2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 #include <sys/socket.h>
28 #include <sys/types.h>
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/kernel-ctl/kernel-ctl.h>
37 #include <common/sessiond-comm/relayd.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/kernel-consumer/kernel-consumer.h>
40 #include <common/relayd/relayd.h>
41 #include <common/ust-consumer/ust-consumer.h>
45 struct lttng_consumer_global_data consumer_data
= {
48 .type
= LTTNG_CONSUMER_UNKNOWN
,
51 enum consumer_channel_action
{
53 CONSUMER_CHANNEL_QUIT
,
56 struct consumer_channel_msg
{
57 enum consumer_channel_action action
;
58 struct lttng_consumer_channel
*chan
;
62 * Flag to inform the polling thread to quit when all fd hung up. Updated by
63 * the consumer_thread_receive_fds when it notices that all fds has hung up.
64 * Also updated by the signal handler (consumer_should_exit()). Read by the
67 volatile int consumer_quit
;
70 * Global hash table containing respectively metadata and data streams. The
71 * stream element in this ht should only be updated by the metadata poll thread
72 * for the metadata and the data poll thread for the data.
74 static struct lttng_ht
*metadata_ht
;
75 static struct lttng_ht
*data_ht
;
78 * Notify a thread pipe to poll back again. This usually means that some global
79 * state has changed so we just send back the thread in a poll wait call.
81 static void notify_thread_pipe(int wpipe
)
86 struct lttng_consumer_stream
*null_stream
= NULL
;
88 ret
= write(wpipe
, &null_stream
, sizeof(null_stream
));
89 } while (ret
< 0 && errno
== EINTR
);
92 static void notify_channel_pipe(struct lttng_consumer_local_data
*ctx
,
93 struct lttng_consumer_channel
*chan
,
94 enum consumer_channel_action action
)
96 struct consumer_channel_msg msg
;
102 ret
= write(ctx
->consumer_channel_pipe
[1], &msg
, sizeof(msg
));
103 } while (ret
< 0 && errno
== EINTR
);
106 static int read_channel_pipe(struct lttng_consumer_local_data
*ctx
,
107 struct lttng_consumer_channel
**chan
,
108 enum consumer_channel_action
*action
)
110 struct consumer_channel_msg msg
;
114 ret
= read(ctx
->consumer_channel_pipe
[0], &msg
, sizeof(msg
));
115 } while (ret
< 0 && errno
== EINTR
);
117 *action
= msg
.action
;
124 * Find a stream. The consumer_data.lock must be locked during this
127 static struct lttng_consumer_stream
*find_stream(uint64_t key
,
130 struct lttng_ht_iter iter
;
131 struct lttng_ht_node_u64
*node
;
132 struct lttng_consumer_stream
*stream
= NULL
;
136 /* -1ULL keys are lookup failures */
137 if (key
== (uint64_t) -1ULL) {
143 lttng_ht_lookup(ht
, &key
, &iter
);
144 node
= lttng_ht_iter_get_node_u64(&iter
);
146 stream
= caa_container_of(node
, struct lttng_consumer_stream
, node
);
154 static void steal_stream_key(int key
, struct lttng_ht
*ht
)
156 struct lttng_consumer_stream
*stream
;
159 stream
= find_stream(key
, ht
);
163 * We don't want the lookup to match, but we still need
164 * to iterate on this stream when iterating over the hash table. Just
165 * change the node key.
167 stream
->node
.key
= -1ULL;
173 * Return a channel object for the given key.
175 * RCU read side lock MUST be acquired before calling this function and
176 * protects the channel ptr.
178 struct lttng_consumer_channel
*consumer_find_channel(uint64_t key
)
180 struct lttng_ht_iter iter
;
181 struct lttng_ht_node_u64
*node
;
182 struct lttng_consumer_channel
*channel
= NULL
;
184 /* -1ULL keys are lookup failures */
185 if (key
== (uint64_t) -1ULL) {
189 lttng_ht_lookup(consumer_data
.channel_ht
, &key
, &iter
);
190 node
= lttng_ht_iter_get_node_u64(&iter
);
192 channel
= caa_container_of(node
, struct lttng_consumer_channel
, node
);
198 static void free_stream_rcu(struct rcu_head
*head
)
200 struct lttng_ht_node_u64
*node
=
201 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
202 struct lttng_consumer_stream
*stream
=
203 caa_container_of(node
, struct lttng_consumer_stream
, node
);
208 static void free_channel_rcu(struct rcu_head
*head
)
210 struct lttng_ht_node_u64
*node
=
211 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
212 struct lttng_consumer_channel
*channel
=
213 caa_container_of(node
, struct lttng_consumer_channel
, node
);
219 * RCU protected relayd socket pair free.
221 static void free_relayd_rcu(struct rcu_head
*head
)
223 struct lttng_ht_node_u64
*node
=
224 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
225 struct consumer_relayd_sock_pair
*relayd
=
226 caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
229 * Close all sockets. This is done in the call RCU since we don't want the
230 * socket fds to be reassigned thus potentially creating bad state of the
233 * We do not have to lock the control socket mutex here since at this stage
234 * there is no one referencing to this relayd object.
236 (void) relayd_close(&relayd
->control_sock
);
237 (void) relayd_close(&relayd
->data_sock
);
243 * Destroy and free relayd socket pair object.
245 * This function MUST be called with the consumer_data lock acquired.
247 static void destroy_relayd(struct consumer_relayd_sock_pair
*relayd
)
250 struct lttng_ht_iter iter
;
252 if (relayd
== NULL
) {
256 DBG("Consumer destroy and close relayd socket pair");
258 iter
.iter
.node
= &relayd
->node
.node
;
259 ret
= lttng_ht_del(consumer_data
.relayd_ht
, &iter
);
261 /* We assume the relayd is being or is destroyed */
265 /* RCU free() call */
266 call_rcu(&relayd
->node
.head
, free_relayd_rcu
);
270 * Remove a channel from the global list protected by a mutex. This function is
271 * also responsible for freeing its data structures.
273 void consumer_del_channel(struct lttng_consumer_channel
*channel
)
276 struct lttng_ht_iter iter
;
278 DBG("Consumer delete channel key %" PRIu64
, channel
->key
);
280 pthread_mutex_lock(&consumer_data
.lock
);
282 switch (consumer_data
.type
) {
283 case LTTNG_CONSUMER_KERNEL
:
285 case LTTNG_CONSUMER32_UST
:
286 case LTTNG_CONSUMER64_UST
:
287 lttng_ustconsumer_del_channel(channel
);
290 ERR("Unknown consumer_data type");
296 iter
.iter
.node
= &channel
->node
.node
;
297 ret
= lttng_ht_del(consumer_data
.channel_ht
, &iter
);
301 call_rcu(&channel
->node
.head
, free_channel_rcu
);
303 pthread_mutex_unlock(&consumer_data
.lock
);
307 * Iterate over the relayd hash table and destroy each element. Finally,
308 * destroy the whole hash table.
310 static void cleanup_relayd_ht(void)
312 struct lttng_ht_iter iter
;
313 struct consumer_relayd_sock_pair
*relayd
;
317 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
319 destroy_relayd(relayd
);
322 lttng_ht_destroy(consumer_data
.relayd_ht
);
328 * Update the end point status of all streams having the given network sequence
329 * index (relayd index).
331 * It's atomically set without having the stream mutex locked which is fine
332 * because we handle the write/read race with a pipe wakeup for each thread.
334 static void update_endpoint_status_by_netidx(int net_seq_idx
,
335 enum consumer_endpoint_status status
)
337 struct lttng_ht_iter iter
;
338 struct lttng_consumer_stream
*stream
;
340 DBG("Consumer set delete flag on stream by idx %d", net_seq_idx
);
344 /* Let's begin with metadata */
345 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
346 if (stream
->net_seq_idx
== net_seq_idx
) {
347 uatomic_set(&stream
->endpoint_status
, status
);
348 DBG("Delete flag set to metadata stream %d", stream
->wait_fd
);
352 /* Follow up by the data streams */
353 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
354 if (stream
->net_seq_idx
== net_seq_idx
) {
355 uatomic_set(&stream
->endpoint_status
, status
);
356 DBG("Delete flag set to data stream %d", stream
->wait_fd
);
363 * Cleanup a relayd object by flagging every associated streams for deletion,
364 * destroying the object meaning removing it from the relayd hash table,
365 * closing the sockets and freeing the memory in a RCU call.
367 * If a local data context is available, notify the threads that the streams'
368 * state have changed.
370 static void cleanup_relayd(struct consumer_relayd_sock_pair
*relayd
,
371 struct lttng_consumer_local_data
*ctx
)
377 DBG("Cleaning up relayd sockets");
379 /* Save the net sequence index before destroying the object */
380 netidx
= relayd
->net_seq_idx
;
383 * Delete the relayd from the relayd hash table, close the sockets and free
384 * the object in a RCU call.
386 destroy_relayd(relayd
);
388 /* Set inactive endpoint to all streams */
389 update_endpoint_status_by_netidx(netidx
, CONSUMER_ENDPOINT_INACTIVE
);
392 * With a local data context, notify the threads that the streams' state
393 * have changed. The write() action on the pipe acts as an "implicit"
394 * memory barrier ordering the updates of the end point status from the
395 * read of this status which happens AFTER receiving this notify.
398 notify_thread_pipe(ctx
->consumer_data_pipe
[1]);
399 notify_thread_pipe(ctx
->consumer_metadata_pipe
[1]);
404 * Flag a relayd socket pair for destruction. Destroy it if the refcount
407 * RCU read side lock MUST be aquired before calling this function.
409 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair
*relayd
)
413 /* Set destroy flag for this object */
414 uatomic_set(&relayd
->destroy_flag
, 1);
416 /* Destroy the relayd if refcount is 0 */
417 if (uatomic_read(&relayd
->refcount
) == 0) {
418 destroy_relayd(relayd
);
423 * Remove a stream from the global list protected by a mutex. This
424 * function is also responsible for freeing its data structures.
426 void consumer_del_stream(struct lttng_consumer_stream
*stream
,
430 struct lttng_ht_iter iter
;
431 struct lttng_consumer_channel
*free_chan
= NULL
;
432 struct consumer_relayd_sock_pair
*relayd
;
436 DBG("Consumer del stream %d", stream
->wait_fd
);
439 /* Means the stream was allocated but not successfully added */
440 goto free_stream_rcu
;
443 pthread_mutex_lock(&consumer_data
.lock
);
444 pthread_mutex_lock(&stream
->lock
);
446 switch (consumer_data
.type
) {
447 case LTTNG_CONSUMER_KERNEL
:
448 if (stream
->mmap_base
!= NULL
) {
449 ret
= munmap(stream
->mmap_base
, stream
->mmap_len
);
455 case LTTNG_CONSUMER32_UST
:
456 case LTTNG_CONSUMER64_UST
:
457 lttng_ustconsumer_del_stream(stream
);
460 ERR("Unknown consumer_data type");
466 iter
.iter
.node
= &stream
->node
.node
;
467 ret
= lttng_ht_del(ht
, &iter
);
470 iter
.iter
.node
= &stream
->node_channel_id
.node
;
471 ret
= lttng_ht_del(consumer_data
.stream_per_chan_id_ht
, &iter
);
474 iter
.iter
.node
= &stream
->node_session_id
.node
;
475 ret
= lttng_ht_del(consumer_data
.stream_list_ht
, &iter
);
479 assert(consumer_data
.stream_count
> 0);
480 consumer_data
.stream_count
--;
482 if (stream
->out_fd
>= 0) {
483 ret
= close(stream
->out_fd
);
489 /* Check and cleanup relayd */
491 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
492 if (relayd
!= NULL
) {
493 uatomic_dec(&relayd
->refcount
);
494 assert(uatomic_read(&relayd
->refcount
) >= 0);
496 /* Closing streams requires to lock the control socket. */
497 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
498 ret
= relayd_send_close_stream(&relayd
->control_sock
,
499 stream
->relayd_stream_id
,
500 stream
->next_net_seq_num
- 1);
501 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
503 DBG("Unable to close stream on the relayd. Continuing");
505 * Continue here. There is nothing we can do for the relayd.
