45eede109bb5cdc5b019e480ea1ed0bae8f1f8b3
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/kernel-ctl/kernel-ctl.h>
37 #include <common/sessiond-comm/relayd.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/kernel-consumer/kernel-consumer.h>
40 #include <common/relayd/relayd.h>
41 #include <common/ust-consumer/ust-consumer.h>
42
43 #include "consumer.h"
44
45 struct lttng_consumer_global_data consumer_data = {
46 .stream_count = 0,
47 .need_update = 1,
48 .type = LTTNG_CONSUMER_UNKNOWN,
49 };
50
51 enum consumer_channel_action {
52 CONSUMER_CHANNEL_ADD,
53 CONSUMER_CHANNEL_DEL,
54 CONSUMER_CHANNEL_QUIT,
55 };
56
57 struct consumer_channel_msg {
58 enum consumer_channel_action action;
59 struct lttng_consumer_channel *chan; /* add */
60 uint64_t key; /* del */
61 };
62
63 /*
64 * Flag to inform the polling thread to quit when all fd hung up. Updated by
65 * the consumer_thread_receive_fds when it notices that all fds has hung up.
66 * Also updated by the signal handler (consumer_should_exit()). Read by the
67 * polling threads.
68 */
69 volatile int consumer_quit;
70
71 /*
72 * Global hash table containing respectively metadata and data streams. The
73 * stream element in this ht should only be updated by the metadata poll thread
74 * for the metadata and the data poll thread for the data.
75 */
76 static struct lttng_ht *metadata_ht;
77 static struct lttng_ht *data_ht;
78
79 /*
80 * Notify a thread lttng pipe to poll back again. This usually means that some
81 * global state has changed so we just send back the thread in a poll wait
82 * call.
83 */
84 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
85 {
86 struct lttng_consumer_stream *null_stream = NULL;
87
88 assert(pipe);
89
90 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
91 }
92
93 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
94 struct lttng_consumer_channel *chan,
95 uint64_t key,
96 enum consumer_channel_action action)
97 {
98 struct consumer_channel_msg msg;
99 int ret;
100
101 memset(&msg, 0, sizeof(msg));
102
103 msg.action = action;
104 msg.chan = chan;
105 msg.key = key;
106 do {
107 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
108 } while (ret < 0 && errno == EINTR);
109 }
110
111 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
112 uint64_t key)
113 {
114 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
115 }
116
117 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
118 struct lttng_consumer_channel **chan,
119 uint64_t *key,
120 enum consumer_channel_action *action)
121 {
122 struct consumer_channel_msg msg;
123 int ret;
124
125 do {
126 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
127 } while (ret < 0 && errno == EINTR);
128 if (ret > 0) {
129 *action = msg.action;
130 *chan = msg.chan;
131 *key = msg.key;
132 }
133 return ret;
134 }
135
136 /*
137 * Find a stream. The consumer_data.lock must be locked during this
138 * call.
139 */
140 static struct lttng_consumer_stream *find_stream(uint64_t key,
141 struct lttng_ht *ht)
142 {
143 struct lttng_ht_iter iter;
144 struct lttng_ht_node_u64 *node;
145 struct lttng_consumer_stream *stream = NULL;
146
147 assert(ht);
148
149 /* -1ULL keys are lookup failures */
150 if (key == (uint64_t) -1ULL) {
151 return NULL;
152 }
153
154 rcu_read_lock();
155
156 lttng_ht_lookup(ht, &key, &iter);
157 node = lttng_ht_iter_get_node_u64(&iter);
158 if (node != NULL) {
159 stream = caa_container_of(node, struct lttng_consumer_stream, node);
160 }
161
162 rcu_read_unlock();
163
164 return stream;
165 }
166
167 static void steal_stream_key(int key, struct lttng_ht *ht)
168 {
169 struct lttng_consumer_stream *stream;
170
171 rcu_read_lock();
172 stream = find_stream(key, ht);
173 if (stream) {
174 stream->key = -1ULL;
175 /*
176 * We don't want the lookup to match, but we still need
177 * to iterate on this stream when iterating over the hash table. Just
178 * change the node key.
179 */
180 stream->node.key = -1ULL;
181 }
182 rcu_read_unlock();
183 }
184
185 /*
186 * Return a channel object for the given key.
187 *
188 * RCU read side lock MUST be acquired before calling this function and
189 * protects the channel ptr.
190 */
191 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
192 {
193 struct lttng_ht_iter iter;
194 struct lttng_ht_node_u64 *node;
195 struct lttng_consumer_channel *channel = NULL;
196
197 /* -1ULL keys are lookup failures */
198 if (key == (uint64_t) -1ULL) {
199 return NULL;
200 }
201
202 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
203 node = lttng_ht_iter_get_node_u64(&iter);
204 if (node != NULL) {
205 channel = caa_container_of(node, struct lttng_consumer_channel, node);
206 }
207
208 return channel;
209 }
210
211 static void free_stream_rcu(struct rcu_head *head)
212 {
213 struct lttng_ht_node_u64 *node =
214 caa_container_of(head, struct lttng_ht_node_u64, head);
215 struct lttng_consumer_stream *stream =
216 caa_container_of(node, struct lttng_consumer_stream, node);
217
218 free(stream);
219 }
220
221 static void free_channel_rcu(struct rcu_head *head)
222 {
223 struct lttng_ht_node_u64 *node =
224 caa_container_of(head, struct lttng_ht_node_u64, head);
225 struct lttng_consumer_channel *channel =
226 caa_container_of(node, struct lttng_consumer_channel, node);
227
228 free(channel);
229 }
230
231 /*
232 * RCU protected relayd socket pair free.
233 */
234 static void free_relayd_rcu(struct rcu_head *head)
235 {
236 struct lttng_ht_node_u64 *node =
237 caa_container_of(head, struct lttng_ht_node_u64, head);
238 struct consumer_relayd_sock_pair *relayd =
239 caa_container_of(node, struct consumer_relayd_sock_pair, node);
240
241 /*
242 * Close all sockets. This is done in the call RCU since we don't want the
243 * socket fds to be reassigned thus potentially creating bad state of the
244 * relayd object.
245 *
246 * We do not have to lock the control socket mutex here since at this stage
247 * there is no one referencing to this relayd object.
248 */
249 (void) relayd_close(&relayd->control_sock);
250 (void) relayd_close(&relayd->data_sock);
251
252 free(relayd);
253 }
254
255 /*
256 * Destroy and free relayd socket pair object.
257 *
258 * This function MUST be called with the consumer_data lock acquired.
259 */
260 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
261 {
262 int ret;
263 struct lttng_ht_iter iter;
264
265 if (relayd == NULL) {
266 return;
267 }
268
269 DBG("Consumer destroy and close relayd socket pair");
270
271 iter.iter.node = &relayd->node.node;
272 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
273 if (ret != 0) {
274 /* We assume the relayd is being or is destroyed */
275 return;
276 }
277
278 /* RCU free() call */
279 call_rcu(&relayd->node.head, free_relayd_rcu);
280 }
281
282 /*
283 * Remove a channel from the global list protected by a mutex. This function is
284 * also responsible for freeing its data structures.
285 */
286 void consumer_del_channel(struct lttng_consumer_channel *channel)
287 {
288 int ret;
289 struct lttng_ht_iter iter;
290
291 DBG("Consumer delete channel key %" PRIu64, channel->key);
292
293 pthread_mutex_lock(&consumer_data.lock);
294
295 switch (consumer_data.type) {
296 case LTTNG_CONSUMER_KERNEL:
297 break;
298 case LTTNG_CONSUMER32_UST:
299 case LTTNG_CONSUMER64_UST:
300 lttng_ustconsumer_del_channel(channel);
301 break;
302 default:
303 ERR("Unknown consumer_data type");
304 assert(0);
305 goto end;
306 }
307
308 rcu_read_lock();
309 iter.iter.node = &channel->node.node;
310 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
311 assert(!ret);
312 rcu_read_unlock();
313
314 call_rcu(&channel->node.head, free_channel_rcu);
315 end:
316 pthread_mutex_unlock(&consumer_data.lock);
317 }
318
319 /*
320 * Iterate over the relayd hash table and destroy each element. Finally,
321 * destroy the whole hash table.
322 */
323 static void cleanup_relayd_ht(void)
324 {
325 struct lttng_ht_iter iter;
326 struct consumer_relayd_sock_pair *relayd;
327
328 rcu_read_lock();
329
330 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
331 node.node) {
332 destroy_relayd(relayd);
333 }
334
335 rcu_read_unlock();
336
337 lttng_ht_destroy(consumer_data.relayd_ht);
338 }
339
340 /*
341 * Update the end point status of all streams having the given network sequence
342 * index (relayd index).
