2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 #include <sys/socket.h>
28 #include <sys/types.h>
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer-timer.h>
48 #include "consumer-stream.h"
49 #include "consumer-testpoint.h"
52 struct lttng_consumer_global_data consumer_data
= {
55 .type
= LTTNG_CONSUMER_UNKNOWN
,
58 enum consumer_channel_action
{
61 CONSUMER_CHANNEL_QUIT
,
64 struct consumer_channel_msg
{
65 enum consumer_channel_action action
;
66 struct lttng_consumer_channel
*chan
; /* add */
67 uint64_t key
; /* del */
71 * Flag to inform the polling thread to quit when all fd hung up. Updated by
72 * the consumer_thread_receive_fds when it notices that all fds has hung up.
73 * Also updated by the signal handler (consumer_should_exit()). Read by the
76 volatile int consumer_quit
;
79 * Global hash table containing respectively metadata and data streams. The
80 * stream element in this ht should only be updated by the metadata poll thread
81 * for the metadata and the data poll thread for the data.
83 static struct lttng_ht
*metadata_ht
;
84 static struct lttng_ht
*data_ht
;
87 * Notify a thread lttng pipe to poll back again. This usually means that some
88 * global state has changed so we just send back the thread in a poll wait
91 static void notify_thread_lttng_pipe(struct lttng_pipe
*pipe
)
93 struct lttng_consumer_stream
*null_stream
= NULL
;
97 (void) lttng_pipe_write(pipe
, &null_stream
, sizeof(null_stream
));
100 static void notify_health_quit_pipe(int *pipe
)
104 ret
= lttng_write(pipe
[1], "4", 1);
106 PERROR("write consumer health quit");
110 static void notify_channel_pipe(struct lttng_consumer_local_data
*ctx
,
111 struct lttng_consumer_channel
*chan
,
113 enum consumer_channel_action action
)
115 struct consumer_channel_msg msg
;
118 memset(&msg
, 0, sizeof(msg
));
123 ret
= lttng_write(ctx
->consumer_channel_pipe
[1], &msg
, sizeof(msg
));
124 if (ret
< sizeof(msg
)) {
125 PERROR("notify_channel_pipe write error");
129 void notify_thread_del_channel(struct lttng_consumer_local_data
*ctx
,
132 notify_channel_pipe(ctx
, NULL
, key
, CONSUMER_CHANNEL_DEL
);
135 static int read_channel_pipe(struct lttng_consumer_local_data
*ctx
,
136 struct lttng_consumer_channel
**chan
,
138 enum consumer_channel_action
*action
)
140 struct consumer_channel_msg msg
;
143 ret
= lttng_read(ctx
->consumer_channel_pipe
[0], &msg
, sizeof(msg
));
144 if (ret
< sizeof(msg
)) {
148 *action
= msg
.action
;
156 * Cleanup the stream list of a channel. Those streams are not yet globally
159 static void clean_channel_stream_list(struct lttng_consumer_channel
*channel
)
161 struct lttng_consumer_stream
*stream
, *stmp
;
165 /* Delete streams that might have been left in the stream list. */
166 cds_list_for_each_entry_safe(stream
, stmp
, &channel
->streams
.head
,
168 cds_list_del(&stream
->send_node
);
170 * Once a stream is added to this list, the buffers were created so we
171 * have a guarantee that this call will succeed. Setting the monitor
172 * mode to 0 so we don't lock nor try to delete the stream from the
176 consumer_stream_destroy(stream
, NULL
);
181 * Find a stream. The consumer_data.lock must be locked during this
184 static struct lttng_consumer_stream
*find_stream(uint64_t key
,
187 struct lttng_ht_iter iter
;
188 struct lttng_ht_node_u64
*node
;
189 struct lttng_consumer_stream
*stream
= NULL
;
193 /* -1ULL keys are lookup failures */
194 if (key
== (uint64_t) -1ULL) {
200 lttng_ht_lookup(ht
, &key
, &iter
);
201 node
= lttng_ht_iter_get_node_u64(&iter
);
203 stream
= caa_container_of(node
, struct lttng_consumer_stream
, node
);
211 static void steal_stream_key(uint64_t key
, struct lttng_ht
*ht
)
213 struct lttng_consumer_stream
*stream
;
216 stream
= find_stream(key
, ht
);
218 stream
->key
= (uint64_t) -1ULL;
220 * We don't want the lookup to match, but we still need
221 * to iterate on this stream when iterating over the hash table. Just
222 * change the node key.
224 stream
->node
.key
= (uint64_t) -1ULL;
230 * Return a channel object for the given key.
232 * RCU read side lock MUST be acquired before calling this function and
233 * protects the channel ptr.
235 struct lttng_consumer_channel
*consumer_find_channel(uint64_t key
)
237 struct lttng_ht_iter iter
;
238 struct lttng_ht_node_u64
*node
;
239 struct lttng_consumer_channel
*channel
= NULL
;
241 /* -1ULL keys are lookup failures */
242 if (key
== (uint64_t) -1ULL) {
246 lttng_ht_lookup(consumer_data
.channel_ht
, &key
, &iter
);
247 node
= lttng_ht_iter_get_node_u64(&iter
);
249 channel
= caa_container_of(node
, struct lttng_consumer_channel
, node
);
256 * There is a possibility that the consumer does not have enough time between
257 * the close of the channel on the session daemon and the cleanup in here thus
258 * once we have a channel add with an existing key, we know for sure that this
259 * channel will eventually get cleaned up by all streams being closed.
261 * This function just nullifies the already existing channel key.
263 static void steal_channel_key(uint64_t key
)
265 struct lttng_consumer_channel
*channel
;
268 channel
= consumer_find_channel(key
);
270 channel
->key
= (uint64_t) -1ULL;
272 * We don't want the lookup to match, but we still need to iterate on
273 * this channel when iterating over the hash table. Just change the
276 channel
->node
.key
= (uint64_t) -1ULL;
281 static void free_channel_rcu(struct rcu_head
*head
)
283 struct lttng_ht_node_u64
*node
=
284 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
285 struct lttng_consumer_channel
*channel
=
286 caa_container_of(node
, struct lttng_consumer_channel
, node
);
288 switch (consumer_data
.type
) {
289 case LTTNG_CONSUMER_KERNEL
:
291 case LTTNG_CONSUMER32_UST
:
292 case LTTNG_CONSUMER64_UST
:
293 lttng_ustconsumer_free_channel(channel
);
296 ERR("Unknown consumer_data type");
303 * RCU protected relayd socket pair free.
305 static void free_relayd_rcu(struct rcu_head
*head
)
307 struct lttng_ht_node_u64
*node
=
308 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
309 struct consumer_relayd_sock_pair
*relayd
=
310 caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
313 * Close all sockets. This is done in the call RCU since we don't want the
314 * socket fds to be reassigned thus potentially creating bad state of the
317 * We do not have to lock the control socket mutex here since at this stage
318 * there is no one referencing to this relayd object.
320 (void) relayd_close(&relayd
->control_sock
);
321 (void) relayd_close(&relayd
->data_sock
);
327 * Destroy and free relayd socket pair object.
329 void consumer_destroy_relayd(struct consumer_relayd_sock_pair
*relayd
)
332 struct lttng_ht_iter iter
;
334 if (relayd
== NULL
) {
338 DBG("Consumer destroy and close relayd socket pair");
340 iter
.iter
.node
= &relayd
->node
.node
;
341 ret
= lttng_ht_del(consumer_data
.relayd_ht
, &iter
);
343 /* We assume the relayd is being or is destroyed */
347 /* RCU free() call */
348 call_rcu(&relayd
->node
.head
, free_relayd_rcu
);
352 * Remove a channel from the global list protected by a mutex. This function is
353 * also responsible for freeing its data structures.
355 void consumer_del_channel(struct lttng_consumer_channel
*channel
)
358 struct lttng_ht_iter iter
;
360 DBG("Consumer delete channel key %" PRIu64
, channel
->key
);
362 pthread_mutex_lock(&consumer_data
.lock
);
363 pthread_mutex_lock(&channel
->lock
);
365 /* Destroy streams that might have been left in the stream list. */
366 clean_channel_stream_list(channel
);
368 if (channel
->live_timer_enabled
== 1) {
369 consumer_timer_live_stop(channel
);
372 switch (consumer_data
.type
) {
373 case LTTNG_CONSUMER_KERNEL
:
375 case LTTNG_CONSUMER32_UST
:
376 case LTTNG_CONSUMER64_UST
:
377 lttng_ustconsumer_del_channel(channel
);
380 ERR("Unknown consumer_data type");
386 iter
.iter
.node
= &channel
->node
.node
;
387 ret
= lttng_ht_del(consumer_data
.channel_ht
, &iter
);
391 call_rcu(&channel
->node
.head
, free_channel_rcu
);
393 pthread_mutex_unlock(&channel
->lock
);
394 pthread_mutex_unlock(&consumer_data
.lock
);
398 * Iterate over the relayd hash table and destroy each element. Finally,
399 * destroy the whole hash table.
401 static void cleanup_relayd_ht(void)
403 struct lttng_ht_iter iter
;
404 struct consumer_relayd_sock_pair
*relayd
;
408 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
410 consumer_destroy_relayd(relayd
);
415 lttng_ht_destroy(consumer_data
.relayd_ht
);
419 * Update the end point status of all streams having the given network sequence
420 * index (relayd index).
422 * It's atomically set without having the stream mutex locked which is fine
423 * because we handle the write/read race with a pipe wakeup for each thread.
425 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx
,
426 enum consumer_endpoint_status status
)
428 struct lttng_ht_iter iter
;
429 struct lttng_consumer_stream
*stream
;
431 DBG("Consumer set delete flag on stream by idx %" PRIu64
, net_seq_idx
);
435 /* Let's begin with metadata */
436 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
437 if (stream
->net_seq_idx
== net_seq_idx
) {
438 uatomic_set(&stream
->endpoint_status
, status
);
439 DBG("Delete flag set to metadata stream %d", stream
->wait_fd
);
443 /* Follow up by the data streams */
444 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
445 if (stream
->net_seq_idx
== net_seq_idx
) {
446 uatomic_set(&stream
->endpoint_status
, status
);
447 DBG("Delete flag set to data stream %d", stream
->wait_fd
);
454 * Cleanup a relayd object by flagging every associated streams for deletion,
455 * destroying the object meaning removing it from the relayd hash table,
456 * closing the sockets and freeing the memory in a RCU call.
458 * If a local data context is available, notify the threads that the streams'
459 * state have changed.
461 static void cleanup_relayd(struct consumer_relayd_sock_pair
*relayd
,
462 struct lttng_consumer_local_data
*ctx
)
468 DBG("Cleaning up relayd sockets");
470 /* Save the net sequence index before destroying the object */
471 netidx
= relayd
->net_seq_idx
;
474 * Delete the relayd from the relayd hash table, close the sockets and free
475 * the object in a RCU call.
477 consumer_destroy_relayd(relayd
);
479 /* Set inactive endpoint to all streams */
480 update_endpoint_status_by_netidx(netidx
, CONSUMER_ENDPOINT_INACTIVE
);
483 * With a local data context, notify the threads that the streams' state
484 * have changed. The write() action on the pipe acts as an "implicit"
485 * memory barrier ordering the updates of the end point status from the
486 * read of this status which happens AFTER receiving this notify.
489 notify_thread_lttng_pipe(ctx
->consumer_data_pipe
);
490 notify_thread_lttng_pipe(ctx
->consumer_metadata_pipe
);
495 * Flag a relayd socket pair for destruction. Destroy it if the refcount
498 * RCU read side lock MUST be aquired before calling this function.
500 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair
*relayd
)
504 /* Set destroy flag for this object */
505 uatomic_set(&relayd
->destroy_flag
, 1);
507 /* Destroy the relayd if refcount is 0 */
508 if (uatomic_read(&relayd
->refcount
) == 0) {
509 consumer_destroy_relayd(relayd
);
514 * Completly destroy stream from every visiable data structure and the given
517 * One this call returns, the stream object is not longer usable nor visible.
