Allocate one. */
2759 relayd
= consumer_allocate_relayd_sock_pair(net_seq_idx
);
2760 if (relayd
== NULL
) {
2761 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_OUTFD_ERROR
);
2764 relayd
->sessiond_session_id
= (uint64_t) sessiond_id
;
2768 /* Poll on consumer socket. */
2769 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2774 /* Get relayd socket from session daemon */
2775 ret
= lttcomm_recv_fds_unix_sock(sock
, &fd
, 1);
2776 if (ret
!= sizeof(fd
)) {
2777 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_ERROR_RECV_FD
);
2779 fd
= -1; /* Just in case it gets set with an invalid value. */
2783 /* We have the fds without error. Send status back. */
2784 ret
= consumer_send_status_msg(sock
, ret_code
);
2786 /* Somehow, the session daemon is not responding anymore. */
2790 /* Copy socket information and received FD */
2791 switch (sock_type
) {
2792 case LTTNG_STREAM_CONTROL
:
2793 /* Copy received lttcomm socket */
2794 lttcomm_copy_sock(&relayd
->control_sock
, relayd_sock
);
2795 ret
= lttcomm_create_sock(&relayd
->control_sock
);
2796 /* Immediately try to close the created socket if valid. */
2797 if (relayd
->control_sock
.fd
>= 0) {
2798 if (close(relayd
->control_sock
.fd
)) {
2799 PERROR("close relayd control socket");
2802 /* Handle create_sock error. */
2807 /* Assign new file descriptor */
2808 relayd
->control_sock
.fd
= fd
;
2811 * Create a session on the relayd and store the returned id. No need to
2812 * grab the socket lock since the relayd object is not yet visible.
2814 ret
= relayd_create_session(&relayd
->control_sock
,
2815 &relayd
->relayd_session_id
);
2820 /* Set up a relayd session id node. */
2821 relayd_id_node
= zmalloc(sizeof(struct consumer_relayd_session_id
));
2822 if (!relayd_id_node
) {
2823 PERROR("zmalloc relayd id node");
2827 relayd_id_node
->relayd_id
= relayd
->relayd_session_id
;
2828 relayd_id_node
->sessiond_id
= (uint64_t) sessiond_id
;
2830 /* Indexed by session id of the sessiond. */
2831 lttng_ht_node_init_ulong(&relayd_id_node
->node
,
2832 relayd_id_node
->sessiond_id
);
2834 lttng_ht_add_unique_ulong(relayd_session_id_ht
, &relayd_id_node
->node
);
2838 case LTTNG_STREAM_DATA
:
2839 /* Copy received lttcomm socket */
2840 lttcomm_copy_sock(&relayd
->data_sock
, relayd_sock
);
2841 ret
= lttcomm_create_sock(&relayd
->data_sock
);
2842 /* Immediately try to close the created socket if valid. */
2843 if (relayd
->data_sock
.fd
>= 0) {
2844 if (close(relayd
->data_sock
.fd
)) {
2845 PERROR("close relayd data socket");
2848 /* Handle create_sock error. */
2853 /* Assign new file descriptor */
2854 relayd
->data_sock
.fd
= fd
;
2857 ERR("Unknown relayd socket type (%d)", sock_type
);
2861 DBG("Consumer %s socket created successfully with net idx %d (fd: %d)",
2862 sock_type
== LTTNG_STREAM_CONTROL
? "control" : "data",
2863 relayd
->net_seq_idx
, fd
);
2866 * Add relayd socket pair to consumer data hashtable. If object already
2867 * exists or on error, the function gracefully returns.
2875 /* Close received socket if valid. */
2878 PERROR("close received socket");
2882 if (relayd_created
) {
2883 /* We just want to cleanup. Ignore ret value. */
2884 (void) relayd_close(&relayd
->control_sock
);
2885 (void) relayd_close(&relayd
->data_sock
);
2893 * Try to lock the stream mutex.
2895 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
2897 static int stream_try_lock(struct lttng_consumer_stream
*stream
)
2904 * Try to lock the stream mutex. On failure, we know that the stream is
2905 * being used else where hence there is data still being extracted.
2907 ret
= pthread_mutex_trylock(&stream
->lock
);
2909 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
2921 * Search for a relayd associated to the session id and return the reference.
2923 * A rcu read side lock MUST be acquire before calling this function and locked
2924 * until the relayd object is no longer necessary.