343 *
344 * It's atomically set without having the stream mutex locked which is fine
345 * because we handle the write/read race with a pipe wakeup for each thread.
346 */
347 static void update_endpoint_status_by_netidx(int net_seq_idx,
348 enum consumer_endpoint_status status)
349 {
350 struct lttng_ht_iter iter;
351 struct lttng_consumer_stream *stream;
352
353 DBG("Consumer set delete flag on stream by idx %d", net_seq_idx);
354
355 rcu_read_lock();
356
357 /* Let's begin with metadata */
358 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
359 if (stream->net_seq_idx == net_seq_idx) {
360 uatomic_set(&stream->endpoint_status, status);
361 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
362 }
363 }
364
365 /* Follow up by the data streams */
366 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
367 if (stream->net_seq_idx == net_seq_idx) {
368 uatomic_set(&stream->endpoint_status, status);
369 DBG("Delete flag set to data stream %d", stream->wait_fd);
370 }
371 }
372 rcu_read_unlock();
373 }
374
375 /*
376 * Cleanup a relayd object by flagging every associated streams for deletion,
377 * destroying the object meaning removing it from the relayd hash table,
378 * closing the sockets and freeing the memory in a RCU call.
379 *
380 * If a local data context is available, notify the threads that the streams'
381 * state have changed.
382 */
383 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
384 struct lttng_consumer_local_data *ctx)
385 {
386 int netidx;
387
388 assert(relayd);
389
390 DBG("Cleaning up relayd sockets");
391
392 /* Save the net sequence index before destroying the object */
393 netidx = relayd->net_seq_idx;
394
395 /*
396 * Delete the relayd from the relayd hash table, close the sockets and free
397 * the object in a RCU call.
398 */
399 destroy_relayd(relayd);
400
401 /* Set inactive endpoint to all streams */
402 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
403
404 /*
405 * With a local data context, notify the threads that the streams' state
406 * have changed. The write() action on the pipe acts as an "implicit"
407 * memory barrier ordering the updates of the end point status from the
408 * read of this status which happens AFTER receiving this notify.
409 */
410 if (ctx) {
411 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
412 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
413 }
414 }
415
416 /*
417 * Flag a relayd socket pair for destruction. Destroy it if the refcount
418 * reaches zero.
419 *
420 * RCU read side lock MUST be aquired before calling this function.
421 */
422 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
423 {
424 assert(relayd);
425
426 /* Set destroy flag for this object */
427 uatomic_set(&relayd->destroy_flag, 1);
428
429 /* Destroy the relayd if refcount is 0 */
430 if (uatomic_read(&relayd->refcount) == 0) {
431 destroy_relayd(relayd);
432 }
433 }
434
435 /*
436 * Remove a stream from the global list protected by a mutex. This
437 * function is also responsible for freeing its data structures.
438 */
439 void consumer_del_stream(struct lttng_consumer_stream *stream,
440 struct lttng_ht *ht)
441 {
442 int ret;
443 struct lttng_ht_iter iter;
444 struct lttng_consumer_channel *free_chan = NULL;
445 struct consumer_relayd_sock_pair *relayd;
446
447 assert(stream);
448
449 DBG("Consumer del stream %d", stream->wait_fd);
450
451 if (ht == NULL) {
452 /* Means the stream was allocated but not successfully added */
453 goto free_stream_rcu;
454 }
455
456 pthread_mutex_lock(&consumer_data.lock);
457 pthread_mutex_lock(&stream->lock);
458
459 switch (consumer_data.type) {
460 case LTTNG_CONSUMER_KERNEL:
461 if (stream->mmap_base != NULL) {
462 ret = munmap(stream->mmap_base, stream->mmap_len);
463 if (ret != 0) {
464 PERROR("munmap");
465 }
466 }
467
468 if (stream->wait_fd >= 0) {
469 ret = close(stream->wait_fd);
470 if (ret) {
471 PERROR("close");
472 }
473 }
474 break;
475 case LTTNG_CONSUMER32_UST:
476 case LTTNG_CONSUMER64_UST:
477 lttng_ustconsumer_del_stream(stream);
478 break;
479 default:
480 ERR("Unknown consumer_data type");
481 assert(0);
482 goto end;
483 }
484
485 rcu_read_lock();
486 iter.iter.node = &stream->node.node;
487 ret = lttng_ht_del(ht, &iter);
488 assert(!ret);
489
490 iter.iter.node = &stream->node_channel_id.node;
491 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
492 assert(!ret);
493
494 iter.iter.node = &stream->node_session_id.node;
495 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
496 assert(!ret);
497 rcu_read_unlock();
498
499 assert(consumer_data.stream_count > 0);
500 consumer_data.stream_count--;
501
502 if (stream->out_fd >= 0) {
503 ret = close(stream->out_fd);
504 if (ret) {
505 PERROR("close");
506 }
507 }
508
509 /* Check and cleanup relayd */
510 rcu_read_lock();
511 relayd = consumer_find_relayd(stream->net_seq_idx);
512 if (relayd != NULL) {
513 uatomic_dec(&relayd->refcount);
514 assert(uatomic_read(&relayd->refcount) >= 0);
515
516 /* Closing streams requires to lock the control socket. */
517 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
518 ret = relayd_send_close_stream(&relayd->control_sock,
519 stream->relayd_stream_id,
520 stream->next_net_seq_num - 1);
521 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
522 if (ret < 0) {
523 DBG("Unable to close stream on the relayd. Continuing");
524 /*
525 * Continue here. There is nothing we can do for the relayd.
526 * Chances are that the relayd has closed the socket so we just
527 * continue cleaning up.
528 */
529 }
530
531 /* Both conditions are met, we destroy the relayd. */
532 if (uatomic_read(&relayd->refcount) == 0 &&
533 uatomic_read(&relayd->destroy_flag)) {
534 destroy_relayd(relayd);
535 }
536 }
537 rcu_read_unlock();
538
539 if (!uatomic_sub_return(&stream->chan->refcount, 1)
540 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
541 free_chan = stream->chan;
542 }
543
544 end:
545 consumer_data.need_update = 1;
546 pthread_mutex_unlock(&stream->lock);
547 pthread_mutex_unlock(&consumer_data.lock);
548
549 if (free_chan) {
550 consumer_del_channel(free_chan);
551 }
552
553 free_stream_rcu:
554 call_rcu(&stream->node.head, free_stream_rcu);
555 }
556
557 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
558 uint64_t stream_key,
559 enum lttng_consumer_stream_state state,
560 const char *channel_name,
561 uid_t uid,
562 gid_t gid,
563 int relayd_id,
564 uint64_t session_id,
565 int cpu,
566 int *alloc_ret,
567 enum consumer_channel_type type)
568 {
569 int ret;
570 struct lttng_consumer_stream *stream;
571
572 stream = zmalloc(sizeof(*stream));
573 if (stream == NULL) {
574 PERROR("malloc struct lttng_consumer_stream");
575 ret = -ENOMEM;
576 goto end;
577 }
578
579 rcu_read_lock();
580
581 stream->key = stream_key;
582 stream->out_fd = -1;
583 stream->out_fd_offset = 0;
584 stream->state = state;
585 stream->uid = uid;
586 stream->gid = gid;
587 stream->net_seq_idx = relayd_id;
588 stream->session_id = session_id;
589 pthread_mutex_init(&stream->lock, NULL);
590
591 /* If channel is the metadata, flag this stream as metadata. */
592 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
593 stream->metadata_flag = 1;
594 /* Metadata is flat out. */
595 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
596 } else {
597 /* Format stream name to <channel_name>_<cpu_number> */
598 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
599 channel_name, cpu);
600 if (ret < 0) {
601 PERROR("snprintf stream name");
602 goto error;
603 }
604 }
605
606 /* Key is always the wait_fd for streams. */
607 lttng_ht_node_init_u64(&stream->node, stream->key);
608
609 /* Init node per channel id key */
610 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
611
612 /* Init session id node with the stream session id */
613 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
614
615 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64 " relayd_id %" PRIu64 ", session_id %" PRIu64,
616 stream->name, stream->key, channel_key, stream->net_seq_idx, stream->session_id);
617
618 rcu_read_unlock();
619 return stream;
620
621 error:
622 rcu_read_unlock();
623 free(stream);
624 end:
625 if (alloc_ret) {
626 *alloc_ret = ret;
627 }
628 return NULL;
629 }
630
631 /*
632 * Add a stream to the global list protected by a mutex.