519 void consumer_del_stream(struct lttng_consumer_stream
*stream
,
522 consumer_stream_destroy(stream
, ht
);
526 * XXX naming of del vs destroy is all mixed up.
528 void consumer_del_stream_for_data(struct lttng_consumer_stream
*stream
)
530 consumer_stream_destroy(stream
, data_ht
);
533 void consumer_del_stream_for_metadata(struct lttng_consumer_stream
*stream
)
535 consumer_stream_destroy(stream
, metadata_ht
);
538 struct lttng_consumer_stream
*consumer_allocate_stream(uint64_t channel_key
,
540 enum lttng_consumer_stream_state state
,
541 const char *channel_name
,
548 enum consumer_channel_type type
,
549 unsigned int monitor
)
552 struct lttng_consumer_stream
*stream
;
554 stream
= zmalloc(sizeof(*stream
));
555 if (stream
== NULL
) {
556 PERROR("malloc struct lttng_consumer_stream");
563 stream
->key
= stream_key
;
565 stream
->out_fd_offset
= 0;
566 stream
->output_written
= 0;
567 stream
->state
= state
;
570 stream
->net_seq_idx
= relayd_id
;
571 stream
->session_id
= session_id
;
572 stream
->monitor
= monitor
;
573 stream
->endpoint_status
= CONSUMER_ENDPOINT_ACTIVE
;
574 stream
->index_fd
= -1;
575 pthread_mutex_init(&stream
->lock
, NULL
);
576 pthread_mutex_init(&stream
->metadata_timer_lock
, NULL
);
578 /* If channel is the metadata, flag this stream as metadata. */
579 if (type
== CONSUMER_CHANNEL_TYPE_METADATA
) {
580 stream
->metadata_flag
= 1;
581 /* Metadata is flat out. */
582 strncpy(stream
->name
, DEFAULT_METADATA_NAME
, sizeof(stream
->name
));
583 /* Live rendez-vous point. */
584 pthread_cond_init(&stream
->metadata_rdv
, NULL
);
585 pthread_mutex_init(&stream
->metadata_rdv_lock
, NULL
);
587 /* Format stream name to <channel_name>_<cpu_number> */
588 ret
= snprintf(stream
->name
, sizeof(stream
->name
), "%s_%d",
591 PERROR("snprintf stream name");
596 /* Key is always the wait_fd for streams. */
597 lttng_ht_node_init_u64(&stream
->node
, stream
->key
);
599 /* Init node per channel id key */
600 lttng_ht_node_init_u64(&stream
->node_channel_id
, channel_key
);
602 /* Init session id node with the stream session id */
603 lttng_ht_node_init_u64(&stream
->node_session_id
, stream
->session_id
);
605 DBG3("Allocated stream %s (key %" PRIu64
", chan_key %" PRIu64
606 " relayd_id %" PRIu64
", session_id %" PRIu64
,
607 stream
->name
, stream
->key
, channel_key
,
608 stream
->net_seq_idx
, stream
->session_id
);
624 * Add a stream to the global list protected by a mutex.
626 int consumer_add_data_stream(struct lttng_consumer_stream
*stream
)
628 struct lttng_ht
*ht
= data_ht
;
634 DBG3("Adding consumer stream %" PRIu64
, stream
->key
);
636 pthread_mutex_lock(&consumer_data
.lock
);
637 pthread_mutex_lock(&stream
->chan
->lock
);
638 pthread_mutex_lock(&stream
->chan
->timer_lock
);
639 pthread_mutex_lock(&stream
->lock
);
642 /* Steal stream identifier to avoid having streams with the same key */
643 steal_stream_key(stream
->key
, ht
);
645 lttng_ht_add_unique_u64(ht
, &stream
->node
);
647 lttng_ht_add_u64(consumer_data
.stream_per_chan_id_ht
,
648 &stream
->node_channel_id
);
651 * Add stream to the stream_list_ht of the consumer data. No need to steal
652 * the key since the HT does not use it and we allow to add redundant keys
655 lttng_ht_add_u64(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
658 * When nb_init_stream_left reaches 0, we don't need to trigger any action
659 * in terms of destroying the associated channel, because the action that
660 * causes the count to become 0 also causes a stream to be added. The
661 * channel deletion will thus be triggered by the following removal of this
664 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
665 /* Increment refcount before decrementing nb_init_stream_left */
667 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
670 /* Update consumer data once the node is inserted. */
671 consumer_data
.stream_count
++;
672 consumer_data
.need_update
= 1;
675 pthread_mutex_unlock(&stream
->lock
);
676 pthread_mutex_unlock(&stream
->chan
->timer_lock
);
677 pthread_mutex_unlock(&stream
->chan
->lock
);
678 pthread_mutex_unlock(&consumer_data
.lock
);
683 void consumer_del_data_stream(struct lttng_consumer_stream
*stream
)
685 consumer_del_stream(stream
, data_ht
);
689 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
690 * be acquired before calling this.
692 static int add_relayd(struct consumer_relayd_sock_pair
*relayd
)
695 struct lttng_ht_node_u64
*node
;
696 struct lttng_ht_iter iter
;
700 lttng_ht_lookup(consumer_data
.relayd_ht
,
701 &relayd
->net_seq_idx
, &iter
);
702 node
= lttng_ht_iter_get_node_u64(&iter
);
706 lttng_ht_add_unique_u64(consumer_data
.relayd_ht
, &relayd
->node
);
713 * Allocate and return a consumer relayd socket.
715 static struct consumer_relayd_sock_pair
*consumer_allocate_relayd_sock_pair(
716 uint64_t net_seq_idx
)
718 struct consumer_relayd_sock_pair
*obj
= NULL
;
720 /* net sequence index of -1 is a failure */
721 if (net_seq_idx
== (uint64_t) -1ULL) {
725 obj
= zmalloc(sizeof(struct consumer_relayd_sock_pair
));
727 PERROR("zmalloc relayd sock");
731 obj
->net_seq_idx
= net_seq_idx
;
733 obj
->destroy_flag
= 0;
734 obj
->control_sock
.sock
.fd
= -1;
735 obj
->data_sock
.sock
.fd
= -1;
736 lttng_ht_node_init_u64(&obj
->node
, obj
->net_seq_idx
);
737 pthread_mutex_init(&obj
->ctrl_sock_mutex
, NULL
);
744 * Find a relayd socket pair in the global consumer data.
746 * Return the object if found else NULL.
747 * RCU read-side lock must be held across this call and while using the
750 struct consumer_relayd_sock_pair
*consumer_find_relayd(uint64_t key
)
752 struct lttng_ht_iter iter
;
753 struct lttng_ht_node_u64
*node
;
754 struct consumer_relayd_sock_pair
*relayd
= NULL
;
756 /* Negative keys are lookup failures */
757 if (key
== (uint64_t) -1ULL) {
761 lttng_ht_lookup(consumer_data
.relayd_ht
, &key
,
763 node
= lttng_ht_iter_get_node_u64(&iter
);
765 relayd
= caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
773 * Find a relayd and send the stream
775 * Returns 0 on success, < 0 on error
777 int consumer_send_relayd_stream(struct lttng_consumer_stream
*stream
,
781 struct consumer_relayd_sock_pair
*relayd
;
784 assert(stream
->net_seq_idx
!= -1ULL);
787 /* The stream is not metadata. Get relayd reference if exists. */
789 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
790 if (relayd
!= NULL
) {
791 /* Add stream on the relayd */
792 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
793 ret
= relayd_add_stream(&relayd
->control_sock
, stream
->name
,
794 path
, &stream
->relayd_stream_id
,
795 stream
->chan
->tracefile_size
, stream
->chan
->tracefile_count
);
796 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
801 uatomic_inc(&relayd
->refcount
);
802 stream
->sent_to_relayd
= 1;
804 ERR("Stream %" PRIu64
" relayd ID %" PRIu64
" unknown. Can't send it.",
805 stream
->key
, stream
->net_seq_idx
);
810 DBG("Stream %s with key %" PRIu64
" sent to relayd id %" PRIu64
,
811 stream
->name
, stream
->key
, stream
->net_seq_idx
);
819 * Find a relayd and send the streams sent message
821 * Returns 0 on success, < 0 on error
823 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx
)
826 struct consumer_relayd_sock_pair
*relayd
;
828 assert(net_seq_idx
!= -1ULL);
830 /* The stream is not metadata. Get relayd reference if exists. */
832 relayd
= consumer_find_relayd(net_seq_idx
);
833 if (relayd
!= NULL
) {
834 /* Add stream on the relayd */
835 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
836 ret
= relayd_streams_sent(&relayd
->control_sock
);
837 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
842 ERR("Relayd ID %" PRIu64
" unknown. Can't send streams_sent.",
849 DBG("All streams sent relayd id %" PRIu64
, net_seq_idx
);
857 * Find a relayd and close the stream
859 void close_relayd_stream(struct lttng_consumer_stream
*stream
)
861 struct consumer_relayd_sock_pair
*relayd
;
863 /* The stream is not metadata. Get relayd reference if exists. */
865 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
867 consumer_stream_relayd_close(stream
, relayd
);
873 * Handle stream for relayd transmission if the stream applies for network
874 * streaming where the net sequence index is set.
876 * Return destination file descriptor or negative value on error.
878 static int write_relayd_stream_header(struct lttng_consumer_stream
*stream
,
879 size_t data_size
, unsigned long padding
,
880 struct consumer_relayd_sock_pair
*relayd
)
883 struct lttcomm_relayd_data_hdr data_hdr
;
889 /* Reset data header */
890 memset(&data_hdr
, 0, sizeof(data_hdr
));
892 if (stream
->metadata_flag
) {
893 /* Caller MUST acquire the relayd control socket lock */
894 ret
= relayd_send_metadata(&relayd
->control_sock
, data_size
);
899 /* Metadata are always sent on the control socket. */
900 outfd
= relayd
->control_sock
.sock
.fd
;
902 /* Set header with stream information */
903 data_hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
904 data_hdr
.data_size
= htobe32(data_size
);
905 data_hdr
.padding_size
= htobe32(padding
);
907 * Note that net_seq_num below is assigned with the *current* value of
908 * next_net_seq_num and only after that the next_net_seq_num will be
909 * increment. This is why when issuing a command on the relayd using
910 * this next value, 1 should always be substracted in order to compare
911 * the last seen sequence number on the relayd side to the last sent.
913 data_hdr
.net_seq_num
= htobe64(stream
->next_net_seq_num
);
914 /* Other fields are zeroed previously */
916 ret
= relayd_send_data_hdr(&relayd
->data_sock
, &data_hdr
,
922 ++stream
->next_net_seq_num
;
924 /* Set to go on data socket */
925 outfd
= relayd
->data_sock
.sock
.fd
;
933 * Allocate and return a new lttng_consumer_channel object using the given key
934 * to initialize the hash table node.
936 * On error, return NULL.
938 struct lttng_consumer_channel
*consumer_allocate_channel(uint64_t key
,
940 const char *pathname
,
945 enum lttng_event_output output
,
946 uint64_t tracefile_size
,
947 uint64_t tracefile_count
,
948 uint64_t session_id_per_pid
,
949 unsigned int monitor
,
950 unsigned int live_timer_interval
,
951 const char *root_shm_path
,
952 const char *shm_path
)
954 struct lttng_consumer_channel
*channel
;
956 channel
= zmalloc(sizeof(*channel
));
957 if (channel
== NULL
) {
958 PERROR("malloc struct lttng_consumer_channel");
963 channel
->refcount
= 0;
964 channel
->session_id
= session_id
;
965 channel
->session_id_per_pid
= session_id_per_pid
;
968 channel
->relayd_id
= relayd_id
;
969 channel
->tracefile_size
= tracefile_size
;
970 channel
->tracefile_count
= tracefile_count
;
971 channel
->monitor
= monitor
;
972 channel
->live_timer_interval
= live_timer_interval
;
973 pthread_mutex_init(&channel
->lock
, NULL
);
974 pthread_mutex_init(&channel
->timer_lock
, NULL
);
977 case LTTNG_EVENT_SPLICE
:
978 channel
->output
= CONSUMER_CHANNEL_SPLICE
;
980 case LTTNG_EVENT_MMAP
:
981 channel
->output
= CONSUMER_CHANNEL_MMAP
;
991 * In monitor mode, the streams associated with the channel will be put in
992 * a special list ONLY owned by this channel. So, the refcount is set to 1
993 * here meaning that the channel itself has streams that are referenced.