506 * Chances are that the relayd has closed the socket so we just
507 * continue cleaning up.
511 /* Both conditions are met, we destroy the relayd. */
512 if (uatomic_read(&relayd
->refcount
) == 0 &&
513 uatomic_read(&relayd
->destroy_flag
)) {
514 destroy_relayd(relayd
);
519 uatomic_dec(&stream
->chan
->refcount
);
520 if (!uatomic_read(&stream
->chan
->refcount
)
521 && !uatomic_read(&stream
->chan
->nb_init_stream_left
)) {
522 free_chan
= stream
->chan
;
526 consumer_data
.need_update
= 1;
527 pthread_mutex_unlock(&stream
->lock
);
528 pthread_mutex_unlock(&consumer_data
.lock
);
531 consumer_del_channel(free_chan
);
535 call_rcu(&stream
->node
.head
, free_stream_rcu
);
538 struct lttng_consumer_stream
*consumer_allocate_stream(uint64_t channel_key
,
540 enum lttng_consumer_stream_state state
,
541 const char *channel_name
,
548 enum consumer_channel_type type
)
551 struct lttng_consumer_stream
*stream
;
553 stream
= zmalloc(sizeof(*stream
));
554 if (stream
== NULL
) {
555 PERROR("malloc struct lttng_consumer_stream");
562 stream
->key
= stream_key
;
564 stream
->out_fd_offset
= 0;
565 stream
->state
= state
;
568 stream
->net_seq_idx
= relayd_id
;
569 stream
->session_id
= session_id
;
570 pthread_mutex_init(&stream
->lock
, NULL
);
572 /* If channel is the metadata, flag this stream as metadata. */
573 if (type
== CONSUMER_CHANNEL_TYPE_METADATA
) {
574 stream
->metadata_flag
= 1;
575 /* Metadata is flat out. */
576 strncpy(stream
->name
, DEFAULT_METADATA_NAME
, sizeof(stream
->name
));
578 /* Format stream name to <channel_name>_<cpu_number> */
579 ret
= snprintf(stream
->name
, sizeof(stream
->name
), "%s_%d",
582 PERROR("snprintf stream name");
587 /* Key is always the wait_fd for streams. */
588 lttng_ht_node_init_u64(&stream
->node
, stream
->key
);
590 /* Init node per channel id key */
591 lttng_ht_node_init_u64(&stream
->node_channel_id
, channel_key
);
593 /* Init session id node with the stream session id */
594 lttng_ht_node_init_u64(&stream
->node_session_id
, stream
->session_id
);
596 DBG3("Allocated stream %s (key %" PRIu64
", chan_key %" PRIu64
" relayd_id %" PRIu64
", session_id %" PRIu64
,
597 stream
->name
, stream
->key
, channel_key
, stream
->net_seq_idx
, stream
->session_id
);
613 * Add a stream to the global list protected by a mutex.
615 static int add_stream(struct lttng_consumer_stream
*stream
,
619 struct consumer_relayd_sock_pair
*relayd
;
624 DBG3("Adding consumer stream %" PRIu64
, stream
->key
);
626 pthread_mutex_lock(&consumer_data
.lock
);
627 pthread_mutex_lock(&stream
->lock
);
630 /* Steal stream identifier to avoid having streams with the same key */
631 steal_stream_key(stream
->key
, ht
);
633 lttng_ht_add_unique_u64(ht
, &stream
->node
);
635 lttng_ht_add_u64(consumer_data
.stream_per_chan_id_ht
,
636 &stream
->node_channel_id
);
639 * Add stream to the stream_list_ht of the consumer data. No need to steal
640 * the key since the HT does not use it and we allow to add redundant keys
643 lttng_ht_add_u64(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
645 /* Check and cleanup relayd */
646 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
647 if (relayd
!= NULL
) {
648 uatomic_inc(&relayd
->refcount
);
651 /* Update channel refcount once added without error(s). */
652 uatomic_inc(&stream
->chan
->refcount
);
655 * When nb_init_stream_left reaches 0, we don't need to trigger any action
656 * in terms of destroying the associated channel, because the action that
657 * causes the count to become 0 also causes a stream to be added. The
658 * channel deletion will thus be triggered by the following removal of this
661 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
662 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
665 /* Update consumer data once the node is inserted. */
666 consumer_data
.stream_count
++;
667 consumer_data
.need_update
= 1;
670 pthread_mutex_unlock(&stream
->lock
);
671 pthread_mutex_unlock(&consumer_data
.lock
);
677 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
678 * be acquired before calling this.
680 static int add_relayd(struct consumer_relayd_sock_pair
*relayd
)
683 struct lttng_ht_node_u64
*node
;
684 struct lttng_ht_iter iter
;
688 lttng_ht_lookup(consumer_data
.relayd_ht
,
689 &relayd
->net_seq_idx
, &iter
);
690 node
= lttng_ht_iter_get_node_u64(&iter
);
694 lttng_ht_add_unique_u64(consumer_data
.relayd_ht
, &relayd
->node
);
701 * Allocate and return a consumer relayd socket.
703 struct consumer_relayd_sock_pair
*consumer_allocate_relayd_sock_pair(
706 struct consumer_relayd_sock_pair
*obj
= NULL
;
708 /* Negative net sequence index is a failure */
709 if (net_seq_idx
< 0) {
713 obj
= zmalloc(sizeof(struct consumer_relayd_sock_pair
));
715 PERROR("zmalloc relayd sock");
719 obj
->net_seq_idx
= net_seq_idx
;
721 obj
->destroy_flag
= 0;
722 lttng_ht_node_init_u64(&obj
->node
, obj
->net_seq_idx
);
723 pthread_mutex_init(&obj
->ctrl_sock_mutex
, NULL
);
730 * Find a relayd socket pair in the global consumer data.
732 * Return the object if found else NULL.
733 * RCU read-side lock must be held across this call and while using the
736 struct consumer_relayd_sock_pair
*consumer_find_relayd(uint64_t key
)
738 struct lttng_ht_iter iter
;
739 struct lttng_ht_node_u64
*node
;
740 struct consumer_relayd_sock_pair
*relayd
= NULL
;
742 /* Negative keys are lookup failures */
743 if (key
== (uint64_t) -1ULL) {
747 lttng_ht_lookup(consumer_data
.relayd_ht
, &key
,
749 node
= lttng_ht_iter_get_node_u64(&iter
);
751 relayd
= caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
759 * Handle stream for relayd transmission if the stream applies for network
760 * streaming where the net sequence index is set.
762 * Return destination file descriptor or negative value on error.
764 static int write_relayd_stream_header(struct lttng_consumer_stream
*stream
,
765 size_t data_size
, unsigned long padding
,
766 struct consumer_relayd_sock_pair
*relayd
)
769 struct lttcomm_relayd_data_hdr data_hdr
;
775 /* Reset data header */
776 memset(&data_hdr
, 0, sizeof(data_hdr
));
778 if (stream
->metadata_flag
) {
779 /* Caller MUST acquire the relayd control socket lock */
780 ret
= relayd_send_metadata(&relayd
->control_sock
, data_size
);
785 /* Metadata are always sent on the control socket. */
786 outfd
= relayd
->control_sock
.sock
.fd
;
788 /* Set header with stream information */
789 data_hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
790 data_hdr
.data_size
= htobe32(data_size
);
791 data_hdr
.padding_size
= htobe32(padding
);
793 * Note that net_seq_num below is assigned with the *current* value of
794 * next_net_seq_num and only after that the next_net_seq_num will be
795 * increment. This is why when issuing a command on the relayd using
796 * this next value, 1 should always be substracted in order to compare
797 * the last seen sequence number on the relayd side to the last sent.
799 data_hdr
.net_seq_num
= htobe64(stream
->next_net_seq_num
);
800 /* Other fields are zeroed previously */
802 ret
= relayd_send_data_hdr(&relayd
->data_sock
, &data_hdr
,
808 ++stream
->next_net_seq_num
;
810 /* Set to go on data socket */
811 outfd
= relayd
->data_sock
.sock
.fd
;
819 * Allocate and return a new lttng_consumer_channel object using the given key
820 * to initialize the hash table node.
822 * On error, return NULL.
824 struct lttng_consumer_channel
*consumer_allocate_channel(uint64_t key
,
826 const char *pathname
,
831 enum lttng_event_output output
,
832 uint64_t tracefile_size
,
833 uint64_t tracefile_count
)
835 struct lttng_consumer_channel
*channel
;
837 channel
= zmalloc(sizeof(*channel
));
838 if (channel
== NULL
) {
839 PERROR("malloc struct lttng_consumer_channel");
844 channel
->refcount
= 0;
845 channel
->session_id
= session_id
;
848 channel
->relayd_id
= relayd_id
;
849 channel
->output
= output
;
850 channel
->tracefile_size
= tracefile_size
;
851 channel
->tracefile_count
= tracefile_count
;
853 strncpy(channel
->pathname
, pathname
, sizeof(channel
->pathname
));
854 channel
->pathname
[sizeof(channel
->pathname
) - 1] = '\0';
856 strncpy(channel
->name
, name
, sizeof(channel
->name
));
857 channel
->name
[sizeof(channel
->name
) - 1] = '\0';
859 lttng_ht_node_init_u64(&channel
->node
, channel
->key
);
861 channel
->wait_fd
= -1;
863 CDS_INIT_LIST_HEAD(&channel
->streams
.head
);
865 DBG("Allocated channel (key %" PRIu64
")", channel
->key
)
872 * Add a channel to the global list protected by a mutex.