633 */
634 static int add_stream(struct lttng_consumer_stream *stream,
635 struct lttng_ht *ht)
636 {
637 int ret = 0;
638 struct consumer_relayd_sock_pair *relayd;
639
640 assert(stream);
641 assert(ht);
642
643 DBG3("Adding consumer stream %" PRIu64, stream->key);
644
645 pthread_mutex_lock(&consumer_data.lock);
646 pthread_mutex_lock(&stream->lock);
647 rcu_read_lock();
648
649 /* Steal stream identifier to avoid having streams with the same key */
650 steal_stream_key(stream->key, ht);
651
652 lttng_ht_add_unique_u64(ht, &stream->node);
653
654 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
655 &stream->node_channel_id);
656
657 /*
658 * Add stream to the stream_list_ht of the consumer data. No need to steal
659 * the key since the HT does not use it and we allow to add redundant keys
660 * into this table.
661 */
662 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
663
664 /* Check and cleanup relayd */
665 relayd = consumer_find_relayd(stream->net_seq_idx);
666 if (relayd != NULL) {
667 uatomic_inc(&relayd->refcount);
668 }
669
670 /*
671 * When nb_init_stream_left reaches 0, we don't need to trigger any action
672 * in terms of destroying the associated channel, because the action that
673 * causes the count to become 0 also causes a stream to be added. The
674 * channel deletion will thus be triggered by the following removal of this
675 * stream.
676 */
677 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
678 /* Increment refcount before decrementing nb_init_stream_left */
679 cmm_smp_wmb();
680 uatomic_dec(&stream->chan->nb_init_stream_left);
681 }
682
683 /* Update consumer data once the node is inserted. */
684 consumer_data.stream_count++;
685 consumer_data.need_update = 1;
686
687 rcu_read_unlock();
688 pthread_mutex_unlock(&stream->lock);
689 pthread_mutex_unlock(&consumer_data.lock);
690
691 return ret;
692 }
693
694 /*
695 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
696 * be acquired before calling this.
697 */
698 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
699 {
700 int ret = 0;
701 struct lttng_ht_node_u64 *node;
702 struct lttng_ht_iter iter;
703
704 assert(relayd);
705
706 lttng_ht_lookup(consumer_data.relayd_ht,
707 &relayd->net_seq_idx, &iter);
708 node = lttng_ht_iter_get_node_u64(&iter);
709 if (node != NULL) {
710 goto end;
711 }
712 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
713
714 end:
715 return ret;
716 }
717
718 /*
719 * Allocate and return a consumer relayd socket.
720 */
721 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
722 int net_seq_idx)
723 {
724 struct consumer_relayd_sock_pair *obj = NULL;
725
726 /* Negative net sequence index is a failure */
727 if (net_seq_idx < 0) {
728 goto error;
729 }
730
731 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
732 if (obj == NULL) {
733 PERROR("zmalloc relayd sock");
734 goto error;
735 }
736
737 obj->net_seq_idx = net_seq_idx;
738 obj->refcount = 0;
739 obj->destroy_flag = 0;
740 obj->control_sock.sock.fd = -1;
741 obj->data_sock.sock.fd = -1;
742 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
743 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
744
745 error:
746 return obj;
747 }
748
749 /*
750 * Find a relayd socket pair in the global consumer data.
751 *
752 * Return the object if found else NULL.
753 * RCU read-side lock must be held across this call and while using the
754 * returned object.
755 */
756 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
757 {
758 struct lttng_ht_iter iter;
759 struct lttng_ht_node_u64 *node;
760 struct consumer_relayd_sock_pair *relayd = NULL;
761
762 /* Negative keys are lookup failures */
763 if (key == (uint64_t) -1ULL) {
764 goto error;
765 }
766
767 lttng_ht_lookup(consumer_data.relayd_ht, &key,
768 &iter);
769 node = lttng_ht_iter_get_node_u64(&iter);
770 if (node != NULL) {
771 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
772 }
773
774 error:
775 return relayd;
776 }
777
778 /*
779 * Handle stream for relayd transmission if the stream applies for network
780 * streaming where the net sequence index is set.
781 *
782 * Return destination file descriptor or negative value on error.
783 */
784 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
785 size_t data_size, unsigned long padding,
786 struct consumer_relayd_sock_pair *relayd)
787 {
788 int outfd = -1, ret;
789 struct lttcomm_relayd_data_hdr data_hdr;
790
791 /* Safety net */
792 assert(stream);
793 assert(relayd);
794
795 /* Reset data header */
796 memset(&data_hdr, 0, sizeof(data_hdr));
797
798 if (stream->metadata_flag) {
799 /* Caller MUST acquire the relayd control socket lock */
800 ret = relayd_send_metadata(&relayd->control_sock, data_size);
801 if (ret < 0) {
802 goto error;
803 }
804
805 /* Metadata are always sent on the control socket. */
806 outfd = relayd->control_sock.sock.fd;
807 } else {
808 /* Set header with stream information */
809 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
810 data_hdr.data_size = htobe32(data_size);
811 data_hdr.padding_size = htobe32(padding);
812 /*
813 * Note that net_seq_num below is assigned with the *current* value of
814 * next_net_seq_num and only after that the next_net_seq_num will be
815 * increment. This is why when issuing a command on the relayd using
816 * this next value, 1 should always be substracted in order to compare
817 * the last seen sequence number on the relayd side to the last sent.
818 */
819 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
820 /* Other fields are zeroed previously */
821
822 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
823 sizeof(data_hdr));
824 if (ret < 0) {
825 goto error;
826 }
827
828 ++stream->next_net_seq_num;
829
830 /* Set to go on data socket */
831 outfd = relayd->data_sock.sock.fd;
832 }
833
834 error:
835 return outfd;
836 }
837
838 /*
839 * Allocate and return a new lttng_consumer_channel object using the given key
840 * to initialize the hash table node.
841 *
842 * On error, return NULL.
843 */
844 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
845 uint64_t session_id,
846 const char *pathname,
847 const char *name,
848 uid_t uid,
849 gid_t gid,
850 int relayd_id,
851 enum lttng_event_output output,
852 uint64_t tracefile_size,
853 uint64_t tracefile_count)
854 {
855 struct lttng_consumer_channel *channel;
856
857 channel = zmalloc(sizeof(*channel));
858 if (channel == NULL) {
859 PERROR("malloc struct lttng_consumer_channel");
860 goto end;
861 }
862
863 channel->key = key;
864 channel->refcount = 0;
865 channel->session_id = session_id;
866 channel->uid = uid;
867 channel->gid = gid;
868 channel->relayd_id = relayd_id;
869 channel->output = output;
870 channel->tracefile_size = tracefile_size;
871 channel->tracefile_count = tracefile_count;
872
873 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
874 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
875
876 strncpy(channel->name, name, sizeof(channel->name));
877 channel->name[sizeof(channel->name) - 1] = '\0';
878
879 lttng_ht_node_init_u64(&channel->node, channel->key);
880
881 channel->wait_fd = -1;
882
883 CDS_INIT_LIST_HEAD(&channel->streams.head);
884
885 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
886
887 end:
888 return channel;
889 }
890
891 /*
892 * Add a channel to the global list protected by a mutex.
893 */
894 int consumer_add_channel(struct lttng_consumer_channel *channel,
895 struct lttng_consumer_local_data *ctx)
896 {
897 int ret = 0;
898 struct lttng_ht_node_u64 *node;
899 struct lttng_ht_iter iter;
900
901 pthread_mutex_lock(&consumer_data.lock);
902 rcu_read_lock();
903
904 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
905 node = lttng_ht_iter_get_node_u64(&iter);
906 if (node != NULL) {
907 /* Channel already exist. Ignore the insertion */
908 ERR("Consumer add channel key %" PRIu64 " already exists!",
909 channel->key);
910 ret = LTTNG_ERR_KERN_CHAN_EXIST;
911 goto end;
912 }
913
914 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
915
916 end:
917 rcu_read_unlock();
918 pthread_mutex_unlock(&consumer_data.lock);
919
920 if (!ret && channel->wait_fd != -1 &&
921 channel->metadata_stream == NULL) {
922 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
923 }
924 return ret;
925 }
926
927 /*
928 * Allocate the pollfd structure and the local view of the out fds to avoid
929 * doing a lookup in the linked list and concurrency issues when writing is
930 * needed. Called with consumer_data.lock held.
931 *
932 * Returns the number of fds in the structures.