995 * On a channel deletion, once the channel is no longer visible, the
996 * refcount is decremented and checked for a zero value to delete it. With
997 * streams in no monitor mode, it will now be safe to destroy the channel.
999 if (!channel
->monitor
) {
1000 channel
->refcount
= 1;
1003 strncpy(channel
->pathname
, pathname
, sizeof(channel
->pathname
));
1004 channel
->pathname
[sizeof(channel
->pathname
) - 1] = '\0';
1006 strncpy(channel
->name
, name
, sizeof(channel
->name
));
1007 channel
->name
[sizeof(channel
->name
) - 1] = '\0';
1009 if (root_shm_path
) {
1010 strncpy(channel
->root_shm_path
, root_shm_path
, sizeof(channel
->root_shm_path
));
1011 channel
->root_shm_path
[sizeof(channel
->root_shm_path
) - 1] = '\0';
1014 strncpy(channel
->shm_path
, shm_path
, sizeof(channel
->shm_path
));
1015 channel
->shm_path
[sizeof(channel
->shm_path
) - 1] = '\0';
1018 lttng_ht_node_init_u64(&channel
->node
, channel
->key
);
1020 channel
->wait_fd
= -1;
1022 CDS_INIT_LIST_HEAD(&channel
->streams
.head
);
1024 DBG("Allocated channel (key %" PRIu64
")", channel
->key
)
1031 * Add a channel to the global list protected by a mutex.
1033 * Always return 0 indicating success.
1035 int consumer_add_channel(struct lttng_consumer_channel
*channel
,
1036 struct lttng_consumer_local_data
*ctx
)
1038 pthread_mutex_lock(&consumer_data
.lock
);
1039 pthread_mutex_lock(&channel
->lock
);
1040 pthread_mutex_lock(&channel
->timer_lock
);
1043 * This gives us a guarantee that the channel we are about to add to the
1044 * channel hash table will be unique. See this function comment on the why
1045 * we need to steel the channel key at this stage.
1047 steal_channel_key(channel
->key
);
1050 lttng_ht_add_unique_u64(consumer_data
.channel_ht
, &channel
->node
);
1053 pthread_mutex_unlock(&channel
->timer_lock
);
1054 pthread_mutex_unlock(&channel
->lock
);
1055 pthread_mutex_unlock(&consumer_data
.lock
);
1057 if (channel
->wait_fd
!= -1 && channel
->type
== CONSUMER_CHANNEL_TYPE_DATA
) {
1058 notify_channel_pipe(ctx
, channel
, -1, CONSUMER_CHANNEL_ADD
);
1065 * Allocate the pollfd structure and the local view of the out fds to avoid
1066 * doing a lookup in the linked list and concurrency issues when writing is
1067 * needed. Called with consumer_data.lock held.
1069 * Returns the number of fds in the structures.
1071 static int update_poll_array(struct lttng_consumer_local_data
*ctx
,
1072 struct pollfd
**pollfd
, struct lttng_consumer_stream
**local_stream
,
1073 struct lttng_ht
*ht
)
1076 struct lttng_ht_iter iter
;
1077 struct lttng_consumer_stream
*stream
;
1082 assert(local_stream
);
1084 DBG("Updating poll fd array");
1086 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1088 * Only active streams with an active end point can be added to the
1089 * poll set and local stream storage of the thread.
1091 * There is a potential race here for endpoint_status to be updated
1092 * just after the check. However, this is OK since the stream(s) will
1093 * be deleted once the thread is notified that the end point state has
1094 * changed where this function will be called back again.
1096 if (stream
->state
!= LTTNG_CONSUMER_ACTIVE_STREAM
||
1097 stream
->endpoint_status
== CONSUMER_ENDPOINT_INACTIVE
) {
1101 * This clobbers way too much the debug output. Uncomment that if you
1102 * need it for debugging purposes.
1104 * DBG("Active FD %d", stream->wait_fd);
1106 (*pollfd
)[i
].fd
= stream
->wait_fd
;
1107 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1108 local_stream
[i
] = stream
;
1114 * Insert the consumer_data_pipe at the end of the array and don't
1115 * increment i so nb_fd is the number of real FD.
1117 (*pollfd
)[i
].fd
= lttng_pipe_get_readfd(ctx
->consumer_data_pipe
);
1118 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1120 (*pollfd
)[i
+ 1].fd
= lttng_pipe_get_readfd(ctx
->consumer_wakeup_pipe
);
1121 (*pollfd
)[i
+ 1].events
= POLLIN
| POLLPRI
;
1126 * Poll on the should_quit pipe and the command socket return -1 on
1127 * error, 1 if should exit, 0 if data is available on the command socket
1129 int lttng_consumer_poll_socket(struct pollfd
*consumer_sockpoll
)
1134 num_rdy
= poll(consumer_sockpoll
, 2, -1);
1135 if (num_rdy
== -1) {
1137 * Restart interrupted system call.
1139 if (errno
== EINTR
) {
1142 PERROR("Poll error");
1145 if (consumer_sockpoll
[0].revents
& (POLLIN
| POLLPRI
)) {
1146 DBG("consumer_should_quit wake up");
1153 * Set the error socket.
1155 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data
*ctx
,
1158 ctx
->consumer_error_socket
= sock
;
1162 * Set the command socket path.
1164 void lttng_consumer_set_command_sock_path(
1165 struct lttng_consumer_local_data
*ctx
, char *sock
)
1167 ctx
->consumer_command_sock_path
= sock
;
1171 * Send return code to the session daemon.
1172 * If the socket is not defined, we return 0, it is not a fatal error
1174 int lttng_consumer_send_error(struct lttng_consumer_local_data
*ctx
, int cmd
)
1176 if (ctx
->consumer_error_socket
> 0) {
1177 return lttcomm_send_unix_sock(ctx
->consumer_error_socket
, &cmd
,
1178 sizeof(enum lttcomm_sessiond_command
));
1185 * Close all the tracefiles and stream fds and MUST be called when all
1186 * instances are destroyed i.e. when all threads were joined and are ended.
1188 void lttng_consumer_cleanup(void)
1190 struct lttng_ht_iter iter
;
1191 struct lttng_consumer_channel
*channel
;
1195 cds_lfht_for_each_entry(consumer_data
.channel_ht
->ht
, &iter
.iter
, channel
,
1197 consumer_del_channel(channel
);
1202 lttng_ht_destroy(consumer_data
.channel_ht
);
1204 cleanup_relayd_ht();
1206 lttng_ht_destroy(consumer_data
.stream_per_chan_id_ht
);
1209 * This HT contains streams that are freed by either the metadata thread or
1210 * the data thread so we do *nothing* on the hash table and simply destroy
1213 lttng_ht_destroy(consumer_data
.stream_list_ht
);
1217 * Called from signal handler.
1219 void lttng_consumer_should_exit(struct lttng_consumer_local_data
*ctx
)
1224 ret
= lttng_write(ctx
->consumer_should_quit
[1], "4", 1);
1226 PERROR("write consumer quit");
1229 DBG("Consumer flag that it should quit");
1232 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream
*stream
,
1235 int outfd
= stream
->out_fd
;
1238 * This does a blocking write-and-wait on any page that belongs to the
1239 * subbuffer prior to the one we just wrote.
1240 * Don't care about error values, as these are just hints and ways to
1241 * limit the amount of page cache used.
1243 if (orig_offset
< stream
->max_sb_size
) {
1246 lttng_sync_file_range(outfd
, orig_offset
- stream
->max_sb_size
,
1247 stream
->max_sb_size
,
1248 SYNC_FILE_RANGE_WAIT_BEFORE
1249 | SYNC_FILE_RANGE_WRITE
1250 | SYNC_FILE_RANGE_WAIT_AFTER
);
1252 * Give hints to the kernel about how we access the file:
1253 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1256 * We need to call fadvise again after the file grows because the
1257 * kernel does not seem to apply fadvise to non-existing parts of the
1260 * Call fadvise _after_ having waited for the page writeback to
1261 * complete because the dirty page writeback semantic is not well
1262 * defined. So it can be expected to lead to lower throughput in
1265 posix_fadvise(outfd
, orig_offset
- stream
->max_sb_size
,
1266 stream
->max_sb_size
, POSIX_FADV_DONTNEED
);
1270 * Initialise the necessary environnement :
1271 * - create a new context
1272 * - create the poll_pipe
1273 * - create the should_quit pipe (for signal handler)
1274 * - create the thread pipe (for splice)
1276 * Takes a function pointer as argument, this function is called when data is
1277 * available on a buffer. This function is responsible to do the
1278 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1279 * buffer configuration and then kernctl_put_next_subbuf at the end.
1281 * Returns a pointer to the new context or NULL on error.
1283 struct lttng_consumer_local_data
*lttng_consumer_create(
1284 enum lttng_consumer_type type
,
1285 ssize_t (*buffer_ready
)(struct lttng_consumer_stream
*stream
,
1286 struct lttng_consumer_local_data
*ctx
),
1287 int (*recv_channel
)(struct lttng_consumer_channel
*channel
),
1288 int (*recv_stream
)(struct lttng_consumer_stream
*stream
),
1289 int (*update_stream
)(uint64_t stream_key
, uint32_t state
))
1292 struct lttng_consumer_local_data
*ctx
;
1294 assert(consumer_data
.type
== LTTNG_CONSUMER_UNKNOWN
||
1295 consumer_data
.type
== type
);
1296 consumer_data
.type
= type
;
1298 ctx
= zmalloc(sizeof(struct lttng_consumer_local_data
));
1300 PERROR("allocating context");
1304 ctx
->consumer_error_socket
= -1;
1305 ctx
->consumer_metadata_socket
= -1;
1306 pthread_mutex_init(&ctx
->metadata_socket_lock
, NULL
);
1307 /* assign the callbacks */
1308 ctx
->on_buffer_ready
= buffer_ready
;
1309 ctx
->on_recv_channel
= recv_channel
;
1310 ctx
->on_recv_stream
= recv_stream
;
1311 ctx
->on_update_stream
= update_stream
;
1313 ctx
->consumer_data_pipe
= lttng_pipe_open(0);
1314 if (!ctx
->consumer_data_pipe
) {
1315 goto error_poll_pipe
;
1318 ctx
->consumer_wakeup_pipe
= lttng_pipe_open(0);
1319 if (!ctx
->consumer_wakeup_pipe
) {
1320 goto error_wakeup_pipe
;
1323 ret
= pipe(ctx
->consumer_should_quit
);
1325 PERROR("Error creating recv pipe");
1326 goto error_quit_pipe
;
1329 ret
= pipe(ctx
->consumer_channel_pipe
);
1331 PERROR("Error creating channel pipe");
1332 goto error_channel_pipe
;
1335 ctx
->consumer_metadata_pipe
= lttng_pipe_open(0);
1336 if (!ctx
->consumer_metadata_pipe
) {
1337 goto error_metadata_pipe
;
1342 error_metadata_pipe
:
1343 utils_close_pipe(ctx
->consumer_channel_pipe
);
1345 utils_close_pipe(ctx
->consumer_should_quit
);
1347 lttng_pipe_destroy(ctx
->consumer_wakeup_pipe
);
1349 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1357 * Iterate over all streams of the hashtable and free them properly.