874 int consumer_add_channel(struct lttng_consumer_channel
*channel
,
875 struct lttng_consumer_local_data
*ctx
)
878 struct lttng_ht_node_u64
*node
;
879 struct lttng_ht_iter iter
;
881 pthread_mutex_lock(&consumer_data
.lock
);
884 lttng_ht_lookup(consumer_data
.channel_ht
, &channel
->key
, &iter
);
885 node
= lttng_ht_iter_get_node_u64(&iter
);
887 /* Channel already exist. Ignore the insertion */
888 ERR("Consumer add channel key %" PRIu64
" already exists!",
894 lttng_ht_add_unique_u64(consumer_data
.channel_ht
, &channel
->node
);
898 pthread_mutex_unlock(&consumer_data
.lock
);
900 if (!ret
&& channel
->wait_fd
!= -1 &&
901 channel
->metadata_stream
== NULL
) {
902 notify_channel_pipe(ctx
, channel
, CONSUMER_CHANNEL_ADD
);
908 * Allocate the pollfd structure and the local view of the out fds to avoid
909 * doing a lookup in the linked list and concurrency issues when writing is
910 * needed. Called with consumer_data.lock held.
912 * Returns the number of fds in the structures.
914 static int update_poll_array(struct lttng_consumer_local_data
*ctx
,
915 struct pollfd
**pollfd
, struct lttng_consumer_stream
**local_stream
,
919 struct lttng_ht_iter iter
;
920 struct lttng_consumer_stream
*stream
;
925 assert(local_stream
);
927 DBG("Updating poll fd array");
929 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
931 * Only active streams with an active end point can be added to the
932 * poll set and local stream storage of the thread.
934 * There is a potential race here for endpoint_status to be updated
935 * just after the check. However, this is OK since the stream(s) will
936 * be deleted once the thread is notified that the end point state has
937 * changed where this function will be called back again.
939 if (stream
->state
!= LTTNG_CONSUMER_ACTIVE_STREAM
||
940 stream
->endpoint_status
== CONSUMER_ENDPOINT_INACTIVE
) {
944 * This clobbers way too much the debug output. Uncomment that if you
945 * need it for debugging purposes.
947 * DBG("Active FD %d", stream->wait_fd);
949 (*pollfd
)[i
].fd
= stream
->wait_fd
;
950 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
951 local_stream
[i
] = stream
;
957 * Insert the consumer_data_pipe at the end of the array and don't
958 * increment i so nb_fd is the number of real FD.
960 (*pollfd
)[i
].fd
= ctx
->consumer_data_pipe
[0];
961 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
966 * Poll on the should_quit pipe and the command socket return -1 on error and
967 * should exit, 0 if data is available on the command socket
969 int lttng_consumer_poll_socket(struct pollfd
*consumer_sockpoll
)
974 num_rdy
= poll(consumer_sockpoll
, 2, -1);
977 * Restart interrupted system call.
979 if (errno
== EINTR
) {
982 PERROR("Poll error");
985 if (consumer_sockpoll
[0].revents
& (POLLIN
| POLLPRI
)) {
986 DBG("consumer_should_quit wake up");
996 * Set the error socket.
998 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data
*ctx
,
1001 ctx
->consumer_error_socket
= sock
;
1005 * Set the command socket path.
1007 void lttng_consumer_set_command_sock_path(
1008 struct lttng_consumer_local_data
*ctx
, char *sock
)
1010 ctx
->consumer_command_sock_path
= sock
;
1014 * Send return code to the session daemon.
1015 * If the socket is not defined, we return 0, it is not a fatal error
1017 int lttng_consumer_send_error(struct lttng_consumer_local_data
*ctx
, int cmd
)
1019 if (ctx
->consumer_error_socket
> 0) {
1020 return lttcomm_send_unix_sock(ctx
->consumer_error_socket
, &cmd
,
1021 sizeof(enum lttcomm_sessiond_command
));
1028 * Close all the tracefiles and stream fds and MUST be called when all
1029 * instances are destroyed i.e. when all threads were joined and are ended.
1031 void lttng_consumer_cleanup(void)
1033 struct lttng_ht_iter iter
;
1034 struct lttng_consumer_channel
*channel
;
1038 cds_lfht_for_each_entry(consumer_data
.channel_ht
->ht
, &iter
.iter
, channel
,
1040 consumer_del_channel(channel
);
1045 lttng_ht_destroy(consumer_data
.channel_ht
);
1047 cleanup_relayd_ht();
1049 lttng_ht_destroy(consumer_data
.stream_per_chan_id_ht
);
1052 * This HT contains streams that are freed by either the metadata thread or
1053 * the data thread so we do *nothing* on the hash table and simply destroy
1056 lttng_ht_destroy(consumer_data
.stream_list_ht
);
1060 * Called from signal handler.
1062 void lttng_consumer_should_exit(struct lttng_consumer_local_data
*ctx
)
1067 ret
= write(ctx
->consumer_should_quit
[1], "4", 1);
1068 } while (ret
< 0 && errno
== EINTR
);
1069 if (ret
< 0 || ret
!= 1) {
1070 PERROR("write consumer quit");
1073 DBG("Consumer flag that it should quit");
1076 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream
*stream
,
1079 int outfd
= stream
->out_fd
;
1082 * This does a blocking write-and-wait on any page that belongs to the
1083 * subbuffer prior to the one we just wrote.
1084 * Don't care about error values, as these are just hints and ways to
1085 * limit the amount of page cache used.
1087 if (orig_offset
< stream
->max_sb_size
) {
1090 lttng_sync_file_range(outfd
, orig_offset
- stream
->max_sb_size
,
1091 stream
->max_sb_size
,
1092 SYNC_FILE_RANGE_WAIT_BEFORE
1093 | SYNC_FILE_RANGE_WRITE
1094 | SYNC_FILE_RANGE_WAIT_AFTER
);
1096 * Give hints to the kernel about how we access the file:
1097 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1100 * We need to call fadvise again after the file grows because the
1101 * kernel does not seem to apply fadvise to non-existing parts of the
1104 * Call fadvise _after_ having waited for the page writeback to
1105 * complete because the dirty page writeback semantic is not well
1106 * defined. So it can be expected to lead to lower throughput in
1109 posix_fadvise(outfd
, orig_offset
- stream
->max_sb_size
,
1110 stream
->max_sb_size
, POSIX_FADV_DONTNEED
);
1114 * Initialise the necessary environnement :
1115 * - create a new context
1116 * - create the poll_pipe
1117 * - create the should_quit pipe (for signal handler)
1118 * - create the thread pipe (for splice)
1120 * Takes a function pointer as argument, this function is called when data is
1121 * available on a buffer. This function is responsible to do the
1122 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1123 * buffer configuration and then kernctl_put_next_subbuf at the end.
1125 * Returns a pointer to the new context or NULL on error.
1127 struct lttng_consumer_local_data
*lttng_consumer_create(
1128 enum lttng_consumer_type type
,
1129 ssize_t (*buffer_ready
)(struct lttng_consumer_stream
*stream
,
1130 struct lttng_consumer_local_data
*ctx
),
1131 int (*recv_channel
)(struct lttng_consumer_channel
*channel
),
1132 int (*recv_stream
)(struct lttng_consumer_stream
*stream
),
1133 int (*update_stream
)(int stream_key
, uint32_t state
))
1136 struct lttng_consumer_local_data
*ctx
;
1138 assert(consumer_data
.type
== LTTNG_CONSUMER_UNKNOWN
||
1139 consumer_data
.type
== type
);
1140 consumer_data
.type
= type
;
1142 ctx
= zmalloc(sizeof(struct lttng_consumer_local_data
));
1144 PERROR("allocating context");
1148 ctx
->consumer_error_socket
= -1;
1149 ctx
->consumer_metadata_socket
= -1;
1150 /* assign the callbacks */
1151 ctx
->on_buffer_ready
= buffer_ready
;
1152 ctx
->on_recv_channel
= recv_channel
;
1153 ctx
->on_recv_stream
= recv_stream
;
1154 ctx
->on_update_stream
= update_stream
;
1156 ret
= pipe(ctx
->consumer_data_pipe
);
1158 PERROR("Error creating poll pipe");
1159 goto error_poll_pipe
;
1162 /* set read end of the pipe to non-blocking */
1163 ret
= fcntl(ctx
->consumer_data_pipe
[0], F_SETFL
, O_NONBLOCK
);
1165 PERROR("fcntl O_NONBLOCK");
1166 goto error_poll_fcntl
;
1169 /* set write end of the pipe to non-blocking */
1170 ret
= fcntl(ctx
->consumer_data_pipe
[1], F_SETFL
, O_NONBLOCK
);
1172 PERROR("fcntl O_NONBLOCK");
1173 goto error_poll_fcntl
;
1176 ret
= pipe(ctx
->consumer_should_quit
);
1178 PERROR("Error creating recv pipe");
1179 goto error_quit_pipe
;
1182 ret
= pipe(ctx
->consumer_thread_pipe
);
1184 PERROR("Error creating thread pipe");
1185 goto error_thread_pipe
;
1188 ret
= pipe(ctx
->consumer_channel_pipe
);
1190 PERROR("Error creating channel pipe");
1191 goto error_channel_pipe
;
1194 ret
= utils_create_pipe(ctx
->consumer_metadata_pipe
);
1196 goto error_metadata_pipe
;
1199 ret
= utils_create_pipe(ctx
->consumer_splice_metadata_pipe
);
1201 goto error_splice_pipe
;
1207 utils_close_pipe(ctx
->consumer_metadata_pipe
);
1208 error_metadata_pipe
:
1209 utils_close_pipe(ctx
->consumer_channel_pipe
);
1211 utils_close_pipe(ctx
->consumer_thread_pipe
);
1213 utils_close_pipe(ctx
->consumer_should_quit
);
1216 utils_close_pipe(ctx
->consumer_data_pipe
);
1224 * Close all fds associated with the instance and free the context.
1226 void lttng_consumer_destroy(struct lttng_consumer_local_data
*ctx
)
1230 DBG("Consumer destroying it. Closing everything.");
1232 ret
= close(ctx
->consumer_error_socket
);
1236 ret
= close(ctx
->consumer_metadata_socket
);
1240 utils_close_pipe(ctx
->consumer_thread_pipe
);
1241 utils_close_pipe(ctx
->consumer_channel_pipe
);
1242 utils_close_pipe(ctx
->consumer_data_pipe
);
1243 utils_close_pipe(ctx
->consumer_should_quit
);
1244 utils_close_pipe(ctx
->consumer_splice_metadata_pipe
);
1246 unlink(ctx
->consumer_command_sock_path
);
1251 * Write the metadata stream id on the specified file descriptor.
1253 static int write_relayd_metadata_id(int fd
,
1254 struct lttng_consumer_stream
*stream
,
1255 struct consumer_relayd_sock_pair
*relayd
, unsigned long padding
)
1258 struct lttcomm_relayd_metadata_payload hdr
;
1260 hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
1261 hdr
.padding_size
= htobe32(padding
);
1263 ret
= write(fd
, (void *) &hdr
, sizeof(hdr
));
1264 } while (ret
< 0 && errno
== EINTR
);
1265 if (ret
< 0 || ret
!= sizeof(hdr
)) {
1267 * This error means that the fd's end is closed so ignore the perror
1268 * not to clubber the error output since this can happen in a normal
1271 if (errno
!= EPIPE
) {
1272 PERROR("write metadata stream id");
1274 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno
);
1276 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1277 * handle writting the missing part so report that as an error and
1278 * don't lie to the caller.