933 */
934 static int update_poll_array(struct lttng_consumer_local_data *ctx,
935 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
936 struct lttng_ht *ht)
937 {
938 int i = 0;
939 struct lttng_ht_iter iter;
940 struct lttng_consumer_stream *stream;
941
942 assert(ctx);
943 assert(ht);
944 assert(pollfd);
945 assert(local_stream);
946
947 DBG("Updating poll fd array");
948 rcu_read_lock();
949 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
950 /*
951 * Only active streams with an active end point can be added to the
952 * poll set and local stream storage of the thread.
953 *
954 * There is a potential race here for endpoint_status to be updated
955 * just after the check. However, this is OK since the stream(s) will
956 * be deleted once the thread is notified that the end point state has
957 * changed where this function will be called back again.
958 */
959 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
960 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
961 continue;
962 }
963 /*
964 * This clobbers way too much the debug output. Uncomment that if you
965 * need it for debugging purposes.
966 *
967 * DBG("Active FD %d", stream->wait_fd);
968 */
969 (*pollfd)[i].fd = stream->wait_fd;
970 (*pollfd)[i].events = POLLIN | POLLPRI;
971 local_stream[i] = stream;
972 i++;
973 }
974 rcu_read_unlock();
975
976 /*
977 * Insert the consumer_data_pipe at the end of the array and don't
978 * increment i so nb_fd is the number of real FD.
979 */
980 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
981 (*pollfd)[i].events = POLLIN | POLLPRI;
982 return i;
983 }
984
985 /*
986 * Poll on the should_quit pipe and the command socket return -1 on error and
987 * should exit, 0 if data is available on the command socket
988 */
989 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
990 {
991 int num_rdy;
992
993 restart:
994 num_rdy = poll(consumer_sockpoll, 2, -1);
995 if (num_rdy == -1) {
996 /*
997 * Restart interrupted system call.
998 */
999 if (errno == EINTR) {
1000 goto restart;
1001 }
1002 PERROR("Poll error");
1003 goto exit;
1004 }
1005 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1006 DBG("consumer_should_quit wake up");
1007 goto exit;
1008 }
1009 return 0;
1010
1011 exit:
1012 return -1;
1013 }
1014
1015 /*
1016 * Set the error socket.
1017 */
1018 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1019 int sock)
1020 {
1021 ctx->consumer_error_socket = sock;
1022 }
1023
1024 /*
1025 * Set the command socket path.
1026 */
1027 void lttng_consumer_set_command_sock_path(
1028 struct lttng_consumer_local_data *ctx, char *sock)
1029 {
1030 ctx->consumer_command_sock_path = sock;
1031 }
1032
1033 /*
1034 * Send return code to the session daemon.
1035 * If the socket is not defined, we return 0, it is not a fatal error
1036 */
1037 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1038 {
1039 if (ctx->consumer_error_socket > 0) {
1040 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1041 sizeof(enum lttcomm_sessiond_command));
1042 }
1043
1044 return 0;
1045 }
1046
1047 /*
1048 * Close all the tracefiles and stream fds and MUST be called when all
1049 * instances are destroyed i.e. when all threads were joined and are ended.
1050 */
1051 void lttng_consumer_cleanup(void)
1052 {
1053 struct lttng_ht_iter iter;
1054 struct lttng_consumer_channel *channel;
1055
1056 rcu_read_lock();
1057
1058 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1059 node.node) {
1060 consumer_del_channel(channel);
1061 }
1062
1063 rcu_read_unlock();
1064
1065 lttng_ht_destroy(consumer_data.channel_ht);
1066
1067 cleanup_relayd_ht();
1068
1069 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1070
1071 /*
1072 * This HT contains streams that are freed by either the metadata thread or
1073 * the data thread so we do *nothing* on the hash table and simply destroy
1074 * it.
1075 */
1076 lttng_ht_destroy(consumer_data.stream_list_ht);
1077 }
1078
1079 /*
1080 * Called from signal handler.
1081 */
1082 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1083 {
1084 int ret;
1085 consumer_quit = 1;
1086 do {
1087 ret = write(ctx->consumer_should_quit[1], "4", 1);
1088 } while (ret < 0 && errno == EINTR);
1089 if (ret < 0 || ret != 1) {
1090 PERROR("write consumer quit");
1091 }
1092
1093 DBG("Consumer flag that it should quit");
1094 }
1095
1096 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1097 off_t orig_offset)
1098 {
1099 int outfd = stream->out_fd;
1100
1101 /*
1102 * This does a blocking write-and-wait on any page that belongs to the
1103 * subbuffer prior to the one we just wrote.
1104 * Don't care about error values, as these are just hints and ways to
1105 * limit the amount of page cache used.
1106 */
1107 if (orig_offset < stream->max_sb_size) {
1108 return;
1109 }
1110 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1111 stream->max_sb_size,
1112 SYNC_FILE_RANGE_WAIT_BEFORE
1113 | SYNC_FILE_RANGE_WRITE
1114 | SYNC_FILE_RANGE_WAIT_AFTER);
1115 /*
1116 * Give hints to the kernel about how we access the file:
1117 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1118 * we write it.
1119 *
1120 * We need to call fadvise again after the file grows because the
1121 * kernel does not seem to apply fadvise to non-existing parts of the
1122 * file.
1123 *
1124 * Call fadvise _after_ having waited for the page writeback to
1125 * complete because the dirty page writeback semantic is not well
1126 * defined. So it can be expected to lead to lower throughput in
1127 * streaming.
1128 */
1129 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1130 stream->max_sb_size, POSIX_FADV_DONTNEED);
1131 }
1132
1133 /*
1134 * Initialise the necessary environnement :
1135 * - create a new context
1136 * - create the poll_pipe
1137 * - create the should_quit pipe (for signal handler)
1138 * - create the thread pipe (for splice)
1139 *
1140 * Takes a function pointer as argument, this function is called when data is
1141 * available on a buffer. This function is responsible to do the
1142 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1143 * buffer configuration and then kernctl_put_next_subbuf at the end.
1144 *
1145 * Returns a pointer to the new context or NULL on error.
1146 */
1147 struct lttng_consumer_local_data *lttng_consumer_create(
1148 enum lttng_consumer_type type,
1149 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1150 struct lttng_consumer_local_data *ctx),
1151 int (*recv_channel)(struct lttng_consumer_channel *channel),
1152 int (*recv_stream)(struct lttng_consumer_stream *stream),
1153 int (*update_stream)(int stream_key, uint32_t state))
1154 {
1155 int ret;
1156 struct lttng_consumer_local_data *ctx;
1157
1158 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1159 consumer_data.type == type);
1160 consumer_data.type = type;
1161
1162 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1163 if (ctx == NULL) {
1164 PERROR("allocating context");
1165 goto error;
1166 }
1167
1168 ctx->consumer_error_socket = -1;
1169 ctx->consumer_metadata_socket = -1;
1170 /* assign the callbacks */
1171 ctx->on_buffer_ready = buffer_ready;
1172 ctx->on_recv_channel = recv_channel;
1173 ctx->on_recv_stream = recv_stream;
1174 ctx->on_update_stream = update_stream;
1175
1176 ctx->consumer_data_pipe = lttng_pipe_open(0);
1177 if (!ctx->consumer_data_pipe) {
1178 goto error_poll_pipe;
1179 }
1180
1181 ret = pipe(ctx->consumer_should_quit);
1182 if (ret < 0) {
1183 PERROR("Error creating recv pipe");
1184 goto error_quit_pipe;
1185 }
1186
1187 ret = pipe(ctx->consumer_thread_pipe);
1188 if (ret < 0) {
1189 PERROR("Error creating thread pipe");
1190 goto error_thread_pipe;
1191 }
1192
1193 ret = pipe(ctx->consumer_channel_pipe);
1194 if (ret < 0) {
1195 PERROR("Error creating channel pipe");
1196 goto error_channel_pipe;
1197 }
1198
1199 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1200 if (!ctx->consumer_metadata_pipe) {
1201 goto error_metadata_pipe;
1202 }
1203
1204 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1205 if (ret < 0) {
1206 goto error_splice_pipe;
1207 }
1208
1209 return ctx;
1210
1211 error_splice_pipe:
1212 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1213 error_metadata_pipe:
1214 utils_close_pipe(ctx->consumer_channel_pipe);
1215 error_channel_pipe:
1216 utils_close_pipe(ctx->consumer_thread_pipe);
1217 error_thread_pipe:
1218 utils_close_pipe(ctx->consumer_should_quit);
1219 error_quit_pipe:
1220 lttng_pipe_destroy(ctx->consumer_data_pipe);
1221 error_poll_pipe:
1222 free(ctx);
1223 error:
1224 return NULL;
1225 }
1226
1227 /*
1228 * Close all fds associated with the instance and free the context.