1359 static void destroy_data_stream_ht(struct lttng_ht
*ht
)
1361 struct lttng_ht_iter iter
;
1362 struct lttng_consumer_stream
*stream
;
1369 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1371 * Ignore return value since we are currently cleaning up so any error
1374 (void) consumer_del_stream(stream
, ht
);
1378 lttng_ht_destroy(ht
);
1382 * Iterate over all streams of the metadata hashtable and free them
1385 static void destroy_metadata_stream_ht(struct lttng_ht
*ht
)
1387 struct lttng_ht_iter iter
;
1388 struct lttng_consumer_stream
*stream
;
1395 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1397 * Ignore return value since we are currently cleaning up so any error
1400 (void) consumer_del_metadata_stream(stream
, ht
);
1404 lttng_ht_destroy(ht
);
1408 * Close all fds associated with the instance and free the context.
1410 void lttng_consumer_destroy(struct lttng_consumer_local_data
*ctx
)
1414 DBG("Consumer destroying it. Closing everything.");
1420 destroy_data_stream_ht(data_ht
);
1421 destroy_metadata_stream_ht(metadata_ht
);
1423 ret
= close(ctx
->consumer_error_socket
);
1427 ret
= close(ctx
->consumer_metadata_socket
);
1431 utils_close_pipe(ctx
->consumer_channel_pipe
);
1432 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1433 lttng_pipe_destroy(ctx
->consumer_metadata_pipe
);
1434 lttng_pipe_destroy(ctx
->consumer_wakeup_pipe
);
1435 utils_close_pipe(ctx
->consumer_should_quit
);
1437 unlink(ctx
->consumer_command_sock_path
);
1442 * Write the metadata stream id on the specified file descriptor.
1444 static int write_relayd_metadata_id(int fd
,
1445 struct lttng_consumer_stream
*stream
,
1446 struct consumer_relayd_sock_pair
*relayd
, unsigned long padding
)
1449 struct lttcomm_relayd_metadata_payload hdr
;
1451 hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
1452 hdr
.padding_size
= htobe32(padding
);
1453 ret
= lttng_write(fd
, (void *) &hdr
, sizeof(hdr
));
1454 if (ret
< sizeof(hdr
)) {
1456 * This error means that the fd's end is closed so ignore the PERROR
1457 * not to clubber the error output since this can happen in a normal
1460 if (errno
!= EPIPE
) {
1461 PERROR("write metadata stream id");
1463 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno
);
1465 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1466 * handle writting the missing part so report that as an error and
1467 * don't lie to the caller.
1472 DBG("Metadata stream id %" PRIu64
" with padding %lu written before data",
1473 stream
->relayd_stream_id
, padding
);
1480 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1481 * core function for writing trace buffers to either the local filesystem or
1484 * It must be called with the stream lock held.
1486 * Careful review MUST be put if any changes occur!
1488 * Returns the number of bytes written
1490 ssize_t
lttng_consumer_on_read_subbuffer_mmap(
1491 struct lttng_consumer_local_data
*ctx
,
1492 struct lttng_consumer_stream
*stream
, unsigned long len
,
1493 unsigned long padding
,
1494 struct ctf_packet_index
*index
)
1496 unsigned long mmap_offset
;
1499 off_t orig_offset
= stream
->out_fd_offset
;
1500 /* Default is on the disk */
1501 int outfd
= stream
->out_fd
;
1502 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1503 unsigned int relayd_hang_up
= 0;
1505 /* RCU lock for the relayd pointer */
1508 /* Flag that the current stream if set for network streaming. */
1509 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1510 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1511 if (relayd
== NULL
) {
1517 /* get the offset inside the fd to mmap */
1518 switch (consumer_data
.type
) {
1519 case LTTNG_CONSUMER_KERNEL
:
1520 mmap_base
= stream
->mmap_base
;
1521 ret
= kernctl_get_mmap_read_offset(stream
->wait_fd
, &mmap_offset
);
1524 PERROR("tracer ctl get_mmap_read_offset");
1528 case LTTNG_CONSUMER32_UST
:
1529 case LTTNG_CONSUMER64_UST
:
1530 mmap_base
= lttng_ustctl_get_mmap_base(stream
);
1532 ERR("read mmap get mmap base for stream %s", stream
->name
);
1536 ret
= lttng_ustctl_get_mmap_read_offset(stream
, &mmap_offset
);
1538 PERROR("tracer ctl get_mmap_read_offset");
1544 ERR("Unknown consumer_data type");
1548 /* Handle stream on the relayd if the output is on the network */
1550 unsigned long netlen
= len
;
1553 * Lock the control socket for the complete duration of the function
1554 * since from this point on we will use the socket.
1556 if (stream
->metadata_flag
) {
1557 /* Metadata requires the control socket. */
1558 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1559 netlen
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1562 ret
= write_relayd_stream_header(stream
, netlen
, padding
, relayd
);
1567 /* Use the returned socket. */
1570 /* Write metadata stream id before payload */
1571 if (stream
->metadata_flag
) {
1572 ret
= write_relayd_metadata_id(outfd
, stream
, relayd
, padding
);
1579 /* No streaming, we have to set the len with the full padding */
1583 * Check if we need to change the tracefile before writing the packet.
1585 if (stream
->chan
->tracefile_size
> 0 &&
1586 (stream
->tracefile_size_current
+ len
) >
1587 stream
->chan
->tracefile_size
) {
1588 ret
= utils_rotate_stream_file(stream
->chan
->pathname
,
1589 stream
->name
, stream
->chan
->tracefile_size
,
1590 stream
->chan
->tracefile_count
, stream
->uid
, stream
->gid
,
1591 stream
->out_fd
, &(stream
->tracefile_count_current
),
1594 ERR("Rotating output file");
1597 outfd
= stream
->out_fd
;
1599 if (stream
->index_fd
>= 0) {
1600 ret
= index_create_file(stream
->chan
->pathname
,
1601 stream
->name
, stream
->uid
, stream
->gid
,
1602 stream
->chan
->tracefile_size
,
1603 stream
->tracefile_count_current
);
1607 stream
->index_fd
= ret
;
1610 /* Reset current size because we just perform a rotation. */
1611 stream
->tracefile_size_current
= 0;
1612 stream
->out_fd_offset
= 0;
1615 stream
->tracefile_size_current
+= len
;
1617 index
->offset
= htobe64(stream
->out_fd_offset
);
1622 * This call guarantee that len or less is returned. It's impossible to
1623 * receive a ret value that is bigger than len.
1625 ret
= lttng_write(outfd
, mmap_base
+ mmap_offset
, len
);
1626 DBG("Consumer mmap write() ret %zd (len %lu)", ret
, len
);
1627 if (ret
< 0 || ((size_t) ret
!= len
)) {
1629 * Report error to caller if nothing was written else at least send the
1637 /* Socket operation failed. We consider the relayd dead */
1638 if (errno
== EPIPE
|| errno
== EINVAL
|| errno
== EBADF
) {
1640 * This is possible if the fd is closed on the other side
1641 * (outfd) or any write problem. It can be verbose a bit for a
1642 * normal execution if for instance the relayd is stopped
1643 * abruptly. This can happen so set this to a DBG statement.
1645 DBG("Consumer mmap write detected relayd hang up");
1647 /* Unhandled error, print it and stop function right now. */
1648 PERROR("Error in write mmap (ret %zd != len %lu)", ret
, len
);
1652 stream
->output_written
+= ret
;
1654 /* This call is useless on a socket so better save a syscall. */
1656 /* This won't block, but will start writeout asynchronously */
1657 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, len
,
1658 SYNC_FILE_RANGE_WRITE
);
1659 stream
->out_fd_offset
+= len
;
1661 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1665 * This is a special case that the relayd has closed its socket. Let's
1666 * cleanup the relayd object and all associated streams.
1668 if (relayd
&& relayd_hang_up
) {
1669 cleanup_relayd(relayd
, ctx
);
1673 /* Unlock only if ctrl socket used */
1674 if (relayd
&& stream
->metadata_flag
) {
1675 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1683 * Splice the data from the ring buffer to the tracefile.
1685 * It must be called with the stream lock held.
1687 * Returns the number of bytes spliced.
1689 ssize_t
lttng_consumer_on_read_subbuffer_splice(
1690 struct lttng_consumer_local_data
*ctx
,
1691 struct lttng_consumer_stream
*stream
, unsigned long len
,
1692 unsigned long padding
,
1693 struct ctf_packet_index
*index
)
1695 ssize_t ret
= 0, written
= 0, ret_splice
= 0;
1697 off_t orig_offset
= stream
->out_fd_offset
;
1698 int fd
= stream
->wait_fd
;
1699 /* Default is on the disk */
1700 int outfd
= stream
->out_fd
;
1701 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1703 unsigned int relayd_hang_up
= 0;
1705 switch (consumer_data
.type
) {
1706 case LTTNG_CONSUMER_KERNEL
:
1708 case LTTNG_CONSUMER32_UST
:
1709 case LTTNG_CONSUMER64_UST
:
1710 /* Not supported for user space tracing */
1713 ERR("Unknown consumer_data type");
1717 /* RCU lock for the relayd pointer */
1720 /* Flag that the current stream if set for network streaming. */
1721 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1722 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1723 if (relayd
== NULL
) {
1728 splice_pipe
= stream
->splice_pipe
;
1730 /* Write metadata stream id before payload */
1732 unsigned long total_len
= len
;
1734 if (stream
->metadata_flag
) {
1736 * Lock the control socket for the complete duration of the function
1737 * since from this point on we will use the socket.
1739 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1741 ret
= write_relayd_metadata_id(splice_pipe
[1], stream
, relayd
,
1749 total_len
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1752 ret
= write_relayd_stream_header(stream
, total_len
, padding
, relayd
);
1758 /* Use the returned socket. */
1761 /* No streaming, we have to set the len with the full padding */
1765 * Check if we need to change the tracefile before writing the packet.
1767 if (stream
->chan
->tracefile_size
> 0 &&
1768 (stream
->tracefile_size_current
+ len
) >
1769 stream
->chan
->tracefile_size
) {
1770 ret
= utils_rotate_stream_file(stream
->chan
->pathname
,
1771 stream
->name
, stream
->chan
->tracefile_size
,
1772 stream
->chan
->tracefile_count
, stream
->uid
, stream
->gid
,
1773 stream
->out_fd
, &(stream
->tracefile_count_current
),
1777 ERR("Rotating output file");
1780 outfd
= stream
->out_fd
;
1782 if (stream
->index_fd
>= 0) {
1783 ret
= index_create_file(stream
->chan
->pathname
,
1784 stream
->name
, stream
->uid
, stream
->gid
,
1785 stream
->chan
->tracefile_size
,
1786 stream
->tracefile_count_current
);
1791 stream
->index_fd
= ret
;
1794 /* Reset current size because we just perform a rotation. */
1795 stream
->tracefile_size_current
= 0;
1796 stream
->out_fd_offset
= 0;
1799 stream
->tracefile_size_current
+= len
;
1800 index
->offset
= htobe64(stream
->out_fd_offset
);
1804 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1805 (unsigned long)offset
, len
, fd
, splice_pipe
[1]);
1806 ret_splice
= splice(fd
, &offset
, splice_pipe
[1], NULL
, len
,
1807 SPLICE_F_MOVE
| SPLICE_F_MORE
);
1808 DBG("splice chan to pipe, ret %zd", ret_splice
);
1809 if (ret_splice
< 0) {
1812 PERROR("Error in relay splice");
1816 /* Handle stream on the relayd if the output is on the network */
1817 if (relayd
&& stream
->metadata_flag
) {
1818 size_t metadata_payload_size
=
1819 sizeof(struct lttcomm_relayd_metadata_payload
);
1821 /* Update counter to fit the spliced data */
1822 ret_splice
+= metadata_payload_size
;
1823 len
+= metadata_payload_size
;
1825 * We do this so the return value can match the len passed as
1826 * argument to this function.