2926 static struct consumer_relayd_sock_pair
*find_relayd_by_session_id(uint64_t id
)
2928 struct lttng_ht_iter iter
;
2929 struct lttng_ht_node_ulong
*node
;
2930 struct consumer_relayd_sock_pair
*relayd
= NULL
;
2931 struct consumer_relayd_session_id
*session_id_map
;
2933 /* Get the session id map. */
2934 lttng_ht_lookup(relayd_session_id_ht
, (void *)((unsigned long) id
), &iter
);
2935 node
= lttng_ht_iter_get_node_ulong(&iter
);
2940 session_id_map
= caa_container_of(node
, struct consumer_relayd_session_id
,
2943 /* Iterate over all relayd since they are indexed by net_seq_idx. */
2944 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
2946 if (relayd
->relayd_session_id
== session_id_map
->relayd_id
) {
2947 /* Found the relayd. There can be only one per id. */
2957 * Check if for a given session id there is still data needed to be extract
2960 * Return 1 if data is pending or else 0 meaning ready to be read.
2962 int consumer_data_pending(uint64_t id
)
2965 struct lttng_ht_iter iter
;
2966 struct lttng_ht
*ht
;
2967 struct lttng_consumer_stream
*stream
;
2968 struct consumer_relayd_sock_pair
*relayd
= NULL
;
2969 int (*data_pending
)(struct lttng_consumer_stream
*);
2971 DBG("Consumer data pending command on session id %" PRIu64
, id
);
2974 pthread_mutex_lock(&consumer_data
.lock
);
2976 switch (consumer_data
.type
) {
2977 case LTTNG_CONSUMER_KERNEL
:
2978 data_pending
= lttng_kconsumer_data_pending
;
2980 case LTTNG_CONSUMER32_UST
:
2981 case LTTNG_CONSUMER64_UST
:
2982 data_pending
= lttng_ustconsumer_data_pending
;
2985 ERR("Unknown consumer data type");
2989 /* Ease our life a bit */
2990 ht
= consumer_data
.stream_list_ht
;
2992 relayd
= find_relayd_by_session_id(id
);
2994 /* Send init command for data pending. */
2995 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
2996 ret
= relayd_begin_data_pending(&relayd
->control_sock
,
2997 relayd
->relayd_session_id
);
2998 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3000 /* Communication error thus the relayd so no data pending. */
3001 goto data_not_pending
;
3005 cds_lfht_for_each_entry_duplicate(ht
->ht
,
3006 ht
->hash_fct((void *)((unsigned long) id
), lttng_ht_seed
),
3007 ht
->match_fct
, (void *)((unsigned long) id
),
3008 &iter
.iter
, stream
, node_session_id
.node
) {
3009 /* If this call fails, the stream is being used hence data pending. */
3010 ret
= stream_try_lock(stream
);
3016 * A removed node from the hash table indicates that the stream has
3017 * been deleted thus having a guarantee that the buffers are closed
3018 * on the consumer side. However, data can still be transmitted
3019 * over the network so don't skip the relayd check.
3021 ret
= cds_lfht_is_node_deleted(&stream
->node
.node
);
3023 /* Check the stream if there is data in the buffers. */
3024 ret
= data_pending(stream
);
3026 pthread_mutex_unlock(&stream
->lock
);
3033 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3034 if (stream
->metadata_flag
) {
3035 ret
= relayd_quiescent_control(&relayd
->control_sock
,
3036 stream
->relayd_stream_id
);
3038 ret
= relayd_data_pending(&relayd
->control_sock
,
3039 stream
->relayd_stream_id
,
3040 stream
->next_net_seq_num
- 1);
3042 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3044 pthread_mutex_unlock(&stream
->lock
);
3048 pthread_mutex_unlock(&stream
->lock
);
3052 unsigned int is_data_inflight
= 0;
3054 /* Send init command for data pending. */
3055 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3056 ret
= relayd_end_data_pending(&relayd
->control_sock
,
3057 relayd
->relayd_session_id
, &is_data_inflight
);
3058 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3060 goto data_not_pending
;
3062 if (is_data_inflight
) {
3068 * Finding _no_ node in the hash table and no inflight data means that the
3069 * stream(s) have been removed thus data is guaranteed to be available for
3070 * analysis from the trace files.
3074 /* Data is available to be read by a viewer. */
3075 pthread_mutex_unlock(&consumer_data
.lock
);
3080 /* Data is still being extracted from buffers. */
3081 pthread_mutex_unlock(&consumer_data
.lock
);
3087 * Send a ret code status message to the sessiond daemon.
3089 * Return the sendmsg() return value.
3091 int consumer_send_status_msg(int sock
, int ret_code
)
3093 struct lttcomm_consumer_status_msg msg
;
3095 msg
.ret_code
= ret_code
;
3097 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));