1229 */
1230 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1231 {
1232 int ret;
1233
1234 DBG("Consumer destroying it. Closing everything.");
1235
1236 ret = close(ctx->consumer_error_socket);
1237 if (ret) {
1238 PERROR("close");
1239 }
1240 ret = close(ctx->consumer_metadata_socket);
1241 if (ret) {
1242 PERROR("close");
1243 }
1244 utils_close_pipe(ctx->consumer_thread_pipe);
1245 utils_close_pipe(ctx->consumer_channel_pipe);
1246 lttng_pipe_destroy(ctx->consumer_data_pipe);
1247 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1248 utils_close_pipe(ctx->consumer_should_quit);
1249 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1250
1251 unlink(ctx->consumer_command_sock_path);
1252 free(ctx);
1253 }
1254
1255 /*
1256 * Write the metadata stream id on the specified file descriptor.
1257 */
1258 static int write_relayd_metadata_id(int fd,
1259 struct lttng_consumer_stream *stream,
1260 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1261 {
1262 int ret;
1263 struct lttcomm_relayd_metadata_payload hdr;
1264
1265 hdr.stream_id = htobe64(stream->relayd_stream_id);
1266 hdr.padding_size = htobe32(padding);
1267 do {
1268 ret = write(fd, (void *) &hdr, sizeof(hdr));
1269 } while (ret < 0 && errno == EINTR);
1270 if (ret < 0 || ret != sizeof(hdr)) {
1271 /*
1272 * This error means that the fd's end is closed so ignore the perror
1273 * not to clubber the error output since this can happen in a normal
1274 * code path.
1275 */
1276 if (errno != EPIPE) {
1277 PERROR("write metadata stream id");
1278 }
1279 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1280 /*
1281 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1282 * handle writting the missing part so report that as an error and
1283 * don't lie to the caller.
1284 */
1285 ret = -1;
1286 goto end;
1287 }
1288 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1289 stream->relayd_stream_id, padding);
1290
1291 end:
1292 return ret;
1293 }
1294
1295 /*
1296 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1297 * core function for writing trace buffers to either the local filesystem or
1298 * the network.
1299 *
1300 * It must be called with the stream lock held.
1301 *
1302 * Careful review MUST be put if any changes occur!
1303 *
1304 * Returns the number of bytes written
1305 */
1306 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1307 struct lttng_consumer_local_data *ctx,
1308 struct lttng_consumer_stream *stream, unsigned long len,
1309 unsigned long padding)
1310 {
1311 unsigned long mmap_offset;
1312 void *mmap_base;
1313 ssize_t ret = 0, written = 0;
1314 off_t orig_offset = stream->out_fd_offset;
1315 /* Default is on the disk */
1316 int outfd = stream->out_fd;
1317 struct consumer_relayd_sock_pair *relayd = NULL;
1318 unsigned int relayd_hang_up = 0;
1319
1320 /* RCU lock for the relayd pointer */
1321 rcu_read_lock();
1322
1323 /* Flag that the current stream if set for network streaming. */
1324 if (stream->net_seq_idx != -1) {
1325 relayd = consumer_find_relayd(stream->net_seq_idx);
1326 if (relayd == NULL) {
1327 goto end;
1328 }
1329 }
1330
1331 /* get the offset inside the fd to mmap */
1332 switch (consumer_data.type) {
1333 case LTTNG_CONSUMER_KERNEL:
1334 mmap_base = stream->mmap_base;
1335 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1336 break;
1337 case LTTNG_CONSUMER32_UST:
1338 case LTTNG_CONSUMER64_UST:
1339 mmap_base = lttng_ustctl_get_mmap_base(stream);
1340 if (!mmap_base) {
1341 ERR("read mmap get mmap base for stream %s", stream->name);
1342 written = -1;
1343 goto end;
1344 }
1345 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1346
1347 break;
1348 default:
1349 ERR("Unknown consumer_data type");
1350 assert(0);
1351 }
1352 if (ret != 0) {
1353 errno = -ret;
1354 PERROR("tracer ctl get_mmap_read_offset");
1355 written = ret;
1356 goto end;
1357 }
1358
1359 /* Handle stream on the relayd if the output is on the network */
1360 if (relayd) {
1361 unsigned long netlen = len;
1362
1363 /*
1364 * Lock the control socket for the complete duration of the function
1365 * since from this point on we will use the socket.
1366 */
1367 if (stream->metadata_flag) {
1368 /* Metadata requires the control socket. */
1369 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1370 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1371 }
1372
1373 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1374 if (ret >= 0) {
1375 /* Use the returned socket. */
1376 outfd = ret;
1377
1378 /* Write metadata stream id before payload */
1379 if (stream->metadata_flag) {
1380 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1381 if (ret < 0) {
1382 written = ret;
1383 /* Socket operation failed. We consider the relayd dead */
1384 if (ret == -EPIPE || ret == -EINVAL) {
1385 relayd_hang_up = 1;
1386 goto write_error;
1387 }
1388 goto end;
1389 }
1390 }
1391 } else {
1392 /* Socket operation failed. We consider the relayd dead */
1393 if (ret == -EPIPE || ret == -EINVAL) {
1394 relayd_hang_up = 1;
1395 goto write_error;
1396 }
1397 /* Else, use the default set before which is the filesystem. */
1398 }
1399 } else {
1400 /* No streaming, we have to set the len with the full padding */
1401 len += padding;
1402
1403 /*
1404 * Check if we need to change the tracefile before writing the packet.
1405 */
1406 if (stream->chan->tracefile_size > 0 &&
1407 (stream->tracefile_size_current + len) >
1408 stream->chan->tracefile_size) {
1409 ret = utils_rotate_stream_file(stream->chan->pathname,
1410 stream->name, stream->chan->tracefile_size,
1411 stream->chan->tracefile_count, stream->uid, stream->gid,
1412 stream->out_fd, &(stream->tracefile_count_current));
1413 if (ret < 0) {
1414 ERR("Rotating output file");
1415 goto end;
1416 }
1417 outfd = stream->out_fd = ret;
1418 /* Reset current size because we just perform a rotation. */
1419 stream->tracefile_size_current = 0;
1420 }
1421 stream->tracefile_size_current += len;
1422 }
1423
1424 while (len > 0) {
1425 do {
1426 ret = write(outfd, mmap_base + mmap_offset, len);
1427 } while (ret < 0 && errno == EINTR);
1428 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1429 if (ret < 0) {
1430 /*
1431 * This is possible if the fd is closed on the other side (outfd)
1432 * or any write problem. It can be verbose a bit for a normal
1433 * execution if for instance the relayd is stopped abruptly. This
1434 * can happen so set this to a DBG statement.
1435 */
1436 DBG("Error in file write mmap");
1437 if (written == 0) {
1438 written = ret;
1439 }
1440 /* Socket operation failed. We consider the relayd dead */
1441 if (errno == EPIPE || errno == EINVAL) {
1442 relayd_hang_up = 1;
1443 goto write_error;
1444 }
1445 goto end;
1446 } else if (ret > len) {
1447 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1448 written += ret;
1449 goto end;
1450 } else {
1451 len -= ret;
1452 mmap_offset += ret;
1453 }
1454
1455 /* This call is useless on a socket so better save a syscall. */
1456 if (!relayd) {
1457 /* This won't block, but will start writeout asynchronously */
1458 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1459 SYNC_FILE_RANGE_WRITE);
1460 stream->out_fd_offset += ret;
1461 }
1462 written += ret;
1463 }
1464 lttng_consumer_sync_trace_file(stream, orig_offset);
1465
1466 write_error:
1467 /*
1468 * This is a special case that the relayd has closed its socket. Let's
1469 * cleanup the relayd object and all associated streams.
1470 */
1471 if (relayd && relayd_hang_up) {
1472 cleanup_relayd(relayd, ctx);
1473 }
1474
1475 end:
1476 /* Unlock only if ctrl socket used */
1477 if (relayd && stream->metadata_flag) {
1478 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1479 }
1480
1481 rcu_read_unlock();
1482 return written;
1483 }
1484
1485 /*
1486 * Splice the data from the ring buffer to the tracefile.
1487 *
1488 * It must be called with the stream lock held.
1489 *
1490 * Returns the number of bytes spliced.