1828 written
-= metadata_payload_size
;
1831 /* Splice data out */
1832 ret_splice
= splice(splice_pipe
[0], NULL
, outfd
, NULL
,
1833 ret_splice
, SPLICE_F_MOVE
| SPLICE_F_MORE
);
1834 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1836 if (ret_splice
< 0) {
1841 } else if (ret_splice
> len
) {
1843 * We don't expect this code path to be executed but you never know
1844 * so this is an extra protection agains a buggy splice().
1847 written
+= ret_splice
;
1848 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice
,
1852 /* All good, update current len and continue. */
1856 /* This call is useless on a socket so better save a syscall. */
1858 /* This won't block, but will start writeout asynchronously */
1859 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret_splice
,
1860 SYNC_FILE_RANGE_WRITE
);
1861 stream
->out_fd_offset
+= ret_splice
;
1863 stream
->output_written
+= ret_splice
;
1864 written
+= ret_splice
;
1866 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1871 * This is a special case that the relayd has closed its socket. Let's
1872 * cleanup the relayd object and all associated streams.
1874 if (relayd
&& relayd_hang_up
) {
1875 cleanup_relayd(relayd
, ctx
);
1876 /* Skip splice error so the consumer does not fail */
1881 /* send the appropriate error description to sessiond */
1884 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_EINVAL
);
1887 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ENOMEM
);
1890 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ESPIPE
);
1895 if (relayd
&& stream
->metadata_flag
) {
1896 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1904 * Take a snapshot for a specific fd
1906 * Returns 0 on success, < 0 on error
1908 int lttng_consumer_take_snapshot(struct lttng_consumer_stream
*stream
)
1910 switch (consumer_data
.type
) {
1911 case LTTNG_CONSUMER_KERNEL
:
1912 return lttng_kconsumer_take_snapshot(stream
);
1913 case LTTNG_CONSUMER32_UST
:
1914 case LTTNG_CONSUMER64_UST
:
1915 return lttng_ustconsumer_take_snapshot(stream
);
1917 ERR("Unknown consumer_data type");
1924 * Get the produced position
1926 * Returns 0 on success, < 0 on error
1928 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream
*stream
,
1931 switch (consumer_data
.type
) {
1932 case LTTNG_CONSUMER_KERNEL
:
1933 return lttng_kconsumer_get_produced_snapshot(stream
, pos
);
1934 case LTTNG_CONSUMER32_UST
:
1935 case LTTNG_CONSUMER64_UST
:
1936 return lttng_ustconsumer_get_produced_snapshot(stream
, pos
);
1938 ERR("Unknown consumer_data type");
1944 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data
*ctx
,
1945 int sock
, struct pollfd
*consumer_sockpoll
)
1947 switch (consumer_data
.type
) {
1948 case LTTNG_CONSUMER_KERNEL
:
1949 return lttng_kconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1950 case LTTNG_CONSUMER32_UST
:
1951 case LTTNG_CONSUMER64_UST
:
1952 return lttng_ustconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1954 ERR("Unknown consumer_data type");
1960 void lttng_consumer_close_all_metadata(void)
1962 switch (consumer_data
.type
) {
1963 case LTTNG_CONSUMER_KERNEL
:
1965 * The Kernel consumer has a different metadata scheme so we don't
1966 * close anything because the stream will be closed by the session
1970 case LTTNG_CONSUMER32_UST
:
1971 case LTTNG_CONSUMER64_UST
:
1973 * Close all metadata streams. The metadata hash table is passed and
1974 * this call iterates over it by closing all wakeup fd. This is safe
1975 * because at this point we are sure that the metadata producer is
1976 * either dead or blocked.
1978 lttng_ustconsumer_close_all_metadata(metadata_ht
);
1981 ERR("Unknown consumer_data type");
1987 * Clean up a metadata stream and free its memory.
1989 void consumer_del_metadata_stream(struct lttng_consumer_stream
*stream
,
1990 struct lttng_ht
*ht
)
1992 struct lttng_consumer_channel
*free_chan
= NULL
;
1996 * This call should NEVER receive regular stream. It must always be
1997 * metadata stream and this is crucial for data structure synchronization.
1999 assert(stream
->metadata_flag
);
2001 DBG3("Consumer delete metadata stream %d", stream
->wait_fd
);
2003 pthread_mutex_lock(&consumer_data
.lock
);
2004 pthread_mutex_lock(&stream
->chan
->lock
);
2005 pthread_mutex_lock(&stream
->lock
);
2007 /* Remove any reference to that stream. */
2008 consumer_stream_delete(stream
, ht
);
2010 /* Close down everything including the relayd if one. */
2011 consumer_stream_close(stream
);
2012 /* Destroy tracer buffers of the stream. */
2013 consumer_stream_destroy_buffers(stream
);
2015 /* Atomically decrement channel refcount since other threads can use it. */
2016 if (!uatomic_sub_return(&stream
->chan
->refcount
, 1)
2017 && !uatomic_read(&stream
->chan
->nb_init_stream_left
)) {
2018 /* Go for channel deletion! */
2019 free_chan
= stream
->chan
;
2023 * Nullify the stream reference so it is not used after deletion. The
2024 * channel lock MUST be acquired before being able to check for a NULL
2027 stream
->chan
->metadata_stream
= NULL
;
2029 pthread_mutex_unlock(&stream
->lock
);
2030 pthread_mutex_unlock(&stream
->chan
->lock
);
2031 pthread_mutex_unlock(&consumer_data
.lock
);
2034 consumer_del_channel(free_chan
);
2037 consumer_stream_free(stream
);
2041 * Action done with the metadata stream when adding it to the consumer internal
2042 * data structures to handle it.
2044 int consumer_add_metadata_stream(struct lttng_consumer_stream
*stream
)
2046 struct lttng_ht
*ht
= metadata_ht
;
2048 struct lttng_ht_iter iter
;
2049 struct lttng_ht_node_u64
*node
;
2054 DBG3("Adding metadata stream %" PRIu64
" to hash table", stream
->key
);
2056 pthread_mutex_lock(&consumer_data
.lock
);
2057 pthread_mutex_lock(&stream
->chan
->lock
);
2058 pthread_mutex_lock(&stream
->chan
->timer_lock
);
2059 pthread_mutex_lock(&stream
->lock
);
2062 * From here, refcounts are updated so be _careful_ when returning an error
2069 * Lookup the stream just to make sure it does not exist in our internal
2070 * state. This should NEVER happen.
2072 lttng_ht_lookup(ht
, &stream
->key
, &iter
);
2073 node
= lttng_ht_iter_get_node_u64(&iter
);
2077 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2078 * in terms of destroying the associated channel, because the action that
2079 * causes the count to become 0 also causes a stream to be added. The
2080 * channel deletion will thus be triggered by the following removal of this
2083 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
2084 /* Increment refcount before decrementing nb_init_stream_left */
2086 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
2089 lttng_ht_add_unique_u64(ht
, &stream
->node
);
2091 lttng_ht_add_unique_u64(consumer_data
.stream_per_chan_id_ht
,
2092 &stream
->node_channel_id
);
2095 * Add stream to the stream_list_ht of the consumer data. No need to steal
2096 * the key since the HT does not use it and we allow to add redundant keys
2099 lttng_ht_add_u64(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
2103 pthread_mutex_unlock(&stream
->lock
);
2104 pthread_mutex_unlock(&stream
->chan
->lock
);
2105 pthread_mutex_unlock(&stream
->chan
->timer_lock
);
2106 pthread_mutex_unlock(&consumer_data
.lock
);
2111 * Delete data stream that are flagged for deletion (endpoint_status).
2113 static void validate_endpoint_status_data_stream(void)
2115 struct lttng_ht_iter iter
;
2116 struct lttng_consumer_stream
*stream
;
2118 DBG("Consumer delete flagged data stream");
2121 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2122 /* Validate delete flag of the stream */
2123 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2126 /* Delete it right now */
2127 consumer_del_stream(stream
, data_ht
);
2133 * Delete metadata stream that are flagged for deletion (endpoint_status).
2135 static void validate_endpoint_status_metadata_stream(
2136 struct lttng_poll_event
*pollset
)
2138 struct lttng_ht_iter iter
;
2139 struct lttng_consumer_stream
*stream
;
2141 DBG("Consumer delete flagged metadata stream");
2146 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2147 /* Validate delete flag of the stream */
2148 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2152 * Remove from pollset so the metadata thread can continue without
2153 * blocking on a deleted stream.
2155 lttng_poll_del(pollset
, stream
->wait_fd
);
2157 /* Delete it right now */
2158 consumer_del_metadata_stream(stream
, metadata_ht
);
2164 * Thread polls on metadata file descriptor and write them on disk or on the
2167 void *consumer_thread_metadata_poll(void *data
)
2169 int ret
, i
, pollfd
, err
= -1;
2170 uint32_t revents
, nb_fd
;
2171 struct lttng_consumer_stream
*stream
= NULL
;
2172 struct lttng_ht_iter iter
;
2173 struct lttng_ht_node_u64
*node
;
2174 struct lttng_poll_event events
;
2175 struct lttng_consumer_local_data
*ctx
= data
;
2178 rcu_register_thread();
2180 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_METADATA
);
2182 if (testpoint(consumerd_thread_metadata
)) {
2183 goto error_testpoint
;
2186 health_code_update();
2188 DBG("Thread metadata poll started");
2190 /* Size is set to 1 for the consumer_metadata pipe */
2191 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2193 ERR("Poll set creation failed");
2197 ret
= lttng_poll_add(&events
,
2198 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
), LPOLLIN
);
2204 DBG("Metadata main loop started");
2208 health_code_update();
2209 health_poll_entry();
2210 DBG("Metadata poll wait");
2211 ret
= lttng_poll_wait(&events
, -1);
2212 DBG("Metadata poll return from wait with %d fd(s)",
2213 LTTNG_POLL_GETNB(&events
));
2215 DBG("Metadata event catched in thread");
2217 if (errno
== EINTR
) {
2218 ERR("Poll EINTR catched");
2221 if (LTTNG_POLL_GETNB(&events
) == 0) {
2222 err
= 0; /* All is OK */
2229 /* From here, the event is a metadata wait fd */
2230 for (i
= 0; i
< nb_fd
; i
++) {
2231 health_code_update();
2233 revents
= LTTNG_POLL_GETEV(&events
, i
);
2234 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2237 /* No activity for this FD (poll implementation). */
2241 if (pollfd
== lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
)) {
2242 if (revents
& LPOLLIN
) {
2245 pipe_len
= lttng_pipe_read(ctx
->consumer_metadata_pipe
,
2246 &stream
, sizeof(stream
));
2247 if (pipe_len
< sizeof(stream
)) {
2249 PERROR("read metadata stream");
2252 * Remove the pipe from the poll set and continue the loop
2253 * since their might be data to consume.
2255 lttng_poll_del(&events
,
2256 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
));
2257 lttng_pipe_read_close(ctx
->consumer_metadata_pipe
);
2261 /* A NULL stream means that the state has changed. */
2262 if (stream
== NULL
) {
2263 /* Check for deleted streams. */
2264 validate_endpoint_status_metadata_stream(&events
);
2268 DBG("Adding metadata stream %d to poll set",
2271 /* Add metadata stream to the global poll events list */
2272 lttng_poll_add(&events
, stream
->wait_fd
,
2273 LPOLLIN
| LPOLLPRI
| LPOLLHUP
);
2274 } else if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2275 DBG("Metadata thread pipe hung up");
2277 * Remove the pipe from the poll set and continue the loop
2278 * since their might be data to consume.