1283 DBG("Metadata stream id %" PRIu64
" with padding %lu written before data",
1284 stream
->relayd_stream_id
, padding
);
1291 * Create the tracefile on disk.
1293 * Return 0 on success or else a negative value.
1295 int lttng_create_output_file(struct lttng_consumer_stream
*stream
)
1298 char full_path
[PATH_MAX
];
1299 char *path_name_id
= NULL
;
1304 /* Don't create anything if this is set for streaming. */
1305 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1310 ret
= snprintf(full_path
, sizeof(full_path
), "%s/%s",
1311 stream
->chan
->pathname
, stream
->name
);
1313 PERROR("snprintf create output file");
1318 * If we split the trace in multiple files, we have to add the tracefile
1319 * current count at the end of the tracefile name
1321 if (stream
->chan
->tracefile_size
> 0) {
1322 ret
= asprintf(&path_name_id
, "%s_%" PRIu64
, full_path
,
1323 stream
->tracefile_count_current
);
1325 PERROR("Allocating path name ID");
1328 path
= path_name_id
;
1333 ret
= run_as_open(path
, O_WRONLY
| O_CREAT
| O_TRUNC
,
1334 S_IRWXU
| S_IRWXG
| S_IRWXO
, stream
->uid
, stream
->gid
);
1336 PERROR("open stream path %s", path
);
1339 stream
->out_fd
= ret
;
1340 stream
->tracefile_size_current
= 0;
1350 * Change the output tracefile according to the tracefile_size and
1351 * tracefile_count parameters. The stream lock MUST be held before calling this
1352 * function because we are modifying the stream status.
1354 * Return 0 on success or else a negative value.
1356 static int rotate_output_file(struct lttng_consumer_stream
*stream
)
1361 assert(stream
->tracefile_size_current
);
1363 ret
= close(stream
->out_fd
);
1365 PERROR("Closing tracefile");
1369 if (stream
->chan
->tracefile_count
> 0) {
1370 stream
->tracefile_count_current
=
1371 (stream
->tracefile_count_current
+ 1) %
1372 stream
->chan
->tracefile_count
;
1374 stream
->tracefile_count_current
++;
1377 return lttng_create_output_file(stream
);
1384 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1385 * core function for writing trace buffers to either the local filesystem or
1388 * It must be called with the stream lock held.
1390 * Careful review MUST be put if any changes occur!
1392 * Returns the number of bytes written
1394 ssize_t
lttng_consumer_on_read_subbuffer_mmap(
1395 struct lttng_consumer_local_data
*ctx
,
1396 struct lttng_consumer_stream
*stream
, unsigned long len
,
1397 unsigned long padding
)
1399 unsigned long mmap_offset
;
1401 ssize_t ret
= 0, written
= 0;
1402 off_t orig_offset
= stream
->out_fd_offset
;
1403 /* Default is on the disk */
1404 int outfd
= stream
->out_fd
;
1405 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1406 unsigned int relayd_hang_up
= 0;
1408 /* RCU lock for the relayd pointer */
1411 /* Flag that the current stream if set for network streaming. */
1412 if (stream
->net_seq_idx
!= -1) {
1413 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1414 if (relayd
== NULL
) {
1419 /* get the offset inside the fd to mmap */
1420 switch (consumer_data
.type
) {
1421 case LTTNG_CONSUMER_KERNEL
:
1422 mmap_base
= stream
->mmap_base
;
1423 ret
= kernctl_get_mmap_read_offset(stream
->wait_fd
, &mmap_offset
);
1425 case LTTNG_CONSUMER32_UST
:
1426 case LTTNG_CONSUMER64_UST
:
1427 mmap_base
= lttng_ustctl_get_mmap_base(stream
);
1429 ERR("read mmap get mmap base for stream %s", stream
->name
);
1433 ret
= lttng_ustctl_get_mmap_read_offset(stream
, &mmap_offset
);
1437 ERR("Unknown consumer_data type");
1442 PERROR("tracer ctl get_mmap_read_offset");
1447 /* Handle stream on the relayd if the output is on the network */
1449 unsigned long netlen
= len
;
1452 * Lock the control socket for the complete duration of the function
1453 * since from this point on we will use the socket.
1455 if (stream
->metadata_flag
) {
1456 /* Metadata requires the control socket. */
1457 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1458 netlen
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1461 ret
= write_relayd_stream_header(stream
, netlen
, padding
, relayd
);
1463 /* Use the returned socket. */
1466 /* Write metadata stream id before payload */
1467 if (stream
->metadata_flag
) {
1468 ret
= write_relayd_metadata_id(outfd
, stream
, relayd
, padding
);
1471 /* Socket operation failed. We consider the relayd dead */
1472 if (ret
== -EPIPE
|| ret
== -EINVAL
) {
1480 /* Socket operation failed. We consider the relayd dead */
1481 if (ret
== -EPIPE
|| ret
== -EINVAL
) {
1485 /* Else, use the default set before which is the filesystem. */
1488 /* No streaming, we have to set the len with the full padding */
1492 * Check if we need to change the tracefile before writing the packet.
1494 if (stream
->chan
->tracefile_size
> 0 &&
1495 (stream
->tracefile_size_current
+ len
) >
1496 stream
->chan
->tracefile_size
) {
1497 ret
= rotate_output_file(stream
);
1499 ERR("Rotating output file");
1502 outfd
= stream
->out_fd
;
1504 stream
->tracefile_size_current
+= len
;
1509 ret
= write(outfd
, mmap_base
+ mmap_offset
, len
);
1510 } while (ret
< 0 && errno
== EINTR
);
1511 DBG("Consumer mmap write() ret %zd (len %lu)", ret
, len
);
1514 * This is possible if the fd is closed on the other side (outfd)
1515 * or any write problem. It can be verbose a bit for a normal
1516 * execution if for instance the relayd is stopped abruptly. This
1517 * can happen so set this to a DBG statement.
1519 DBG("Error in file write mmap");
1523 /* Socket operation failed. We consider the relayd dead */
1524 if (errno
== EPIPE
|| errno
== EINVAL
) {
1529 } else if (ret
> len
) {
1530 PERROR("Error in file write (ret %zd > len %lu)", ret
, len
);
1538 /* This call is useless on a socket so better save a syscall. */
1540 /* This won't block, but will start writeout asynchronously */
1541 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret
,
1542 SYNC_FILE_RANGE_WRITE
);
1543 stream
->out_fd_offset
+= ret
;
1547 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1551 * This is a special case that the relayd has closed its socket. Let's
1552 * cleanup the relayd object and all associated streams.
1554 if (relayd
&& relayd_hang_up
) {
1555 cleanup_relayd(relayd
, ctx
);
1559 /* Unlock only if ctrl socket used */
1560 if (relayd
&& stream
->metadata_flag
) {
1561 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1569 * Splice the data from the ring buffer to the tracefile.
1571 * It must be called with the stream lock held.
1573 * Returns the number of bytes spliced.
1575 ssize_t
lttng_consumer_on_read_subbuffer_splice(
1576 struct lttng_consumer_local_data
*ctx
,
1577 struct lttng_consumer_stream
*stream
, unsigned long len
,
1578 unsigned long padding
)
1580 ssize_t ret
= 0, written
= 0, ret_splice
= 0;
1582 off_t orig_offset
= stream
->out_fd_offset
;
1583 int fd
= stream
->wait_fd
;
1584 /* Default is on the disk */
1585 int outfd
= stream
->out_fd
;
1586 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1588 unsigned int relayd_hang_up
= 0;
1590 switch (consumer_data
.type
) {
1591 case LTTNG_CONSUMER_KERNEL
:
1593 case LTTNG_CONSUMER32_UST
:
1594 case LTTNG_CONSUMER64_UST
:
1595 /* Not supported for user space tracing */
1598 ERR("Unknown consumer_data type");
1602 /* RCU lock for the relayd pointer */
1605 /* Flag that the current stream if set for network streaming. */
1606 if (stream
->net_seq_idx
!= -1) {
1607 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1608 if (relayd
== NULL
) {
1614 * Choose right pipe for splice. Metadata and trace data are handled by
1615 * different threads hence the use of two pipes in order not to race or
1616 * corrupt the written data.
1618 if (stream
->metadata_flag
) {
1619 splice_pipe
= ctx
->consumer_splice_metadata_pipe
;
1621 splice_pipe
= ctx
->consumer_thread_pipe
;
1624 /* Write metadata stream id before payload */
1626 int total_len
= len
;
1628 if (stream
->metadata_flag
) {
1630 * Lock the control socket for the complete duration of the function
1631 * since from this point on we will use the socket.
1633 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1635 ret
= write_relayd_metadata_id(splice_pipe
[1], stream
, relayd
,
1639 /* Socket operation failed. We consider the relayd dead */
1640 if (ret
== -EBADF
) {
1641 WARN("Remote relayd disconnected. Stopping");
1648 total_len
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1651 ret
= write_relayd_stream_header(stream
, total_len
, padding
, relayd
);
1653 /* Use the returned socket. */
1656 /* Socket operation failed. We consider the relayd dead */
1657 if (ret
== -EBADF
) {
1658 WARN("Remote relayd disconnected. Stopping");
1665 /* No streaming, we have to set the len with the full padding */
1669 * Check if we need to change the tracefile before writing the packet.
1671 if (stream
->chan
->tracefile_size
> 0 &&
1672 (stream
->tracefile_size_current
+ len
) >
1673 stream
->chan
->tracefile_size
) {
1674 ret
= rotate_output_file(stream
);
1676 ERR("Rotating output file");
1679 outfd
= stream
->out_fd
;
1681 stream
->tracefile_size_current
+= len
;
1685 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1686 (unsigned long)offset
, len
, fd
, splice_pipe
[1]);
1687 ret_splice
= splice(fd
, &offset
, splice_pipe
[1], NULL
, len
,
1688 SPLICE_F_MOVE
| SPLICE_F_MORE
);
1689 DBG("splice chan to pipe, ret %zd", ret_splice
);
1690 if (ret_splice
< 0) {
1691 PERROR("Error in relay splice");
1693 written
= ret_splice
;
1699 /* Handle stream on the relayd if the output is on the network */
1701 if (stream
->metadata_flag
) {
1702 size_t metadata_payload_size
=
1703 sizeof(struct lttcomm_relayd_metadata_payload
);
1705 /* Update counter to fit the spliced data */
1706 ret_splice
+= metadata_payload_size
;
1707 len
+= metadata_payload_size
;
1709 * We do this so the return value can match the len passed as
1710 * argument to this function.