1491 */
1492 ssize_t lttng_consumer_on_read_subbuffer_splice(
1493 struct lttng_consumer_local_data *ctx,
1494 struct lttng_consumer_stream *stream, unsigned long len,
1495 unsigned long padding)
1496 {
1497 ssize_t ret = 0, written = 0, ret_splice = 0;
1498 loff_t offset = 0;
1499 off_t orig_offset = stream->out_fd_offset;
1500 int fd = stream->wait_fd;
1501 /* Default is on the disk */
1502 int outfd = stream->out_fd;
1503 struct consumer_relayd_sock_pair *relayd = NULL;
1504 int *splice_pipe;
1505 unsigned int relayd_hang_up = 0;
1506
1507 switch (consumer_data.type) {
1508 case LTTNG_CONSUMER_KERNEL:
1509 break;
1510 case LTTNG_CONSUMER32_UST:
1511 case LTTNG_CONSUMER64_UST:
1512 /* Not supported for user space tracing */
1513 return -ENOSYS;
1514 default:
1515 ERR("Unknown consumer_data type");
1516 assert(0);
1517 }
1518
1519 /* RCU lock for the relayd pointer */
1520 rcu_read_lock();
1521
1522 /* Flag that the current stream if set for network streaming. */
1523 if (stream->net_seq_idx != -1) {
1524 relayd = consumer_find_relayd(stream->net_seq_idx);
1525 if (relayd == NULL) {
1526 goto end;
1527 }
1528 }
1529
1530 /*
1531 * Choose right pipe for splice. Metadata and trace data are handled by
1532 * different threads hence the use of two pipes in order not to race or
1533 * corrupt the written data.
1534 */
1535 if (stream->metadata_flag) {
1536 splice_pipe = ctx->consumer_splice_metadata_pipe;
1537 } else {
1538 splice_pipe = ctx->consumer_thread_pipe;
1539 }
1540
1541 /* Write metadata stream id before payload */
1542 if (relayd) {
1543 int total_len = len;
1544
1545 if (stream->metadata_flag) {
1546 /*
1547 * Lock the control socket for the complete duration of the function
1548 * since from this point on we will use the socket.
1549 */
1550 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1551
1552 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1553 padding);
1554 if (ret < 0) {
1555 written = ret;
1556 /* Socket operation failed. We consider the relayd dead */
1557 if (ret == -EBADF) {
1558 WARN("Remote relayd disconnected. Stopping");
1559 relayd_hang_up = 1;
1560 goto write_error;
1561 }
1562 goto end;
1563 }
1564
1565 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1566 }
1567
1568 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1569 if (ret >= 0) {
1570 /* Use the returned socket. */
1571 outfd = ret;
1572 } else {
1573 /* Socket operation failed. We consider the relayd dead */
1574 if (ret == -EBADF) {
1575 WARN("Remote relayd disconnected. Stopping");
1576 relayd_hang_up = 1;
1577 goto write_error;
1578 }
1579 goto end;
1580 }
1581 } else {
1582 /* No streaming, we have to set the len with the full padding */
1583 len += padding;
1584
1585 /*
1586 * Check if we need to change the tracefile before writing the packet.
1587 */
1588 if (stream->chan->tracefile_size > 0 &&
1589 (stream->tracefile_size_current + len) >
1590 stream->chan->tracefile_size) {
1591 ret = utils_rotate_stream_file(stream->chan->pathname,
1592 stream->name, stream->chan->tracefile_size,
1593 stream->chan->tracefile_count, stream->uid, stream->gid,
1594 stream->out_fd, &(stream->tracefile_count_current));
1595 if (ret < 0) {
1596 ERR("Rotating output file");
1597 goto end;
1598 }
1599 outfd = stream->out_fd = ret;
1600 /* Reset current size because we just perform a rotation. */
1601 stream->tracefile_size_current = 0;
1602 }
1603 stream->tracefile_size_current += len;
1604 }
1605
1606 while (len > 0) {
1607 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1608 (unsigned long)offset, len, fd, splice_pipe[1]);
1609 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1610 SPLICE_F_MOVE | SPLICE_F_MORE);
1611 DBG("splice chan to pipe, ret %zd", ret_splice);
1612 if (ret_splice < 0) {
1613 PERROR("Error in relay splice");
1614 if (written == 0) {
1615 written = ret_splice;
1616 }
1617 ret = errno;
1618 goto splice_error;
1619 }
1620
1621 /* Handle stream on the relayd if the output is on the network */
1622 if (relayd) {
1623 if (stream->metadata_flag) {
1624 size_t metadata_payload_size =
1625 sizeof(struct lttcomm_relayd_metadata_payload);
1626
1627 /* Update counter to fit the spliced data */
1628 ret_splice += metadata_payload_size;
1629 len += metadata_payload_size;
1630 /*
1631 * We do this so the return value can match the len passed as
1632 * argument to this function.
1633 */
1634 written -= metadata_payload_size;
1635 }
1636 }
1637
1638 /* Splice data out */
1639 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1640 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1641 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1642 if (ret_splice < 0) {
1643 PERROR("Error in file splice");
1644 if (written == 0) {
1645 written = ret_splice;
1646 }
1647 /* Socket operation failed. We consider the relayd dead */
1648 if (errno == EBADF || errno == EPIPE) {
1649 WARN("Remote relayd disconnected. Stopping");
1650 relayd_hang_up = 1;
1651 goto write_error;
1652 }
1653 ret = errno;
1654 goto splice_error;
1655 } else if (ret_splice > len) {
1656 errno = EINVAL;
1657 PERROR("Wrote more data than requested %zd (len: %lu)",
1658 ret_splice, len);
1659 written += ret_splice;
1660 ret = errno;
1661 goto splice_error;
1662 }
1663 len -= ret_splice;
1664
1665 /* This call is useless on a socket so better save a syscall. */
1666 if (!relayd) {
1667 /* This won't block, but will start writeout asynchronously */
1668 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1669 SYNC_FILE_RANGE_WRITE);
1670 stream->out_fd_offset += ret_splice;
1671 }
1672 written += ret_splice;
1673 }
1674 lttng_consumer_sync_trace_file(stream, orig_offset);
1675
1676 ret = ret_splice;
1677
1678 goto end;
1679
1680 write_error:
1681 /*
1682 * This is a special case that the relayd has closed its socket. Let's
1683 * cleanup the relayd object and all associated streams.
1684 */
1685 if (relayd && relayd_hang_up) {
1686 cleanup_relayd(relayd, ctx);
1687 /* Skip splice error so the consumer does not fail */
1688 goto end;
1689 }
1690
1691 splice_error:
1692 /* send the appropriate error description to sessiond */
1693 switch (ret) {
1694 case EINVAL:
1695 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1696 break;
1697 case ENOMEM:
1698 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1699 break;
1700 case ESPIPE:
1701 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1702 break;
1703 }
1704
1705 end:
1706 if (relayd && stream->metadata_flag) {
1707 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1708 }
1709
1710 rcu_read_unlock();
1711 return written;
1712 }
1713
1714 /*
1715 * Take a snapshot for a specific fd
1716 *
1717 * Returns 0 on success, < 0 on error
1718 */
1719 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1720 {
1721 switch (consumer_data.type) {
1722 case LTTNG_CONSUMER_KERNEL:
1723 return lttng_kconsumer_take_snapshot(stream);
1724 case LTTNG_CONSUMER32_UST:
1725 case LTTNG_CONSUMER64_UST:
1726 return lttng_ustconsumer_take_snapshot(stream);
1727 default:
1728 ERR("Unknown consumer_data type");
1729 assert(0);
1730 return -ENOSYS;
1731 }
1732 }
1733
1734 /*
1735 * Get the produced position
1736 *
1737 * Returns 0 on success, < 0 on error
1738 */
1739 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1740 unsigned long *pos)
1741 {
1742 switch (consumer_data.type) {
1743 case LTTNG_CONSUMER_KERNEL:
1744 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1745 case LTTNG_CONSUMER32_UST:
1746 case LTTNG_CONSUMER64_UST:
1747 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1748 default:
1749 ERR("Unknown consumer_data type");
1750 assert(0);
1751 return -ENOSYS;
1752 }
1753 }
1754
1755 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1756 int sock, struct pollfd *consumer_sockpoll)
1757 {
1758 switch (consumer_data.type) {
1759 case LTTNG_CONSUMER_KERNEL:
1760 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1761 case LTTNG_CONSUMER32_UST:
1762 case LTTNG_CONSUMER64_UST:
1763 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1764 default:
1765 ERR("Unknown consumer_data type");
1766 assert(0);
1767 return -ENOSYS;
1768 }
1769 }
1770
1771 /*
1772 * Iterate over all streams of the hashtable and free them properly.
1773 *
1774 * WARNING: *MUST* be used with data stream only.