2280 lttng_poll_del(&events
,
2281 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
));
2282 lttng_pipe_read_close(ctx
->consumer_metadata_pipe
);
2285 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
2289 /* Handle other stream */
2295 uint64_t tmp_id
= (uint64_t) pollfd
;
2297 lttng_ht_lookup(metadata_ht
, &tmp_id
, &iter
);
2299 node
= lttng_ht_iter_get_node_u64(&iter
);
2302 stream
= caa_container_of(node
, struct lttng_consumer_stream
,
2305 if (revents
& (LPOLLIN
| LPOLLPRI
)) {
2306 /* Get the data out of the metadata file descriptor */
2307 DBG("Metadata available on fd %d", pollfd
);
2308 assert(stream
->wait_fd
== pollfd
);
2311 health_code_update();
2313 len
= ctx
->on_buffer_ready(stream
, ctx
);
2315 * We don't check the return value here since if we get
2316 * a negative len, it means an error occured thus we
2317 * simply remove it from the poll set and free the
2322 /* It's ok to have an unavailable sub-buffer */
2323 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2324 /* Clean up stream from consumer and free it. */
2325 lttng_poll_del(&events
, stream
->wait_fd
);
2326 consumer_del_metadata_stream(stream
, metadata_ht
);
2328 } else if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2329 DBG("Metadata fd %d is hup|err.", pollfd
);
2330 if (!stream
->hangup_flush_done
2331 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2332 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2333 DBG("Attempting to flush and consume the UST buffers");
2334 lttng_ustconsumer_on_stream_hangup(stream
);
2336 /* We just flushed the stream now read it. */
2338 health_code_update();
2340 len
= ctx
->on_buffer_ready(stream
, ctx
);
2342 * We don't check the return value here since if we get
2343 * a negative len, it means an error occured thus we
2344 * simply remove it from the poll set and free the
2350 lttng_poll_del(&events
, stream
->wait_fd
);
2352 * This call update the channel states, closes file descriptors
2353 * and securely free the stream.
2355 consumer_del_metadata_stream(stream
, metadata_ht
);
2357 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
2361 /* Release RCU lock for the stream looked up */
2369 DBG("Metadata poll thread exiting");
2371 lttng_poll_clean(&events
);
2376 ERR("Health error occurred in %s", __func__
);
2378 health_unregister(health_consumerd
);
2379 rcu_unregister_thread();
2384 * This thread polls the fds in the set to consume the data and write
2385 * it to tracefile if necessary.
2387 void *consumer_thread_data_poll(void *data
)
2389 int num_rdy
, num_hup
, high_prio
, ret
, i
, err
= -1;
2390 struct pollfd
*pollfd
= NULL
;
2391 /* local view of the streams */
2392 struct lttng_consumer_stream
**local_stream
= NULL
, *new_stream
= NULL
;
2393 /* local view of consumer_data.fds_count */
2395 struct lttng_consumer_local_data
*ctx
= data
;
2398 rcu_register_thread();
2400 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_DATA
);
2402 if (testpoint(consumerd_thread_data
)) {
2403 goto error_testpoint
;
2406 health_code_update();
2408 local_stream
= zmalloc(sizeof(struct lttng_consumer_stream
*));
2409 if (local_stream
== NULL
) {
2410 PERROR("local_stream malloc");
2415 health_code_update();
2421 * the fds set has been updated, we need to update our
2422 * local array as well
2424 pthread_mutex_lock(&consumer_data
.lock
);
2425 if (consumer_data
.need_update
) {
2430 local_stream
= NULL
;
2433 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2436 pollfd
= zmalloc((consumer_data
.stream_count
+ 2) * sizeof(struct pollfd
));
2437 if (pollfd
== NULL
) {
2438 PERROR("pollfd malloc");
2439 pthread_mutex_unlock(&consumer_data
.lock
);
2443 local_stream
= zmalloc((consumer_data
.stream_count
+ 2) *
2444 sizeof(struct lttng_consumer_stream
*));
2445 if (local_stream
== NULL
) {
2446 PERROR("local_stream malloc");
2447 pthread_mutex_unlock(&consumer_data
.lock
);
2450 ret
= update_poll_array(ctx
, &pollfd
, local_stream
,
2453 ERR("Error in allocating pollfd or local_outfds");
2454 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2455 pthread_mutex_unlock(&consumer_data
.lock
);
2459 consumer_data
.need_update
= 0;
2461 pthread_mutex_unlock(&consumer_data
.lock
);
2463 /* No FDs and consumer_quit, consumer_cleanup the thread */
2464 if (nb_fd
== 0 && consumer_quit
== 1) {
2465 err
= 0; /* All is OK */
2468 /* poll on the array of fds */
2470 DBG("polling on %d fd", nb_fd
+ 2);
2471 health_poll_entry();
2472 num_rdy
= poll(pollfd
, nb_fd
+ 2, -1);
2474 DBG("poll num_rdy : %d", num_rdy
);
2475 if (num_rdy
== -1) {
2477 * Restart interrupted system call.
2479 if (errno
== EINTR
) {
2482 PERROR("Poll error");
2483 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2485 } else if (num_rdy
== 0) {
2486 DBG("Polling thread timed out");
2491 * If the consumer_data_pipe triggered poll go directly to the
2492 * beginning of the loop to update the array. We want to prioritize
2493 * array update over low-priority reads.
2495 if (pollfd
[nb_fd
].revents
& (POLLIN
| POLLPRI
)) {
2496 ssize_t pipe_readlen
;
2498 DBG("consumer_data_pipe wake up");
2499 pipe_readlen
= lttng_pipe_read(ctx
->consumer_data_pipe
,
2500 &new_stream
, sizeof(new_stream
));
2501 if (pipe_readlen
< sizeof(new_stream
)) {
2502 PERROR("Consumer data pipe");
2503 /* Continue so we can at least handle the current stream(s). */
2508 * If the stream is NULL, just ignore it. It's also possible that
2509 * the sessiond poll thread changed the consumer_quit state and is
2510 * waking us up to test it.
2512 if (new_stream
== NULL
) {
2513 validate_endpoint_status_data_stream();
2517 /* Continue to update the local streams and handle prio ones */
2521 /* Handle wakeup pipe. */
2522 if (pollfd
[nb_fd
+ 1].revents
& (POLLIN
| POLLPRI
)) {
2524 ssize_t pipe_readlen
;
2526 pipe_readlen
= lttng_pipe_read(ctx
->consumer_wakeup_pipe
, &dummy
,
2528 if (pipe_readlen
< 0) {
2529 PERROR("Consumer data wakeup pipe");
2531 /* We've been awakened to handle stream(s). */
2532 ctx
->has_wakeup
= 0;
2535 /* Take care of high priority channels first. */
2536 for (i
= 0; i
< nb_fd
; i
++) {
2537 health_code_update();
2539 if (local_stream
[i
] == NULL
) {
2542 if (pollfd
[i
].revents
& POLLPRI
) {
2543 DBG("Urgent read on fd %d", pollfd
[i
].fd
);
2545 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2546 /* it's ok to have an unavailable sub-buffer */
2547 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2548 /* Clean the stream and free it. */
2549 consumer_del_stream(local_stream
[i
], data_ht
);
2550 local_stream
[i
] = NULL
;
2551 } else if (len
> 0) {
2552 local_stream
[i
]->data_read
= 1;
2558 * If we read high prio channel in this loop, try again
2559 * for more high prio data.
2565 /* Take care of low priority channels. */
2566 for (i
= 0; i
< nb_fd
; i
++) {
2567 health_code_update();
2569 if (local_stream
[i
] == NULL
) {
2572 if ((pollfd
[i
].revents
& POLLIN
) ||
2573 local_stream
[i
]->hangup_flush_done
||
2574 local_stream
[i
]->has_data
) {
2575 DBG("Normal read on fd %d", pollfd
[i
].fd
);
2576 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2577 /* it's ok to have an unavailable sub-buffer */
2578 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2579 /* Clean the stream and free it. */
2580 consumer_del_stream(local_stream
[i
], data_ht
);
2581 local_stream
[i
] = NULL
;
2582 } else if (len
> 0) {
2583 local_stream
[i
]->data_read
= 1;
2588 /* Handle hangup and errors */
2589 for (i
= 0; i
< nb_fd
; i
++) {
2590 health_code_update();
2592 if (local_stream
[i
] == NULL
) {
2595 if (!local_stream
[i
]->hangup_flush_done
2596 && (pollfd
[i
].revents
& (POLLHUP
| POLLERR
| POLLNVAL
))
2597 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2598 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2599 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2601 lttng_ustconsumer_on_stream_hangup(local_stream
[i
]);
2602 /* Attempt read again, for the data we just flushed. */
2603 local_stream
[i
]->data_read
= 1;
2606 * If the poll flag is HUP/ERR/NVAL and we have
2607 * read no data in this pass, we can remove the
2608 * stream from its hash table.
2610 if ((pollfd
[i
].revents
& POLLHUP
)) {
2611 DBG("Polling fd %d tells it has hung up.", pollfd
[i
].fd
);
2612 if (!local_stream
[i
]->data_read
) {
2613 consumer_del_stream(local_stream
[i
], data_ht
);
2614 local_stream
[i
] = NULL
;
2617 } else if (pollfd
[i
].revents
& POLLERR
) {
2618 ERR("Error returned in polling fd %d.", pollfd
[i
].fd
);
2619 if (!local_stream
[i
]->data_read
) {
2620 consumer_del_stream(local_stream
[i
], data_ht
);
2621 local_stream
[i
] = NULL
;
2624 } else if (pollfd
[i
].revents
& POLLNVAL
) {
2625 ERR("Polling fd %d tells fd is not open.", pollfd
[i
].fd
);
2626 if (!local_stream
[i
]->data_read
) {
2627 consumer_del_stream(local_stream
[i
], data_ht
);
2628 local_stream
[i
] = NULL
;
2632 if (local_stream
[i
] != NULL
) {
2633 local_stream
[i
]->data_read
= 0;
2640 DBG("polling thread exiting");
2645 * Close the write side of the pipe so epoll_wait() in
2646 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2647 * read side of the pipe. If we close them both, epoll_wait strangely does
2648 * not return and could create a endless wait period if the pipe is the
2649 * only tracked fd in the poll set. The thread will take care of closing
2652 (void) lttng_pipe_write_close(ctx
->consumer_metadata_pipe
);
2657 ERR("Health error occurred in %s", __func__
);
2659 health_unregister(health_consumerd
);
2661 rcu_unregister_thread();
2666 * Close wake-up end of each stream belonging to the channel. This will
2667 * allow the poll() on the stream read-side to detect when the
2668 * write-side (application) finally closes them.
2671 void consumer_close_channel_streams(struct lttng_consumer_channel
*channel
)
2673 struct lttng_ht
*ht
;
2674 struct lttng_consumer_stream
*stream
;
2675 struct lttng_ht_iter iter
;
2677 ht
= consumer_data
.stream_per_chan_id_ht
;
2680 cds_lfht_for_each_entry_duplicate(ht
->ht
,
2681 ht
->hash_fct(&channel
->key
, lttng_ht_seed
),
2682 ht
->match_fct
, &channel
->key
,
2683 &iter
.iter
, stream
, node_channel_id
.node
) {
2685 * Protect against teardown with mutex.
2687 pthread_mutex_lock(&stream
->lock
);
2688 if (cds_lfht_is_node_deleted(&stream
->node
.node
)) {
2691 switch (consumer_data
.type
) {
2692 case LTTNG_CONSUMER_KERNEL
:
2694 case LTTNG_CONSUMER32_UST
:
2695 case LTTNG_CONSUMER64_UST
:
2696 if (stream
->metadata_flag
) {
2697 /* Safe and protected by the stream lock. */
2698 lttng_ustconsumer_close_metadata(stream
->chan
);
2701 * Note: a mutex is taken internally within
2702 * liblttng-ust-ctl to protect timer wakeup_fd
2703 * use from concurrent close.