1712 written
-= metadata_payload_size
;
1716 /* Splice data out */
1717 ret_splice
= splice(splice_pipe
[0], NULL
, outfd
, NULL
,
1718 ret_splice
, SPLICE_F_MOVE
| SPLICE_F_MORE
);
1719 DBG("Consumer splice pipe to file, ret %zd", ret_splice
);
1720 if (ret_splice
< 0) {
1721 PERROR("Error in file splice");
1723 written
= ret_splice
;
1725 /* Socket operation failed. We consider the relayd dead */
1726 if (errno
== EBADF
|| errno
== EPIPE
) {
1727 WARN("Remote relayd disconnected. Stopping");
1733 } else if (ret_splice
> len
) {
1735 PERROR("Wrote more data than requested %zd (len: %lu)",
1737 written
+= ret_splice
;
1743 /* This call is useless on a socket so better save a syscall. */
1745 /* This won't block, but will start writeout asynchronously */
1746 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret_splice
,
1747 SYNC_FILE_RANGE_WRITE
);
1748 stream
->out_fd_offset
+= ret_splice
;
1750 written
+= ret_splice
;
1752 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1760 * This is a special case that the relayd has closed its socket. Let's
1761 * cleanup the relayd object and all associated streams.
1763 if (relayd
&& relayd_hang_up
) {
1764 cleanup_relayd(relayd
, ctx
);
1765 /* Skip splice error so the consumer does not fail */
1770 /* send the appropriate error description to sessiond */
1773 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_EINVAL
);
1776 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ENOMEM
);
1779 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ESPIPE
);
1784 if (relayd
&& stream
->metadata_flag
) {
1785 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1793 * Take a snapshot for a specific fd
1795 * Returns 0 on success, < 0 on error
1797 int lttng_consumer_take_snapshot(struct lttng_consumer_stream
*stream
)
1799 switch (consumer_data
.type
) {
1800 case LTTNG_CONSUMER_KERNEL
:
1801 return lttng_kconsumer_take_snapshot(stream
);
1802 case LTTNG_CONSUMER32_UST
:
1803 case LTTNG_CONSUMER64_UST
:
1804 return lttng_ustconsumer_take_snapshot(stream
);
1806 ERR("Unknown consumer_data type");
1813 * Get the produced position
1815 * Returns 0 on success, < 0 on error
1817 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream
*stream
,
1820 switch (consumer_data
.type
) {
1821 case LTTNG_CONSUMER_KERNEL
:
1822 return lttng_kconsumer_get_produced_snapshot(stream
, pos
);
1823 case LTTNG_CONSUMER32_UST
:
1824 case LTTNG_CONSUMER64_UST
:
1825 return lttng_ustconsumer_get_produced_snapshot(stream
, pos
);
1827 ERR("Unknown consumer_data type");
1833 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data
*ctx
,
1834 int sock
, struct pollfd
*consumer_sockpoll
)
1836 switch (consumer_data
.type
) {
1837 case LTTNG_CONSUMER_KERNEL
:
1838 return lttng_kconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1839 case LTTNG_CONSUMER32_UST
:
1840 case LTTNG_CONSUMER64_UST
:
1841 return lttng_ustconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1843 ERR("Unknown consumer_data type");
1850 * Iterate over all streams of the hashtable and free them properly.
1852 * WARNING: *MUST* be used with data stream only.
1854 static void destroy_data_stream_ht(struct lttng_ht
*ht
)
1856 struct lttng_ht_iter iter
;
1857 struct lttng_consumer_stream
*stream
;
1864 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1866 * Ignore return value since we are currently cleaning up so any error
1869 (void) consumer_del_stream(stream
, ht
);
1873 lttng_ht_destroy(ht
);
1877 * Iterate over all streams of the hashtable and free them properly.
1879 * XXX: Should not be only for metadata stream or else use an other name.
1881 static void destroy_stream_ht(struct lttng_ht
*ht
)
1883 struct lttng_ht_iter iter
;
1884 struct lttng_consumer_stream
*stream
;
1891 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1893 * Ignore return value since we are currently cleaning up so any error
1896 (void) consumer_del_metadata_stream(stream
, ht
);
1900 lttng_ht_destroy(ht
);
1903 void lttng_consumer_close_metadata(void)
1905 switch (consumer_data
.type
) {
1906 case LTTNG_CONSUMER_KERNEL
:
1908 * The Kernel consumer has a different metadata scheme so we don't
1909 * close anything because the stream will be closed by the session
1913 case LTTNG_CONSUMER32_UST
:
1914 case LTTNG_CONSUMER64_UST
:
1916 * Close all metadata streams. The metadata hash table is passed and
1917 * this call iterates over it by closing all wakeup fd. This is safe
1918 * because at this point we are sure that the metadata producer is
1919 * either dead or blocked.
1921 lttng_ustconsumer_close_metadata(metadata_ht
);
1924 ERR("Unknown consumer_data type");
1930 * Clean up a metadata stream and free its memory.
1932 void consumer_del_metadata_stream(struct lttng_consumer_stream
*stream
,
1933 struct lttng_ht
*ht
)
1936 struct lttng_ht_iter iter
;
1937 struct lttng_consumer_channel
*free_chan
= NULL
;
1938 struct consumer_relayd_sock_pair
*relayd
;
1942 * This call should NEVER receive regular stream. It must always be
1943 * metadata stream and this is crucial for data structure synchronization.
1945 assert(stream
->metadata_flag
);
1947 DBG3("Consumer delete metadata stream %d", stream
->wait_fd
);
1950 /* Means the stream was allocated but not successfully added */
1951 goto free_stream_rcu
;
1954 pthread_mutex_lock(&consumer_data
.lock
);
1955 pthread_mutex_lock(&stream
->lock
);
1957 switch (consumer_data
.type
) {
1958 case LTTNG_CONSUMER_KERNEL
:
1959 if (stream
->mmap_base
!= NULL
) {
1960 ret
= munmap(stream
->mmap_base
, stream
->mmap_len
);
1962 PERROR("munmap metadata stream");
1966 case LTTNG_CONSUMER32_UST
:
1967 case LTTNG_CONSUMER64_UST
:
1968 lttng_ustconsumer_del_stream(stream
);
1971 ERR("Unknown consumer_data type");
1977 iter
.iter
.node
= &stream
->node
.node
;
1978 ret
= lttng_ht_del(ht
, &iter
);
1981 iter
.iter
.node
= &stream
->node_channel_id
.node
;
1982 ret
= lttng_ht_del(consumer_data
.stream_per_chan_id_ht
, &iter
);
1985 iter
.iter
.node
= &stream
->node_session_id
.node
;
1986 ret
= lttng_ht_del(consumer_data
.stream_list_ht
, &iter
);
1990 if (stream
->out_fd
>= 0) {
1991 ret
= close(stream
->out_fd
);
1997 /* Check and cleanup relayd */
1999 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
2000 if (relayd
!= NULL
) {
2001 uatomic_dec(&relayd
->refcount
);
2002 assert(uatomic_read(&relayd
->refcount
) >= 0);
2004 /* Closing streams requires to lock the control socket. */
2005 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
2006 ret
= relayd_send_close_stream(&relayd
->control_sock
,
2007 stream
->relayd_stream_id
, stream
->next_net_seq_num
- 1);
2008 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
2010 DBG("Unable to close stream on the relayd. Continuing");
2012 * Continue here. There is nothing we can do for the relayd.
2013 * Chances are that the relayd has closed the socket so we just
2014 * continue cleaning up.
2018 /* Both conditions are met, we destroy the relayd. */
2019 if (uatomic_read(&relayd
->refcount
) == 0 &&
2020 uatomic_read(&relayd
->destroy_flag
)) {
2021 destroy_relayd(relayd
);
2026 /* Atomically decrement channel refcount since other threads can use it. */
2027 uatomic_dec(&stream
->chan
->refcount
);
2028 if (!uatomic_read(&stream
->chan
->refcount
)
2029 && !uatomic_read(&stream
->chan
->nb_init_stream_left
)) {
2030 /* Go for channel deletion! */
2031 free_chan
= stream
->chan
;
2035 pthread_mutex_unlock(&stream
->lock
);
2036 pthread_mutex_unlock(&consumer_data
.lock
);
2039 consumer_del_channel(free_chan
);
2043 call_rcu(&stream
->node
.head
, free_stream_rcu
);
2047 * Action done with the metadata stream when adding it to the consumer internal
2048 * data structures to handle it.
2050 static int add_metadata_stream(struct lttng_consumer_stream
*stream
,
2051 struct lttng_ht
*ht
)
2054 struct consumer_relayd_sock_pair
*relayd
;
2055 struct lttng_ht_iter iter
;
2056 struct lttng_ht_node_u64
*node
;
2061 DBG3("Adding metadata stream %" PRIu64
" to hash table", stream
->key
);
2063 pthread_mutex_lock(&consumer_data
.lock
);
2064 pthread_mutex_lock(&stream
->lock
);
2067 * From here, refcounts are updated so be _careful_ when returning an error
2074 * Lookup the stream just to make sure it does not exist in our internal
2075 * state. This should NEVER happen.
2077 lttng_ht_lookup(ht
, &stream
->key
, &iter
);
2078 node
= lttng_ht_iter_get_node_u64(&iter
);
2081 /* Find relayd and, if one is found, increment refcount. */
2082 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
2083 if (relayd
!= NULL
) {
2084 uatomic_inc(&relayd
->refcount
);
2087 /* Update channel refcount once added without error(s). */
2088 uatomic_inc(&stream
->chan
->refcount
);
2091 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2092 * in terms of destroying the associated channel, because the action that
2093 * causes the count to become 0 also causes a stream to be added. The
2094 * channel deletion will thus be triggered by the following removal of this
2097 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
2098 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
2101 lttng_ht_add_unique_u64(ht
, &stream
->node
);
2103 lttng_ht_add_unique_u64(consumer_data
.stream_per_chan_id_ht
,
2104 &stream
->node_channel_id
);
2107 * Add stream to the stream_list_ht of the consumer data. No need to steal
2108 * the key since the HT does not use it and we allow to add redundant keys
2111 lttng_ht_add_u64(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
2115 pthread_mutex_unlock(&stream
->lock
);
2116 pthread_mutex_unlock(&consumer_data
.lock
);
2121 * Delete data stream that are flagged for deletion (endpoint_status).
2123 static void validate_endpoint_status_data_stream(void)
2125 struct lttng_ht_iter iter
;
2126 struct lttng_consumer_stream
*stream
;
2128 DBG("Consumer delete flagged data stream");
2131 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2132 /* Validate delete flag of the stream */
2133 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2136 /* Delete it right now */
2137 consumer_del_stream(stream
, data_ht
);
2143 * Delete metadata stream that are flagged for deletion (endpoint_status).
2145 static void validate_endpoint_status_metadata_stream(
2146 struct lttng_poll_event
*pollset
)
2148 struct lttng_ht_iter iter
;
2149 struct lttng_consumer_stream
*stream
;
2151 DBG("Consumer delete flagged metadata stream");
2156 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2157 /* Validate delete flag of the stream */
2158 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2162 * Remove from pollset so the metadata thread can continue without
2163 * blocking on a deleted stream.