1775 */
1776 static void destroy_data_stream_ht(struct lttng_ht *ht)
1777 {
1778 struct lttng_ht_iter iter;
1779 struct lttng_consumer_stream *stream;
1780
1781 if (ht == NULL) {
1782 return;
1783 }
1784
1785 rcu_read_lock();
1786 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1787 /*
1788 * Ignore return value since we are currently cleaning up so any error
1789 * can't be handled.
1790 */
1791 (void) consumer_del_stream(stream, ht);
1792 }
1793 rcu_read_unlock();
1794
1795 lttng_ht_destroy(ht);
1796 }
1797
1798 /*
1799 * Iterate over all streams of the hashtable and free them properly.
1800 *
1801 * XXX: Should not be only for metadata stream or else use an other name.
1802 */
1803 static void destroy_stream_ht(struct lttng_ht *ht)
1804 {
1805 struct lttng_ht_iter iter;
1806 struct lttng_consumer_stream *stream;
1807
1808 if (ht == NULL) {
1809 return;
1810 }
1811
1812 rcu_read_lock();
1813 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1814 /*
1815 * Ignore return value since we are currently cleaning up so any error
1816 * can't be handled.
1817 */
1818 (void) consumer_del_metadata_stream(stream, ht);
1819 }
1820 rcu_read_unlock();
1821
1822 lttng_ht_destroy(ht);
1823 }
1824
1825 void lttng_consumer_close_metadata(void)
1826 {
1827 switch (consumer_data.type) {
1828 case LTTNG_CONSUMER_KERNEL:
1829 /*
1830 * The Kernel consumer has a different metadata scheme so we don't
1831 * close anything because the stream will be closed by the session
1832 * daemon.
1833 */
1834 break;
1835 case LTTNG_CONSUMER32_UST:
1836 case LTTNG_CONSUMER64_UST:
1837 /*
1838 * Close all metadata streams. The metadata hash table is passed and
1839 * this call iterates over it by closing all wakeup fd. This is safe
1840 * because at this point we are sure that the metadata producer is
1841 * either dead or blocked.
1842 */
1843 lttng_ustconsumer_close_metadata(metadata_ht);
1844 break;
1845 default:
1846 ERR("Unknown consumer_data type");
1847 assert(0);
1848 }
1849 }
1850
1851 /*
1852 * Clean up a metadata stream and free its memory.
1853 */
1854 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1855 struct lttng_ht *ht)
1856 {
1857 int ret;
1858 struct lttng_ht_iter iter;
1859 struct lttng_consumer_channel *free_chan = NULL;
1860 struct consumer_relayd_sock_pair *relayd;
1861
1862 assert(stream);
1863 /*
1864 * This call should NEVER receive regular stream. It must always be
1865 * metadata stream and this is crucial for data structure synchronization.
1866 */
1867 assert(stream->metadata_flag);
1868
1869 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1870
1871 if (ht == NULL) {
1872 /* Means the stream was allocated but not successfully added */
1873 goto free_stream_rcu;
1874 }
1875
1876 pthread_mutex_lock(&consumer_data.lock);
1877 pthread_mutex_lock(&stream->lock);
1878
1879 switch (consumer_data.type) {
1880 case LTTNG_CONSUMER_KERNEL:
1881 if (stream->mmap_base != NULL) {
1882 ret = munmap(stream->mmap_base, stream->mmap_len);
1883 if (ret != 0) {
1884 PERROR("munmap metadata stream");
1885 }
1886 }
1887
1888 if (stream->wait_fd >= 0) {
1889 ret = close(stream->wait_fd);
1890 if (ret < 0) {
1891 PERROR("close kernel metadata wait_fd");
1892 }
1893 }
1894 break;
1895 case LTTNG_CONSUMER32_UST:
1896 case LTTNG_CONSUMER64_UST:
1897 lttng_ustconsumer_del_stream(stream);
1898 break;
1899 default:
1900 ERR("Unknown consumer_data type");
1901 assert(0);
1902 goto end;
1903 }
1904
1905 rcu_read_lock();
1906 iter.iter.node = &stream->node.node;
1907 ret = lttng_ht_del(ht, &iter);
1908 assert(!ret);
1909
1910 iter.iter.node = &stream->node_channel_id.node;
1911 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1912 assert(!ret);
1913
1914 iter.iter.node = &stream->node_session_id.node;
1915 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1916 assert(!ret);
1917 rcu_read_unlock();
1918
1919 if (stream->out_fd >= 0) {
1920 ret = close(stream->out_fd);
1921 if (ret) {
1922 PERROR("close");
1923 }
1924 }
1925
1926 /* Check and cleanup relayd */
1927 rcu_read_lock();
1928 relayd = consumer_find_relayd(stream->net_seq_idx);
1929 if (relayd != NULL) {
1930 uatomic_dec(&relayd->refcount);
1931 assert(uatomic_read(&relayd->refcount) >= 0);
1932
1933 /* Closing streams requires to lock the control socket. */
1934 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1935 ret = relayd_send_close_stream(&relayd->control_sock,
1936 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1937 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1938 if (ret < 0) {
1939 DBG("Unable to close stream on the relayd. Continuing");
1940 /*
1941 * Continue here. There is nothing we can do for the relayd.
1942 * Chances are that the relayd has closed the socket so we just
1943 * continue cleaning up.
1944 */
1945 }
1946
1947 /* Both conditions are met, we destroy the relayd. */
1948 if (uatomic_read(&relayd->refcount) == 0 &&
1949 uatomic_read(&relayd->destroy_flag)) {
1950 destroy_relayd(relayd);
1951 }
1952 }
1953 rcu_read_unlock();
1954
1955 /* Atomically decrement channel refcount since other threads can use it. */
1956 if (!uatomic_sub_return(&stream->chan->refcount, 1)
1957 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
1958 /* Go for channel deletion! */
1959 free_chan = stream->chan;
1960 }
1961
1962 end:
1963 /*
1964 * Nullify the stream reference so it is not used after deletion. The
1965 * consumer data lock MUST be acquired before being able to check for a
1966 * NULL pointer value.
1967 */
1968 stream->chan->metadata_stream = NULL;
1969
1970 pthread_mutex_unlock(&stream->lock);
1971 pthread_mutex_unlock(&consumer_data.lock);
1972
1973 if (free_chan) {
1974 consumer_del_channel(free_chan);
1975 }
1976
1977 free_stream_rcu:
1978 call_rcu(&stream->node.head, free_stream_rcu);
1979 }
1980
1981 /*
1982 * Action done with the metadata stream when adding it to the consumer internal
1983 * data structures to handle it.
1984 */
1985 static int add_metadata_stream(struct lttng_consumer_stream *stream,
1986 struct lttng_ht *ht)
1987 {
1988 int ret = 0;
1989 struct consumer_relayd_sock_pair *relayd;
1990 struct lttng_ht_iter iter;
1991 struct lttng_ht_node_u64 *node;
1992
1993 assert(stream);
1994 assert(ht);
1995
1996 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
1997
1998 pthread_mutex_lock(&consumer_data.lock);
1999 pthread_mutex_lock(&stream->lock);
2000
2001 /*
2002 * From here, refcounts are updated so be _careful_ when returning an error
2003 * after this point.
2004 */
2005
2006 rcu_read_lock();
2007
2008 /*
2009 * Lookup the stream just to make sure it does not exist in our internal
2010 * state. This should NEVER happen.
2011 */
2012 lttng_ht_lookup(ht, &stream->key, &iter);
2013 node = lttng_ht_iter_get_node_u64(&iter);
2014 assert(!node);
2015
2016 /* Find relayd and, if one is found, increment refcount. */
2017 relayd = consumer_find_relayd(stream->net_seq_idx);
2018 if (relayd != NULL) {
2019 uatomic_inc(&relayd->refcount);
2020 }
2021
2022 /*
2023 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2024 * in terms of destroying the associated channel, because the action that
2025 * causes the count to become 0 also causes a stream to be added. The
2026 * channel deletion will thus be triggered by the following removal of this
2027 * stream.
2028 */
2029 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2030 /* Increment refcount before decrementing nb_init_stream_left */
2031 cmm_smp_wmb();
2032 uatomic_dec(&stream->chan->nb_init_stream_left);
2033 }
2034
2035 lttng_ht_add_unique_u64(ht, &stream->node);
2036
2037 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2038 &stream->node_channel_id);
2039
2040 /*
2041 * Add stream to the stream_list_ht of the consumer data. No need to steal
2042 * the key since the HT does not use it and we allow to add redundant keys
2043 * into this table.
2044 */
2045 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2046
2047 rcu_read_unlock();
2048
2049 pthread_mutex_unlock(&stream->lock);
2050 pthread_mutex_unlock(&consumer_data.lock);
2051 return ret;
2052 }
2053
2054 /*
2055 * Delete data stream that are flagged for deletion (endpoint_status).