2705 lttng_ustconsumer_close_stream_wakeup(stream
);
2709 ERR("Unknown consumer_data type");
2713 pthread_mutex_unlock(&stream
->lock
);
2718 static void destroy_channel_ht(struct lttng_ht
*ht
)
2720 struct lttng_ht_iter iter
;
2721 struct lttng_consumer_channel
*channel
;
2729 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, channel
, wait_fd_node
.node
) {
2730 ret
= lttng_ht_del(ht
, &iter
);
2735 lttng_ht_destroy(ht
);
2739 * This thread polls the channel fds to detect when they are being
2740 * closed. It closes all related streams if the channel is detected as
2741 * closed. It is currently only used as a shim layer for UST because the
2742 * consumerd needs to keep the per-stream wakeup end of pipes open for
2745 void *consumer_thread_channel_poll(void *data
)
2747 int ret
, i
, pollfd
, err
= -1;
2748 uint32_t revents
, nb_fd
;
2749 struct lttng_consumer_channel
*chan
= NULL
;
2750 struct lttng_ht_iter iter
;
2751 struct lttng_ht_node_u64
*node
;
2752 struct lttng_poll_event events
;
2753 struct lttng_consumer_local_data
*ctx
= data
;
2754 struct lttng_ht
*channel_ht
;
2756 rcu_register_thread();
2758 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_CHANNEL
);
2760 if (testpoint(consumerd_thread_channel
)) {
2761 goto error_testpoint
;
2764 health_code_update();
2766 channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
2768 /* ENOMEM at this point. Better to bail out. */
2772 DBG("Thread channel poll started");
2774 /* Size is set to 1 for the consumer_channel pipe */
2775 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2777 ERR("Poll set creation failed");
2781 ret
= lttng_poll_add(&events
, ctx
->consumer_channel_pipe
[0], LPOLLIN
);
2787 DBG("Channel main loop started");
2791 health_code_update();
2792 DBG("Channel poll wait");
2793 health_poll_entry();
2794 ret
= lttng_poll_wait(&events
, -1);
2795 DBG("Channel poll return from wait with %d fd(s)",
2796 LTTNG_POLL_GETNB(&events
));
2798 DBG("Channel event catched in thread");
2800 if (errno
== EINTR
) {
2801 ERR("Poll EINTR catched");
2804 if (LTTNG_POLL_GETNB(&events
) == 0) {
2805 err
= 0; /* All is OK */
2812 /* From here, the event is a channel wait fd */
2813 for (i
= 0; i
< nb_fd
; i
++) {
2814 health_code_update();
2816 revents
= LTTNG_POLL_GETEV(&events
, i
);
2817 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2820 /* No activity for this FD (poll implementation). */
2824 if (pollfd
== ctx
->consumer_channel_pipe
[0]) {
2825 if (revents
& LPOLLIN
) {
2826 enum consumer_channel_action action
;
2829 ret
= read_channel_pipe(ctx
, &chan
, &key
, &action
);
2832 ERR("Error reading channel pipe");
2834 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
2839 case CONSUMER_CHANNEL_ADD
:
2840 DBG("Adding channel %d to poll set",
2843 lttng_ht_node_init_u64(&chan
->wait_fd_node
,
2846 lttng_ht_add_unique_u64(channel_ht
,
2847 &chan
->wait_fd_node
);
2849 /* Add channel to the global poll events list */
2850 lttng_poll_add(&events
, chan
->wait_fd
,
2851 LPOLLERR
| LPOLLHUP
);
2853 case CONSUMER_CHANNEL_DEL
:
2856 * This command should never be called if the channel
2857 * has streams monitored by either the data or metadata
2858 * thread. The consumer only notify this thread with a
2859 * channel del. command if it receives a destroy
2860 * channel command from the session daemon that send it
2861 * if a command prior to the GET_CHANNEL failed.
2865 chan
= consumer_find_channel(key
);
2868 ERR("UST consumer get channel key %" PRIu64
" not found for del channel", key
);
2871 lttng_poll_del(&events
, chan
->wait_fd
);
2872 iter
.iter
.node
= &chan
->wait_fd_node
.node
;
2873 ret
= lttng_ht_del(channel_ht
, &iter
);
2876 switch (consumer_data
.type
) {
2877 case LTTNG_CONSUMER_KERNEL
:
2879 case LTTNG_CONSUMER32_UST
:
2880 case LTTNG_CONSUMER64_UST
:
2881 health_code_update();
2882 /* Destroy streams that might have been left in the stream list. */
2883 clean_channel_stream_list(chan
);
2886 ERR("Unknown consumer_data type");
2891 * Release our own refcount. Force channel deletion even if
2892 * streams were not initialized.
2894 if (!uatomic_sub_return(&chan
->refcount
, 1)) {
2895 consumer_del_channel(chan
);
2900 case CONSUMER_CHANNEL_QUIT
:
2902 * Remove the pipe from the poll set and continue the loop
2903 * since their might be data to consume.
2905 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
2908 ERR("Unknown action");
2911 } else if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2912 DBG("Channel thread pipe hung up");
2914 * Remove the pipe from the poll set and continue the loop
2915 * since their might be data to consume.
2917 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
2920 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
2924 /* Handle other stream */
2930 uint64_t tmp_id
= (uint64_t) pollfd
;
2932 lttng_ht_lookup(channel_ht
, &tmp_id
, &iter
);
2934 node
= lttng_ht_iter_get_node_u64(&iter
);
2937 chan
= caa_container_of(node
, struct lttng_consumer_channel
,
2940 /* Check for error event */
2941 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2942 DBG("Channel fd %d is hup|err.", pollfd
);
2944 lttng_poll_del(&events
, chan
->wait_fd
);
2945 ret
= lttng_ht_del(channel_ht
, &iter
);
2949 * This will close the wait fd for each stream associated to
2950 * this channel AND monitored by the data/metadata thread thus
2951 * will be clean by the right thread.
2953 consumer_close_channel_streams(chan
);
2955 /* Release our own refcount */
2956 if (!uatomic_sub_return(&chan
->refcount
, 1)
2957 && !uatomic_read(&chan
->nb_init_stream_left
)) {
2958 consumer_del_channel(chan
);
2961 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
2966 /* Release RCU lock for the channel looked up */
2974 lttng_poll_clean(&events
);
2976 destroy_channel_ht(channel_ht
);
2979 DBG("Channel poll thread exiting");
2982 ERR("Health error occurred in %s", __func__
);
2984 health_unregister(health_consumerd
);
2985 rcu_unregister_thread();
2989 static int set_metadata_socket(struct lttng_consumer_local_data
*ctx
,
2990 struct pollfd
*sockpoll
, int client_socket
)
2997 ret
= lttng_consumer_poll_socket(sockpoll
);
3001 DBG("Metadata connection on client_socket");
3003 /* Blocking call, waiting for transmission */
3004 ctx
->consumer_metadata_socket
= lttcomm_accept_unix_sock(client_socket
);
3005 if (ctx
->consumer_metadata_socket
< 0) {
3006 WARN("On accept metadata");
3017 * This thread listens on the consumerd socket and receives the file
3018 * descriptors from the session daemon.
3020 void *consumer_thread_sessiond_poll(void *data
)
3022 int sock
= -1, client_socket
, ret
, err
= -1;
3024 * structure to poll for incoming data on communication socket avoids
3025 * making blocking sockets.
3027 struct pollfd consumer_sockpoll
[2];
3028 struct lttng_consumer_local_data
*ctx
= data
;
3030 rcu_register_thread();
3032 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_SESSIOND
);
3034 if (testpoint(consumerd_thread_sessiond
)) {
3035 goto error_testpoint
;
3038 health_code_update();
3040 DBG("Creating command socket %s", ctx
->consumer_command_sock_path
);
3041 unlink(ctx
->consumer_command_sock_path
);
3042 client_socket
= lttcomm_create_unix_sock(ctx
->consumer_command_sock_path
);
3043 if (client_socket
< 0) {
3044 ERR("Cannot create command socket");
3048 ret
= lttcomm_listen_unix_sock(client_socket
);
3053 DBG("Sending ready command to lttng-sessiond");
3054 ret
= lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY
);
3055 /* return < 0 on error, but == 0 is not fatal */
3057 ERR("Error sending ready command to lttng-sessiond");
3061 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3062 consumer_sockpoll
[0].fd
= ctx
->consumer_should_quit
[0];
3063 consumer_sockpoll
[0].events
= POLLIN
| POLLPRI
;
3064 consumer_sockpoll
[1].fd
= client_socket
;
3065 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
3067 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3075 DBG("Connection on client_socket");
3077 /* Blocking call, waiting for transmission */
3078 sock
= lttcomm_accept_unix_sock(client_socket
);
3085 * Setup metadata socket which is the second socket connection on the
3086 * command unix socket.
3088 ret
= set_metadata_socket(ctx
, consumer_sockpoll
, client_socket
);
3097 /* This socket is not useful anymore. */
3098 ret
= close(client_socket
);
3100 PERROR("close client_socket");
3104 /* update the polling structure to poll on the established socket */
3105 consumer_sockpoll
[1].fd
= sock
;
3106 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
3109 health_code_update();
3111 health_poll_entry();
3112 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3121 DBG("Incoming command on sock");
3122 ret
= lttng_consumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
3125 * This could simply be a session daemon quitting. Don't output
3128 DBG("Communication interrupted on command socket");
3132 if (consumer_quit
) {
3133 DBG("consumer_thread_receive_fds received quit from signal");
3134 err
= 0; /* All is OK */
3137 DBG("received command on sock");
3143 DBG("Consumer thread sessiond poll exiting");
3146 * Close metadata streams since the producer is the session daemon which
3149 * NOTE: for now, this only applies to the UST tracer.
3151 lttng_consumer_close_all_metadata();
3154 * when all fds have hung up, the polling thread
3160 * Notify the data poll thread to poll back again and test the
3161 * consumer_quit state that we just set so to quit gracefully.
3163 notify_thread_lttng_pipe(ctx
->consumer_data_pipe
);
3165 notify_channel_pipe(ctx
, NULL
, -1, CONSUMER_CHANNEL_QUIT
);
3167 notify_health_quit_pipe(health_quit_pipe
);
3169 /* Cleaning up possibly open sockets. */
3173 PERROR("close sock sessiond poll");
3176 if (client_socket
>= 0) {
3177 ret
= close(client_socket
);
3179 PERROR("close client_socket sessiond poll");
3186 ERR("Health error occurred in %s", __func__
);
3188 health_unregister(health_consumerd
);
3190 rcu_unregister_thread();
3194 ssize_t
lttng_consumer_read_subbuffer(struct lttng_consumer_stream
*stream
,
3195 struct lttng_consumer_local_data
*ctx
)
3199 pthread_mutex_lock(&stream
->lock
);
3200 if (stream
->metadata_flag
) {
3201 pthread_mutex_lock(&stream
->metadata_rdv_lock
);
3204 switch (consumer_data
.type
) {
3205 case LTTNG_CONSUMER_KERNEL
:
3206 ret
= lttng_kconsumer_read_subbuffer(stream
, ctx
);
3208 case LTTNG_CONSUMER32_UST
:
3209 case LTTNG_CONSUMER64_UST
:
3210 ret
= lttng_ustconsumer_read_subbuffer(stream
, ctx
);
3213 ERR("Unknown consumer_data type");
3219 if (stream
->metadata_flag
) {
3220 pthread_cond_broadcast(&stream
->metadata_rdv
);
3221 pthread_mutex_unlock(&stream
->metadata_rdv_lock
);
3223 pthread_mutex_unlock(&stream
->lock
);
3227 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream
*stream
)
3229 switch (consumer_data
.type
) {
3230 case LTTNG_CONSUMER_KERNEL
:
3231 return lttng_kconsumer_on_recv_stream(stream
);
3232 case LTTNG_CONSUMER32_UST
:
3233 case LTTNG_CONSUMER64_UST
:
3234 return lttng_ustconsumer_on_recv_stream(stream
);
3236 ERR("Unknown consumer_data type");
3243 * Allocate and set consumer data hash tables.