2165 lttng_poll_del(pollset
, stream
->wait_fd
);
2167 /* Delete it right now */
2168 consumer_del_metadata_stream(stream
, metadata_ht
);
2174 * Thread polls on metadata file descriptor and write them on disk or on the
2177 void *consumer_thread_metadata_poll(void *data
)
2180 uint32_t revents
, nb_fd
;
2181 struct lttng_consumer_stream
*stream
= NULL
;
2182 struct lttng_ht_iter iter
;
2183 struct lttng_ht_node_u64
*node
;
2184 struct lttng_poll_event events
;
2185 struct lttng_consumer_local_data
*ctx
= data
;
2188 rcu_register_thread();
2190 metadata_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
2192 /* ENOMEM at this point. Better to bail out. */
2196 DBG("Thread metadata poll started");
2198 /* Size is set to 1 for the consumer_metadata pipe */
2199 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2201 ERR("Poll set creation failed");
2205 ret
= lttng_poll_add(&events
, ctx
->consumer_metadata_pipe
[0], LPOLLIN
);
2211 DBG("Metadata main loop started");
2214 /* Only the metadata pipe is set */
2215 if (LTTNG_POLL_GETNB(&events
) == 0 && consumer_quit
== 1) {
2220 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events
));
2221 ret
= lttng_poll_wait(&events
, -1);
2222 DBG("Metadata event catched in thread");
2224 if (errno
== EINTR
) {
2225 ERR("Poll EINTR catched");
2233 /* From here, the event is a metadata wait fd */
2234 for (i
= 0; i
< nb_fd
; i
++) {
2235 revents
= LTTNG_POLL_GETEV(&events
, i
);
2236 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2238 /* Just don't waste time if no returned events for the fd */
2243 if (pollfd
== ctx
->consumer_metadata_pipe
[0]) {
2244 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2245 DBG("Metadata thread pipe hung up");
2247 * Remove the pipe from the poll set and continue the loop
2248 * since their might be data to consume.
2250 lttng_poll_del(&events
, ctx
->consumer_metadata_pipe
[0]);
2251 ret
= close(ctx
->consumer_metadata_pipe
[0]);
2253 PERROR("close metadata pipe");
2256 } else if (revents
& LPOLLIN
) {
2258 /* Get the stream pointer received */
2259 ret
= read(pollfd
, &stream
, sizeof(stream
));
2260 } while (ret
< 0 && errno
== EINTR
);
2262 ret
< sizeof(struct lttng_consumer_stream
*)) {
2263 PERROR("read metadata stream");
2265 * Let's continue here and hope we can still work
2266 * without stopping the consumer. XXX: Should we?
2271 /* A NULL stream means that the state has changed. */
2272 if (stream
== NULL
) {
2273 /* Check for deleted streams. */
2274 validate_endpoint_status_metadata_stream(&events
);
2278 DBG("Adding metadata stream %d to poll set",
2281 ret
= add_metadata_stream(stream
, metadata_ht
);
2283 ERR("Unable to add metadata stream");
2284 /* Stream was not setup properly. Continuing. */
2285 consumer_del_metadata_stream(stream
, NULL
);
2289 /* Add metadata stream to the global poll events list */
2290 lttng_poll_add(&events
, stream
->wait_fd
,
2291 LPOLLIN
| LPOLLPRI
);
2294 /* Handle other stream */
2300 uint64_t tmp_id
= (uint64_t) pollfd
;
2302 lttng_ht_lookup(metadata_ht
, &tmp_id
, &iter
);
2304 node
= lttng_ht_iter_get_node_u64(&iter
);
2307 stream
= caa_container_of(node
, struct lttng_consumer_stream
,
2310 /* Check for error event */
2311 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2312 DBG("Metadata fd %d is hup|err.", pollfd
);
2313 if (!stream
->hangup_flush_done
2314 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2315 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2316 DBG("Attempting to flush and consume the UST buffers");
2317 lttng_ustconsumer_on_stream_hangup(stream
);
2319 /* We just flushed the stream now read it. */
2321 len
= ctx
->on_buffer_ready(stream
, ctx
);
2323 * We don't check the return value here since if we get
2324 * a negative len, it means an error occured thus we
2325 * simply remove it from the poll set and free the
2331 lttng_poll_del(&events
, stream
->wait_fd
);
2333 * This call update the channel states, closes file descriptors
2334 * and securely free the stream.
2336 consumer_del_metadata_stream(stream
, metadata_ht
);
2337 } else if (revents
& (LPOLLIN
| LPOLLPRI
)) {
2338 /* Get the data out of the metadata file descriptor */
2339 DBG("Metadata available on fd %d", pollfd
);
2340 assert(stream
->wait_fd
== pollfd
);
2342 len
= ctx
->on_buffer_ready(stream
, ctx
);
2343 /* It's ok to have an unavailable sub-buffer */
2344 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2345 /* Clean up stream from consumer and free it. */
2346 lttng_poll_del(&events
, stream
->wait_fd
);
2347 consumer_del_metadata_stream(stream
, metadata_ht
);
2348 } else if (len
> 0) {
2349 stream
->data_read
= 1;
2353 /* Release RCU lock for the stream looked up */
2360 DBG("Metadata poll thread exiting");
2362 lttng_poll_clean(&events
);
2364 destroy_stream_ht(metadata_ht
);
2366 rcu_unregister_thread();
2371 * This thread polls the fds in the set to consume the data and write
2372 * it to tracefile if necessary.
2374 void *consumer_thread_data_poll(void *data
)
2376 int num_rdy
, num_hup
, high_prio
, ret
, i
;
2377 struct pollfd
*pollfd
= NULL
;
2378 /* local view of the streams */
2379 struct lttng_consumer_stream
**local_stream
= NULL
, *new_stream
= NULL
;
2380 /* local view of consumer_data.fds_count */
2382 struct lttng_consumer_local_data
*ctx
= data
;
2385 rcu_register_thread();
2387 data_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
2388 if (data_ht
== NULL
) {
2389 /* ENOMEM at this point. Better to bail out. */
2393 local_stream
= zmalloc(sizeof(struct lttng_consumer_stream
));
2400 * the fds set has been updated, we need to update our
2401 * local array as well
2403 pthread_mutex_lock(&consumer_data
.lock
);
2404 if (consumer_data
.need_update
) {
2409 local_stream
= NULL
;
2411 /* allocate for all fds + 1 for the consumer_data_pipe */
2412 pollfd
= zmalloc((consumer_data
.stream_count
+ 1) * sizeof(struct pollfd
));
2413 if (pollfd
== NULL
) {
2414 PERROR("pollfd malloc");
2415 pthread_mutex_unlock(&consumer_data
.lock
);
2419 /* allocate for all fds + 1 for the consumer_data_pipe */
2420 local_stream
= zmalloc((consumer_data
.stream_count
+ 1) *
2421 sizeof(struct lttng_consumer_stream
));
2422 if (local_stream
== NULL
) {
2423 PERROR("local_stream malloc");
2424 pthread_mutex_unlock(&consumer_data
.lock
);
2427 ret
= update_poll_array(ctx
, &pollfd
, local_stream
,
2430 ERR("Error in allocating pollfd or local_outfds");
2431 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2432 pthread_mutex_unlock(&consumer_data
.lock
);
2436 consumer_data
.need_update
= 0;
2438 pthread_mutex_unlock(&consumer_data
.lock
);
2440 /* No FDs and consumer_quit, consumer_cleanup the thread */
2441 if (nb_fd
== 0 && consumer_quit
== 1) {
2444 /* poll on the array of fds */
2446 DBG("polling on %d fd", nb_fd
+ 1);
2447 num_rdy
= poll(pollfd
, nb_fd
+ 1, -1);
2448 DBG("poll num_rdy : %d", num_rdy
);
2449 if (num_rdy
== -1) {
2451 * Restart interrupted system call.
2453 if (errno
== EINTR
) {
2456 PERROR("Poll error");
2457 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2459 } else if (num_rdy
== 0) {
2460 DBG("Polling thread timed out");
2465 * If the consumer_data_pipe triggered poll go directly to the
2466 * beginning of the loop to update the array. We want to prioritize
2467 * array update over low-priority reads.
2469 if (pollfd
[nb_fd
].revents
& (POLLIN
| POLLPRI
)) {
2470 ssize_t pipe_readlen
;
2472 DBG("consumer_data_pipe wake up");
2473 /* Consume 1 byte of pipe data */
2475 pipe_readlen
= read(ctx
->consumer_data_pipe
[0], &new_stream
,
2476 sizeof(new_stream
));
2477 } while (pipe_readlen
== -1 && errno
== EINTR
);
2478 if (pipe_readlen
< 0) {
2479 PERROR("read consumer data pipe");
2480 /* Continue so we can at least handle the current stream(s). */
2485 * If the stream is NULL, just ignore it. It's also possible that
2486 * the sessiond poll thread changed the consumer_quit state and is
2487 * waking us up to test it.
2489 if (new_stream
== NULL
) {
2490 validate_endpoint_status_data_stream();
2494 ret
= add_stream(new_stream
, data_ht
);
2496 ERR("Consumer add stream %" PRIu64
" failed. Continuing",
2499 * At this point, if the add_stream fails, it is not in the
2500 * hash table thus passing the NULL value here.
2502 consumer_del_stream(new_stream
, NULL
);
2505 /* Continue to update the local streams and handle prio ones */
2509 /* Take care of high priority channels first. */
2510 for (i
= 0; i
< nb_fd
; i
++) {
2511 if (local_stream
[i
] == NULL
) {
2514 if (pollfd
[i
].revents
& POLLPRI
) {
2515 DBG("Urgent read on fd %d", pollfd
[i
].fd
);
2517 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2518 /* it's ok to have an unavailable sub-buffer */
2519 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2520 /* Clean the stream and free it. */
2521 consumer_del_stream(local_stream
[i
], data_ht
);
2522 local_stream
[i
] = NULL
;
2523 } else if (len
> 0) {
2524 local_stream
[i
]->data_read
= 1;
2530 * If we read high prio channel in this loop, try again
2531 * for more high prio data.
2537 /* Take care of low priority channels. */
2538 for (i
= 0; i
< nb_fd
; i
++) {
2539 if (local_stream
[i
] == NULL
) {
2542 if ((pollfd
[i
].revents
& POLLIN
) ||
2543 local_stream
[i
]->hangup_flush_done
) {
2544 DBG("Normal read on fd %d", pollfd
[i
].fd
);
2545 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2546 /* it's ok to have an unavailable sub-buffer */
2547 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2548 /* Clean the stream and free it. */
2549 consumer_del_stream(local_stream
[i
], data_ht
);
2550 local_stream
[i
] = NULL
;
2551 } else if (len
> 0) {
2552 local_stream
[i
]->data_read
= 1;
2557 /* Handle hangup and errors */
2558 for (i
= 0; i
< nb_fd
; i
++) {
2559 if (local_stream
[i
] == NULL
) {
2562 if (!local_stream
[i
]->hangup_flush_done
2563 && (pollfd
[i
].revents
& (POLLHUP
| POLLERR
| POLLNVAL
))
2564 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2565 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2566 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2568 lttng_ustconsumer_on_stream_hangup(local_stream
[i
]);
2569 /* Attempt read again, for the data we just flushed. */
2570 local_stream
[i
]->data_read
= 1;
2573 * If the poll flag is HUP/ERR/NVAL and we have
2574 * read no data in this pass, we can remove the
2575 * stream from its hash table.