3245 int lttng_consumer_init(void)
3247 consumer_data
.channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3248 if (!consumer_data
.channel_ht
) {
3252 consumer_data
.relayd_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3253 if (!consumer_data
.relayd_ht
) {
3257 consumer_data
.stream_list_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3258 if (!consumer_data
.stream_list_ht
) {
3262 consumer_data
.stream_per_chan_id_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3263 if (!consumer_data
.stream_per_chan_id_ht
) {
3267 data_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3272 metadata_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3284 * Process the ADD_RELAYD command receive by a consumer.
3286 * This will create a relayd socket pair and add it to the relayd hash table.
3287 * The caller MUST acquire a RCU read side lock before calling it.
3289 int consumer_add_relayd_socket(uint64_t net_seq_idx
, int sock_type
,
3290 struct lttng_consumer_local_data
*ctx
, int sock
,
3291 struct pollfd
*consumer_sockpoll
,
3292 struct lttcomm_relayd_sock
*relayd_sock
, uint64_t sessiond_id
,
3293 uint64_t relayd_session_id
)
3295 int fd
= -1, ret
= -1, relayd_created
= 0;
3296 enum lttcomm_return_code ret_code
= LTTCOMM_CONSUMERD_SUCCESS
;
3297 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3300 assert(relayd_sock
);
3302 DBG("Consumer adding relayd socket (idx: %" PRIu64
")", net_seq_idx
);
3304 /* Get relayd reference if exists. */
3305 relayd
= consumer_find_relayd(net_seq_idx
);
3306 if (relayd
== NULL
) {
3307 assert(sock_type
== LTTNG_STREAM_CONTROL
);
3308 /* Not found. Allocate one. */
3309 relayd
= consumer_allocate_relayd_sock_pair(net_seq_idx
);
3310 if (relayd
== NULL
) {
3312 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3315 relayd
->sessiond_session_id
= sessiond_id
;
3320 * This code path MUST continue to the consumer send status message to
3321 * we can notify the session daemon and continue our work without
3322 * killing everything.
3326 * relayd key should never be found for control socket.
3328 assert(sock_type
!= LTTNG_STREAM_CONTROL
);
3331 /* First send a status message before receiving the fds. */
3332 ret
= consumer_send_status_msg(sock
, LTTCOMM_CONSUMERD_SUCCESS
);
3334 /* Somehow, the session daemon is not responding anymore. */
3335 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3336 goto error_nosignal
;
3339 /* Poll on consumer socket. */
3340 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3342 /* Needing to exit in the middle of a command: error. */
3343 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
3345 goto error_nosignal
;
3348 /* Get relayd socket from session daemon */
3349 ret
= lttcomm_recv_fds_unix_sock(sock
, &fd
, 1);
3350 if (ret
!= sizeof(fd
)) {
3352 fd
= -1; /* Just in case it gets set with an invalid value. */
3355 * Failing to receive FDs might indicate a major problem such as
3356 * reaching a fd limit during the receive where the kernel returns a
3357 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3358 * don't take any chances and stop everything.
3360 * XXX: Feature request #558 will fix that and avoid this possible
3361 * issue when reaching the fd limit.
3363 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_ERROR_RECV_FD
);
3364 ret_code
= LTTCOMM_CONSUMERD_ERROR_RECV_FD
;
3368 /* Copy socket information and received FD */
3369 switch (sock_type
) {
3370 case LTTNG_STREAM_CONTROL
:
3371 /* Copy received lttcomm socket */
3372 lttcomm_copy_sock(&relayd
->control_sock
.sock
, &relayd_sock
->sock
);
3373 ret
= lttcomm_create_sock(&relayd
->control_sock
.sock
);
3374 /* Handle create_sock error. */
3376 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3380 * Close the socket created internally by
3381 * lttcomm_create_sock, so we can replace it by the one
3382 * received from sessiond.
3384 if (close(relayd
->control_sock
.sock
.fd
)) {
3388 /* Assign new file descriptor */
3389 relayd
->control_sock
.sock
.fd
= fd
;
3390 fd
= -1; /* For error path */
3391 /* Assign version values. */
3392 relayd
->control_sock
.major
= relayd_sock
->major
;
3393 relayd
->control_sock
.minor
= relayd_sock
->minor
;
3395 relayd
->relayd_session_id
= relayd_session_id
;
3398 case LTTNG_STREAM_DATA
:
3399 /* Copy received lttcomm socket */
3400 lttcomm_copy_sock(&relayd
->data_sock
.sock
, &relayd_sock
->sock
);
3401 ret
= lttcomm_create_sock(&relayd
->data_sock
.sock
);
3402 /* Handle create_sock error. */
3404 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3408 * Close the socket created internally by
3409 * lttcomm_create_sock, so we can replace it by the one
3410 * received from sessiond.
3412 if (close(relayd
->data_sock
.sock
.fd
)) {
3416 /* Assign new file descriptor */
3417 relayd
->data_sock
.sock
.fd
= fd
;
3418 fd
= -1; /* for eventual error paths */
3419 /* Assign version values. */
3420 relayd
->data_sock
.major
= relayd_sock
->major
;
3421 relayd
->data_sock
.minor
= relayd_sock
->minor
;
3424 ERR("Unknown relayd socket type (%d)", sock_type
);
3426 ret_code
= LTTCOMM_CONSUMERD_FATAL
;
3430 DBG("Consumer %s socket created successfully with net idx %" PRIu64
" (fd: %d)",
3431 sock_type
== LTTNG_STREAM_CONTROL
? "control" : "data",
3432 relayd
->net_seq_idx
, fd
);
3434 /* We successfully added the socket. Send status back. */
3435 ret
= consumer_send_status_msg(sock
, ret_code
);
3437 /* Somehow, the session daemon is not responding anymore. */
3438 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3439 goto error_nosignal
;
3443 * Add relayd socket pair to consumer data hashtable. If object already
3444 * exists or on error, the function gracefully returns.
3452 if (consumer_send_status_msg(sock
, ret_code
) < 0) {
3453 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3457 /* Close received socket if valid. */
3460 PERROR("close received socket");
3464 if (relayd_created
) {
3472 * Try to lock the stream mutex.
3474 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3476 static int stream_try_lock(struct lttng_consumer_stream
*stream
)
3483 * Try to lock the stream mutex. On failure, we know that the stream is
3484 * being used else where hence there is data still being extracted.
3486 ret
= pthread_mutex_trylock(&stream
->lock
);
3488 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3500 * Search for a relayd associated to the session id and return the reference.
3502 * A rcu read side lock MUST be acquire before calling this function and locked
3503 * until the relayd object is no longer necessary.
3505 static struct consumer_relayd_sock_pair
*find_relayd_by_session_id(uint64_t id
)
3507 struct lttng_ht_iter iter
;
3508 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3510 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3511 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
3514 * Check by sessiond id which is unique here where the relayd session
3515 * id might not be when having multiple relayd.
3517 if (relayd
->sessiond_session_id
== id
) {
3518 /* Found the relayd. There can be only one per id. */
3530 * Check if for a given session id there is still data needed to be extract
3533 * Return 1 if data is pending or else 0 meaning ready to be read.
3535 int consumer_data_pending(uint64_t id
)
3538 struct lttng_ht_iter iter
;
3539 struct lttng_ht
*ht
;
3540 struct lttng_consumer_stream
*stream
;
3541 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3542 int (*data_pending
)(struct lttng_consumer_stream
*);
3544 DBG("Consumer data pending command on session id %" PRIu64
, id
);
3547 pthread_mutex_lock(&consumer_data
.lock
);
3549 switch (consumer_data
.type
) {
3550 case LTTNG_CONSUMER_KERNEL
:
3551 data_pending
= lttng_kconsumer_data_pending
;
3553 case LTTNG_CONSUMER32_UST
:
3554 case LTTNG_CONSUMER64_UST
:
3555 data_pending
= lttng_ustconsumer_data_pending
;
3558 ERR("Unknown consumer data type");
3562 /* Ease our life a bit */
3563 ht
= consumer_data
.stream_list_ht
;
3565 relayd
= find_relayd_by_session_id(id
);
3567 /* Send init command for data pending. */
3568 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3569 ret
= relayd_begin_data_pending(&relayd
->control_sock
,
3570 relayd
->relayd_session_id
);
3571 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3573 /* Communication error thus the relayd so no data pending. */
3574 goto data_not_pending
;
3578 cds_lfht_for_each_entry_duplicate(ht
->ht
,
3579 ht
->hash_fct(&id
, lttng_ht_seed
),
3581 &iter
.iter
, stream
, node_session_id
.node
) {
3582 /* If this call fails, the stream is being used hence data pending. */
3583 ret
= stream_try_lock(stream
);
3589 * A removed node from the hash table indicates that the stream has
3590 * been deleted thus having a guarantee that the buffers are closed
3591 * on the consumer side. However, data can still be transmitted
3592 * over the network so don't skip the relayd check.
3594 ret
= cds_lfht_is_node_deleted(&stream
->node
.node
);
3596 /* Check the stream if there is data in the buffers. */
3597 ret
= data_pending(stream
);
3599 pthread_mutex_unlock(&stream
->lock
);
3606 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3607 if (stream
->metadata_flag
) {
3608 ret
= relayd_quiescent_control(&relayd
->control_sock
,
3609 stream
->relayd_stream_id
);
3611 ret
= relayd_data_pending(&relayd
->control_sock
,
3612 stream
->relayd_stream_id
,
3613 stream
->next_net_seq_num
- 1);
3615 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3617 pthread_mutex_unlock(&stream
->lock
);
3621 pthread_mutex_unlock(&stream
->lock
);
3625 unsigned int is_data_inflight
= 0;
3627 /* Send init command for data pending. */
3628 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3629 ret
= relayd_end_data_pending(&relayd
->control_sock
,
3630 relayd
->relayd_session_id
, &is_data_inflight
);
3631 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3633 goto data_not_pending
;
3635 if (is_data_inflight
) {
3641 * Finding _no_ node in the hash table and no inflight data means that the
3642 * stream(s) have been removed thus data is guaranteed to be available for
3643 * analysis from the trace files.
3647 /* Data is available to be read by a viewer. */
3648 pthread_mutex_unlock(&consumer_data
.lock
);
3653 /* Data is still being extracted from buffers. */
3654 pthread_mutex_unlock(&consumer_data
.lock
);
3660 * Send a ret code status message to the sessiond daemon.
3662 * Return the sendmsg() return value.
3664 int consumer_send_status_msg(int sock
, int ret_code
)
3666 struct lttcomm_consumer_status_msg msg
;
3668 memset(&msg
, 0, sizeof(msg
));
3669 msg
.ret_code
= ret_code
;
3671 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));
3675 * Send a channel status message to the sessiond daemon.
3677 * Return the sendmsg() return value.
3679 int consumer_send_status_channel(int sock
,
3680 struct lttng_consumer_channel
*channel
)
3682 struct lttcomm_consumer_status_channel msg
;
3686 memset(&msg
, 0, sizeof(msg
));
3688 msg
.ret_code
= LTTCOMM_CONSUMERD_CHANNEL_FAIL
;
3690 msg
.ret_code
= LTTCOMM_CONSUMERD_SUCCESS
;
3691 msg
.key
= channel
->key
;
3692 msg
.stream_count
= channel
->streams
.count
;
3695 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));
3698 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos
,
3699 unsigned long produced_pos
, uint64_t nb_packets_per_stream
,
3700 uint64_t max_sb_size
)
3702 unsigned long start_pos
;
3704 if (!nb_packets_per_stream
) {
3705 return consumed_pos
; /* Grab everything */
3707 start_pos
= produced_pos
- offset_align_floor(produced_pos
, max_sb_size
);
3708 start_pos
-= max_sb_size
* nb_packets_per_stream
;
3709 if ((long) (start_pos
- consumed_pos
) < 0) {
3710 return consumed_pos
; /* Grab everything */