2577 if ((pollfd
[i
].revents
& POLLHUP
)) {
2578 DBG("Polling fd %d tells it has hung up.", pollfd
[i
].fd
);
2579 if (!local_stream
[i
]->data_read
) {
2580 consumer_del_stream(local_stream
[i
], data_ht
);
2581 local_stream
[i
] = NULL
;
2584 } else if (pollfd
[i
].revents
& POLLERR
) {
2585 ERR("Error returned in polling fd %d.", pollfd
[i
].fd
);
2586 if (!local_stream
[i
]->data_read
) {
2587 consumer_del_stream(local_stream
[i
], data_ht
);
2588 local_stream
[i
] = NULL
;
2591 } else if (pollfd
[i
].revents
& POLLNVAL
) {
2592 ERR("Polling fd %d tells fd is not open.", pollfd
[i
].fd
);
2593 if (!local_stream
[i
]->data_read
) {
2594 consumer_del_stream(local_stream
[i
], data_ht
);
2595 local_stream
[i
] = NULL
;
2599 if (local_stream
[i
] != NULL
) {
2600 local_stream
[i
]->data_read
= 0;
2605 DBG("polling thread exiting");
2610 * Close the write side of the pipe so epoll_wait() in
2611 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2612 * read side of the pipe. If we close them both, epoll_wait strangely does
2613 * not return and could create a endless wait period if the pipe is the
2614 * only tracked fd in the poll set. The thread will take care of closing
2617 ret
= close(ctx
->consumer_metadata_pipe
[1]);
2619 PERROR("close data pipe");
2622 destroy_data_stream_ht(data_ht
);
2624 rcu_unregister_thread();
2629 * Close wake-up end of each stream belonging to the channel. This will
2630 * allow the poll() on the stream read-side to detect when the
2631 * write-side (application) finally closes them.
2634 void consumer_close_channel_streams(struct lttng_consumer_channel
*channel
)
2636 struct lttng_ht
*ht
;
2637 struct lttng_consumer_stream
*stream
;
2638 struct lttng_ht_iter iter
;
2640 ht
= consumer_data
.stream_per_chan_id_ht
;
2643 cds_lfht_for_each_entry_duplicate(ht
->ht
,
2644 ht
->hash_fct(&channel
->key
, lttng_ht_seed
),
2645 ht
->match_fct
, &channel
->key
,
2646 &iter
.iter
, stream
, node_channel_id
.node
) {
2647 switch (consumer_data
.type
) {
2648 case LTTNG_CONSUMER_KERNEL
:
2650 case LTTNG_CONSUMER32_UST
:
2651 case LTTNG_CONSUMER64_UST
:
2653 * Note: a mutex is taken internally within
2654 * liblttng-ust-ctl to protect timer wakeup_fd
2655 * use from concurrent close.
2657 lttng_ustconsumer_close_stream_wakeup(stream
);
2660 ERR("Unknown consumer_data type");
2667 static void destroy_channel_ht(struct lttng_ht
*ht
)
2669 struct lttng_ht_iter iter
;
2670 struct lttng_consumer_channel
*channel
;
2678 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, channel
, wait_fd_node
.node
) {
2679 ret
= lttng_ht_del(ht
, &iter
);
2684 lttng_ht_destroy(ht
);
2688 * This thread polls the channel fds to detect when they are being
2689 * closed. It closes all related streams if the channel is detected as
2690 * closed. It is currently only used as a shim layer for UST because the
2691 * consumerd needs to keep the per-stream wakeup end of pipes open for
2694 void *consumer_thread_channel_poll(void *data
)
2697 uint32_t revents
, nb_fd
;
2698 struct lttng_consumer_channel
*chan
= NULL
;
2699 struct lttng_ht_iter iter
;
2700 struct lttng_ht_node_u64
*node
;
2701 struct lttng_poll_event events
;
2702 struct lttng_consumer_local_data
*ctx
= data
;
2703 struct lttng_ht
*channel_ht
;
2705 rcu_register_thread();
2707 channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
2709 /* ENOMEM at this point. Better to bail out. */
2713 DBG("Thread channel poll started");
2715 /* Size is set to 1 for the consumer_channel pipe */
2716 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2718 ERR("Poll set creation failed");
2722 ret
= lttng_poll_add(&events
, ctx
->consumer_channel_pipe
[0], LPOLLIN
);
2728 DBG("Channel main loop started");
2731 /* Only the channel pipe is set */
2732 if (LTTNG_POLL_GETNB(&events
) == 0 && consumer_quit
== 1) {
2737 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events
));
2738 ret
= lttng_poll_wait(&events
, -1);
2739 DBG("Channel event catched in thread");
2741 if (errno
== EINTR
) {
2742 ERR("Poll EINTR catched");
2750 /* From here, the event is a channel wait fd */
2751 for (i
= 0; i
< nb_fd
; i
++) {
2752 revents
= LTTNG_POLL_GETEV(&events
, i
);
2753 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2755 /* Just don't waste time if no returned events for the fd */
2759 if (pollfd
== ctx
->consumer_channel_pipe
[0]) {
2760 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2761 DBG("Channel thread pipe hung up");
2763 * Remove the pipe from the poll set and continue the loop
2764 * since their might be data to consume.
2766 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
2768 } else if (revents
& LPOLLIN
) {
2769 enum consumer_channel_action action
;
2771 ret
= read_channel_pipe(ctx
, &chan
, &action
);
2773 ERR("Error reading channel pipe");
2778 case CONSUMER_CHANNEL_ADD
:
2779 DBG("Adding channel %d to poll set",
2782 lttng_ht_node_init_u64(&chan
->wait_fd_node
,
2784 lttng_ht_add_unique_u64(channel_ht
,
2785 &chan
->wait_fd_node
);
2786 /* Add channel to the global poll events list */
2787 lttng_poll_add(&events
, chan
->wait_fd
,
2788 LPOLLIN
| LPOLLPRI
);
2790 case CONSUMER_CHANNEL_QUIT
:
2792 * Remove the pipe from the poll set and continue the loop
2793 * since their might be data to consume.
2795 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
2798 ERR("Unknown action");
2803 /* Handle other stream */
2809 uint64_t tmp_id
= (uint64_t) pollfd
;
2811 lttng_ht_lookup(channel_ht
, &tmp_id
, &iter
);
2813 node
= lttng_ht_iter_get_node_u64(&iter
);
2816 chan
= caa_container_of(node
, struct lttng_consumer_channel
,
2819 /* Check for error event */
2820 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2821 DBG("Channel fd %d is hup|err.", pollfd
);
2823 lttng_poll_del(&events
, chan
->wait_fd
);
2824 ret
= lttng_ht_del(channel_ht
, &iter
);
2826 consumer_close_channel_streams(chan
);
2829 /* Release RCU lock for the channel looked up */
2835 lttng_poll_clean(&events
);
2837 destroy_channel_ht(channel_ht
);
2839 DBG("Channel poll thread exiting");
2840 rcu_unregister_thread();
2844 static int set_metadata_socket(struct lttng_consumer_local_data
*ctx
,
2845 struct pollfd
*sockpoll
, int client_socket
)
2852 if (lttng_consumer_poll_socket(sockpoll
) < 0) {
2856 DBG("Metadata connection on client_socket");
2858 /* Blocking call, waiting for transmission */
2859 ctx
->consumer_metadata_socket
= lttcomm_accept_unix_sock(client_socket
);
2860 if (ctx
->consumer_metadata_socket
< 0) {
2861 WARN("On accept metadata");
2872 * This thread listens on the consumerd socket and receives the file
2873 * descriptors from the session daemon.
2875 void *consumer_thread_sessiond_poll(void *data
)
2877 int sock
= -1, client_socket
, ret
;
2879 * structure to poll for incoming data on communication socket avoids
2880 * making blocking sockets.
2882 struct pollfd consumer_sockpoll
[2];
2883 struct lttng_consumer_local_data
*ctx
= data
;
2885 rcu_register_thread();
2887 DBG("Creating command socket %s", ctx
->consumer_command_sock_path
);
2888 unlink(ctx
->consumer_command_sock_path
);
2889 client_socket
= lttcomm_create_unix_sock(ctx
->consumer_command_sock_path
);
2890 if (client_socket
< 0) {
2891 ERR("Cannot create command socket");
2895 ret
= lttcomm_listen_unix_sock(client_socket
);
2900 DBG("Sending ready command to lttng-sessiond");
2901 ret
= lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY
);
2902 /* return < 0 on error, but == 0 is not fatal */
2904 ERR("Error sending ready command to lttng-sessiond");
2908 ret
= fcntl(client_socket
, F_SETFL
, O_NONBLOCK
);
2910 PERROR("fcntl O_NONBLOCK");
2914 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2915 consumer_sockpoll
[0].fd
= ctx
->consumer_should_quit
[0];
2916 consumer_sockpoll
[0].events
= POLLIN
| POLLPRI
;
2917 consumer_sockpoll
[1].fd
= client_socket
;
2918 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
2920 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2923 DBG("Connection on client_socket");
2925 /* Blocking call, waiting for transmission */
2926 sock
= lttcomm_accept_unix_sock(client_socket
);
2931 ret
= fcntl(sock
, F_SETFL
, O_NONBLOCK
);
2933 PERROR("fcntl O_NONBLOCK");
2938 * Setup metadata socket which is the second socket connection on the
2939 * command unix socket.
2941 ret
= set_metadata_socket(ctx
, consumer_sockpoll
, client_socket
);
2946 /* This socket is not useful anymore. */
2947 ret
= close(client_socket
);
2949 PERROR("close client_socket");
2953 /* update the polling structure to poll on the established socket */
2954 consumer_sockpoll
[1].fd
= sock
;
2955 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
2958 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2961 DBG("Incoming command on sock");
2962 ret
= lttng_consumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
2963 if (ret
== -ENOENT
) {
2964 DBG("Received STOP command");
2969 * This could simply be a session daemon quitting. Don't output
2972 DBG("Communication interrupted on command socket");
2975 if (consumer_quit
) {
2976 DBG("consumer_thread_receive_fds received quit from signal");
2979 DBG("received command on sock");
2982 DBG("Consumer thread sessiond poll exiting");
2985 * Close metadata streams since the producer is the session daemon which
2988 * NOTE: for now, this only applies to the UST tracer.
2990 lttng_consumer_close_metadata();
2993 * when all fds have hung up, the polling thread
2999 * Notify the data poll thread to poll back again and test the
3000 * consumer_quit state that we just set so to quit gracefully.
3002 notify_thread_pipe(ctx
->consumer_data_pipe
[1]);
3004 notify_channel_pipe(ctx
, NULL
, CONSUMER_CHANNEL_QUIT
);
3006 /* Cleaning up possibly open sockets. */
3010 PERROR("close sock sessiond poll");
3013 if (client_socket
>= 0) {
3016 PERROR("close client_socket sessiond poll");
3020 rcu_unregister_thread();
3024 ssize_t
lttng_consumer_read_subbuffer(struct lttng_consumer_stream
*stream
,
3025 struct lttng_consumer_local_data
*ctx
)
3029 pthread_mutex_lock(&stream
->lock
);
3031 switch (consumer_data
.type
) {
3032 case LTTNG_CONSUMER_KERNEL
:
3033 ret
= lttng_kconsumer_read_subbuffer(stream
, ctx
);
3035 case LTTNG_CONSUMER32_UST
:
3036 case LTTNG_CONSUMER64_UST
:
3037 ret
= lttng_ustconsumer_read_subbuffer(stream
, ctx
);
3040 ERR("Unknown consumer_data type");
3046 pthread_mutex_unlock(&stream
->lock
);
3050 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream
*stream
)
3052 switch (consumer_data
.type
) {
3053 case LTTNG_CONSUMER_KERNEL
:
3054 return lttng_kconsumer_on_recv_stream(stream
);
3055 case LTTNG_CONSUMER32_UST
:
3056 case LTTNG_CONSUMER64_UST
:
3057 return lttng_ustconsumer_on_recv_stream(stream
);
3059 ERR("Unknown consumer_data type");
3066 * Allocate and set consumer data hash tables.
3068 void lttng_consumer_init(void)
3070 consumer_data
.channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3071 consumer_data
.relayd_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3072 consumer_data
.stream_list_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3073 consumer_data
.stream_per_chan_id_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3077 * Process the ADD_RELAYD command receive by a consumer.
3079 * This will create a relayd socket pair and add it to the relayd hash table.
3080 * The caller MUST acquire a RCU read side lock before calling it.
3082 int consumer_add_relayd_socket(int net_seq_idx
, int sock_type
,
3083 struct lttng_consumer_local_data
*ctx
, int sock
,
3084 struct pollfd
*consumer_sockpoll
,
3085 struct lttcomm_relayd_sock
*relayd_sock
, unsigned int sessiond_id
)
3087 int fd
= -1, ret
= -1, relayd_created
= 0;
3088 enum lttng_error_code ret_code
= LTTNG_OK
;
3089 struct consumer_relayd_sock_pair
*relayd
;
3092 assert(relayd_sock
);
3094 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx
);
3096 /* First send a status message before receiving the fds. */
3097 ret
= consumer_send_status_msg(sock
, ret_code
);
3099 /* Somehow, the session daemon is not responding anymore. */
3103 /* Get relayd reference if exists. */
3104 relayd
= consumer_find_relayd(net_seq_idx
);
3105 if (relayd
== NULL
) {
3106 /* Not found. Allocate one. */
3107 relayd
= consumer_allocate_relayd_sock_pair(net_seq_idx
);
3108 if (relayd
== NULL
) {
3109 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_OUTFD_ERROR
);
3113 relayd
->sessiond_session_id
= (uint64_t) sessiond_id
;
3117 /* Poll on consumer socket. */
3118 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
3123 /* Get relayd socket from session daemon */
3124 ret
= lttcomm_recv_fds_unix_sock(sock
, &fd
, 1);
3125 if (ret
!= sizeof(fd
)) {
3126 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_ERROR_RECV_FD
);
3128 fd
= -1; /* Just in case it gets set with an invalid value. */
3132 /* We have the fds without error. Send status back. */
3133 ret
= consumer_send_status_msg(sock
, ret_code
);
3135 /* Somehow, the session daemon is not responding anymore. */
3139 /* Copy socket information and received FD */
3140 switch (sock_type
) {
3141 case LTTNG_STREAM_CONTROL
:
3142 /* Copy received lttcomm socket */
3143 lttcomm_copy_sock(&relayd
->control_sock
.sock
, &relayd_sock
->sock
);
3144 ret
= lttcomm_create_sock(&relayd
->control_sock
.sock
);
3145 /* Immediately try to close the created socket if valid. */
3146 if (relayd
->control_sock
.sock
.fd
>= 0) {
3147 if (close(relayd
->control_sock
.sock
.fd
)) {
3148 PERROR("close relayd control socket");
3151 /* Handle create_sock error. */
3156 /* Assign new file descriptor */
3157 relayd
->control_sock
.sock
.fd
= fd
;
3158 /* Assign version values. */
3159 relayd
->control_sock
.major
= relayd_sock
->major
;
3160 relayd
->control_sock
.minor
= relayd_sock
->minor
;
3163 * Create a session on the relayd and store the returned id. Lock the
3164 * control socket mutex if the relayd was NOT created before.
3166 if (!relayd_created
) {
3167 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3169 ret
= relayd_create_session(&relayd
->control_sock
,
3170 &relayd
->relayd_session_id
);
3171 if (!relayd_created
) {
3172 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3176 * Close all sockets of a relayd object. It will be freed if it was
3177 * created at the error code path or else it will be garbage
3180 (void) relayd_close(&relayd
->control_sock
);
3181 (void) relayd_close(&relayd
->data_sock
);
3186 case LTTNG_STREAM_DATA
:
3187 /* Copy received lttcomm socket */
3188 lttcomm_copy_sock(&relayd
->data_sock
.sock
, &relayd_sock
->sock
);
3189 ret
= lttcomm_create_sock(&relayd
->data_sock
.sock
);
3190 /* Immediately try to close the created socket if valid. */
3191 if (relayd
->data_sock
.sock
.fd
>= 0) {
3192 if (close(relayd
->data_sock
.sock
.fd
)) {
3193 PERROR("close relayd data socket");
3196 /* Handle create_sock error. */
3201 /* Assign new file descriptor */
3202 relayd
->data_sock
.sock
.fd
= fd
;
3203 /* Assign version values. */
3204 relayd
->data_sock
.major
= relayd_sock
->major
;
3205 relayd
->data_sock
.minor
= relayd_sock
->minor
;
3208 ERR("Unknown relayd socket type (%d)", sock_type
);
3213 DBG("Consumer %s socket created successfully with net idx %" PRIu64
" (fd: %d)",
3214 sock_type
== LTTNG_STREAM_CONTROL
? "control" : "data",
3215 relayd
->net_seq_idx
, fd
);
3218 * Add relayd socket pair to consumer data hashtable. If object already
3219 * exists or on error, the function gracefully returns.
3227 /* Close received socket if valid. */
3230 PERROR("close received socket");
3235 if (relayd_created
) {
3243 * Try to lock the stream mutex.
3245 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3247 static int stream_try_lock(struct lttng_consumer_stream
*stream
)
3254 * Try to lock the stream mutex. On failure, we know that the stream is
3255 * being used else where hence there is data still being extracted.
3257 ret
= pthread_mutex_trylock(&stream
->lock
);
3259 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3271 * Search for a relayd associated to the session id and return the reference.
3273 * A rcu read side lock MUST be acquire before calling this function and locked
3274 * until the relayd object is no longer necessary.
3276 static struct consumer_relayd_sock_pair
*find_relayd_by_session_id(uint64_t id
)
3278 struct lttng_ht_iter iter
;
3279 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3281 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3282 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
3285 * Check by sessiond id which is unique here where the relayd session
3286 * id might not be when having multiple relayd.
3288 if (relayd
->sessiond_session_id
== id
) {
3289 /* Found the relayd. There can be only one per id. */
3301 * Check if for a given session id there is still data needed to be extract
3304 * Return 1 if data is pending or else 0 meaning ready to be read.
3306 int consumer_data_pending(uint64_t id
)
3309 struct lttng_ht_iter iter
;
3310 struct lttng_ht
*ht
;
3311 struct lttng_consumer_stream
*stream
;
3312 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3313 int (*data_pending
)(struct lttng_consumer_stream
*);
3315 DBG("Consumer data pending command on session id %" PRIu64
, id
);
3318 pthread_mutex_lock(&consumer_data
.lock
);
3320 switch (consumer_data
.type
) {
3321 case LTTNG_CONSUMER_KERNEL
:
3322 data_pending
= lttng_kconsumer_data_pending
;
3324 case LTTNG_CONSUMER32_UST
:
3325 case LTTNG_CONSUMER64_UST
:
3326 data_pending
= lttng_ustconsumer_data_pending
;
3329 ERR("Unknown consumer data type");
3333 /* Ease our life a bit */
3334 ht
= consumer_data
.stream_list_ht
;
3336 relayd
= find_relayd_by_session_id(id
);
3338 /* Send init command for data pending. */
3339 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3340 ret
= relayd_begin_data_pending(&relayd
->control_sock
,
3341 relayd
->relayd_session_id
);
3342 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3344 /* Communication error thus the relayd so no data pending. */
3345 goto data_not_pending
;
3349 cds_lfht_for_each_entry_duplicate(ht
->ht
,
3350 ht
->hash_fct(&id
, lttng_ht_seed
),
3352 &iter
.iter
, stream
, node_session_id
.node
) {
3353 /* If this call fails, the stream is being used hence data pending. */
3354 ret
= stream_try_lock(stream
);
3360 * A removed node from the hash table indicates that the stream has
3361 * been deleted thus having a guarantee that the buffers are closed
3362 * on the consumer side. However, data can still be transmitted
3363 * over the network so don't skip the relayd check.
3365 ret
= cds_lfht_is_node_deleted(&stream
->node
.node
);
3367 /* Check the stream if there is data in the buffers. */
3368 ret
= data_pending(stream
);
3370 pthread_mutex_unlock(&stream
->lock
);
3377 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3378 if (stream
->metadata_flag
) {
3379 ret
= relayd_quiescent_control(&relayd
->control_sock
,
3380 stream
->relayd_stream_id
);
3382 ret
= relayd_data_pending(&relayd
->control_sock
,
3383 stream
->relayd_stream_id
,
3384 stream
->next_net_seq_num
- 1);
3386 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3388 pthread_mutex_unlock(&stream
->lock
);
3392 pthread_mutex_unlock(&stream
->lock
);
3396 unsigned int is_data_inflight
= 0;
3398 /* Send init command for data pending. */
3399 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3400 ret
= relayd_end_data_pending(&relayd
->control_sock
,
3401 relayd
->relayd_session_id
, &is_data_inflight
);
3402 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3404 goto data_not_pending
;
3406 if (is_data_inflight
) {
3412 * Finding _no_ node in the hash table and no inflight data means that the
3413 * stream(s) have been removed thus data is guaranteed to be available for
3414 * analysis from the trace files.
3418 /* Data is available to be read by a viewer. */
3419 pthread_mutex_unlock(&consumer_data
.lock
);
3424 /* Data is still being extracted from buffers. */
3425 pthread_mutex_unlock(&consumer_data
.lock
);
3431 * Send a ret code status message to the sessiond daemon.
3433 * Return the sendmsg() return value.
3435 int consumer_send_status_msg(int sock
, int ret_code
)
3437 struct lttcomm_consumer_status_msg msg
;
3439 msg
.ret_code
= ret_code
;
3441 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));
3445 * Send a channel status message to the sessiond daemon.
3447 * Return the sendmsg() return value.
3449 int consumer_send_status_channel(int sock
,
3450 struct lttng_consumer_channel
*channel
)
3452 struct lttcomm_consumer_status_channel msg
;
3457 msg
.ret_code
= -LTTNG_ERR_UST_CHAN_FAIL
;
3459 msg
.ret_code
= LTTNG_OK
;
3460 msg
.key
= channel
->key
;
3461 msg
.stream_count
= channel
->streams
.count
;
3464 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));