2056 */
2057 static void validate_endpoint_status_data_stream(void)
2058 {
2059 struct lttng_ht_iter iter;
2060 struct lttng_consumer_stream *stream;
2061
2062 DBG("Consumer delete flagged data stream");
2063
2064 rcu_read_lock();
2065 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2066 /* Validate delete flag of the stream */
2067 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2068 continue;
2069 }
2070 /* Delete it right now */
2071 consumer_del_stream(stream, data_ht);
2072 }
2073 rcu_read_unlock();
2074 }
2075
2076 /*
2077 * Delete metadata stream that are flagged for deletion (endpoint_status).
2078 */
2079 static void validate_endpoint_status_metadata_stream(
2080 struct lttng_poll_event *pollset)
2081 {
2082 struct lttng_ht_iter iter;
2083 struct lttng_consumer_stream *stream;
2084
2085 DBG("Consumer delete flagged metadata stream");
2086
2087 assert(pollset);
2088
2089 rcu_read_lock();
2090 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2091 /* Validate delete flag of the stream */
2092 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2093 continue;
2094 }
2095 /*
2096 * Remove from pollset so the metadata thread can continue without
2097 * blocking on a deleted stream.
2098 */
2099 lttng_poll_del(pollset, stream->wait_fd);
2100
2101 /* Delete it right now */
2102 consumer_del_metadata_stream(stream, metadata_ht);
2103 }
2104 rcu_read_unlock();
2105 }
2106
2107 /*
2108 * Thread polls on metadata file descriptor and write them on disk or on the
2109 * network.
2110 */
2111 void *consumer_thread_metadata_poll(void *data)
2112 {
2113 int ret, i, pollfd;
2114 uint32_t revents, nb_fd;
2115 struct lttng_consumer_stream *stream = NULL;
2116 struct lttng_ht_iter iter;
2117 struct lttng_ht_node_u64 *node;
2118 struct lttng_poll_event events;
2119 struct lttng_consumer_local_data *ctx = data;
2120 ssize_t len;
2121
2122 rcu_register_thread();
2123
2124 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2125 if (!metadata_ht) {
2126 /* ENOMEM at this point. Better to bail out. */
2127 goto end_ht;
2128 }
2129
2130 DBG("Thread metadata poll started");
2131
2132 /* Size is set to 1 for the consumer_metadata pipe */
2133 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2134 if (ret < 0) {
2135 ERR("Poll set creation failed");
2136 goto end_poll;
2137 }
2138
2139 ret = lttng_poll_add(&events,
2140 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2141 if (ret < 0) {
2142 goto end;
2143 }
2144
2145 /* Main loop */
2146 DBG("Metadata main loop started");
2147
2148 while (1) {
2149 /* Only the metadata pipe is set */
2150 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2151 goto end;
2152 }
2153
2154 restart:
2155 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2156 ret = lttng_poll_wait(&events, -1);
2157 DBG("Metadata event catched in thread");
2158 if (ret < 0) {
2159 if (errno == EINTR) {
2160 ERR("Poll EINTR catched");
2161 goto restart;
2162 }
2163 goto error;
2164 }
2165
2166 nb_fd = ret;
2167
2168 /* From here, the event is a metadata wait fd */
2169 for (i = 0; i < nb_fd; i++) {
2170 revents = LTTNG_POLL_GETEV(&events, i);
2171 pollfd = LTTNG_POLL_GETFD(&events, i);
2172
2173 /* Just don't waste time if no returned events for the fd */
2174 if (!revents) {
2175 continue;
2176 }
2177
2178 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2179 if (revents & (LPOLLERR | LPOLLHUP )) {
2180 DBG("Metadata thread pipe hung up");
2181 /*
2182 * Remove the pipe from the poll set and continue the loop
2183 * since their might be data to consume.
2184 */
2185 lttng_poll_del(&events,
2186 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2187 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2188 continue;
2189 } else if (revents & LPOLLIN) {
2190 ssize_t pipe_len;
2191
2192 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2193 &stream, sizeof(stream));
2194 if (pipe_len < 0) {
2195 ERR("read metadata stream, ret: %ld", pipe_len);
2196 /*
2197 * Continue here to handle the rest of the streams.
2198 */
2199 continue;
2200 }
2201
2202 /* A NULL stream means that the state has changed. */
2203 if (stream == NULL) {
2204 /* Check for deleted streams. */
2205 validate_endpoint_status_metadata_stream(&events);
2206 goto restart;
2207 }
2208
2209 DBG("Adding metadata stream %d to poll set",
2210 stream->wait_fd);
2211
2212 ret = add_metadata_stream(stream, metadata_ht);
2213 if (ret) {
2214 ERR("Unable to add metadata stream");
2215 /* Stream was not setup properly. Continuing. */
2216 consumer_del_metadata_stream(stream, NULL);
2217 continue;
2218 }
2219
2220 /* Add metadata stream to the global poll events list */
2221 lttng_poll_add(&events, stream->wait_fd,
2222 LPOLLIN | LPOLLPRI);
2223 }
2224
2225 /* Handle other stream */
2226 continue;
2227 }
2228
2229 rcu_read_lock();
2230 {
2231 uint64_t tmp_id = (uint64_t) pollfd;
2232
2233 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2234 }
2235 node = lttng_ht_iter_get_node_u64(&iter);
2236 assert(node);
2237
2238 stream = caa_container_of(node, struct lttng_consumer_stream,
2239 node);
2240
2241 /* Check for error event */
2242 if (revents & (LPOLLERR | LPOLLHUP)) {
2243 DBG("Metadata fd %d is hup|err.", pollfd);
2244 if (!stream->hangup_flush_done
2245 && (consumer_data.type == LTTNG_CONSUMER32_UST
2246 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2247 DBG("Attempting to flush and consume the UST buffers");
2248 lttng_ustconsumer_on_stream_hangup(stream);
2249
2250 /* We just flushed the stream now read it. */
2251 do {
2252 len = ctx->on_buffer_ready(stream, ctx);
2253 /*
2254 * We don't check the return value here since if we get
2255 * a negative len, it means an error occured thus we
2256 * simply remove it from the poll set and free the
2257 * stream.
2258 */
2259 } while (len > 0);
2260 }
2261
2262 lttng_poll_del(&events, stream->wait_fd);
2263 /*
2264 * This call update the channel states, closes file descriptors
2265 * and securely free the stream.
2266 */
2267 consumer_del_metadata_stream(stream, metadata_ht);
2268 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2269 /* Get the data out of the metadata file descriptor */
2270 DBG("Metadata available on fd %d", pollfd);
2271 assert(stream->wait_fd == pollfd);
2272
2273 len = ctx->on_buffer_ready(stream, ctx);
2274 /* It's ok to have an unavailable sub-buffer */
2275 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2276 /* Clean up stream from consumer and free it. */
2277 lttng_poll_del(&events, stream->wait_fd);
2278 consumer_del_metadata_stream(stream, metadata_ht);
2279 } else if (len > 0) {
2280 stream->data_read = 1;
2281 }
2282 }
2283
2284 /* Release RCU lock for the stream looked up */
2285 rcu_read_unlock();
2286 }
2287 }
2288
2289 error:
2290 end:
2291 DBG("Metadata poll thread exiting");
2292
2293 lttng_poll_clean(&events);
2294 end_poll:
2295 destroy_stream_ht(metadata_ht);
2296 end_ht:
2297 rcu_unregister_thread();
2298 return NULL;
2299 }
2300
2301 /*
2302 * This thread polls the fds in the set to consume the data and write
2303 * it to tracefile if necessary.
2304 */
2305 void *consumer_thread_data_poll(void *data)
2306 {
2307 int num_rdy, num_hup, high_prio, ret, i;
2308 struct pollfd *pollfd = NULL;
2309 /* local view of the streams */
2310 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2311 /* local view of consumer_data.fds_count */
2312 int nb_fd = 0;
2313 struct lttng_consumer_local_data *ctx = data;
2314 ssize_t len;
2315
2316 rcu_register_thread();
2317
2318 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2319 if (data_ht == NULL) {
2320 /* ENOMEM at this point. Better to bail out. */
2321 goto end;
2322 }
2323
2324 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
2325
2326 while (1) {
2327 high_prio = 0;
2328 num_hup = 0;
2329
2330 /*
2331 * the fds set has been updated, we need to update our
2332 * local array as well
2333 */
2334 pthread_mutex_lock(&consumer_data.lock);
2335 if (consumer_data.need_update) {
2336 free(pollfd);
2337 pollfd = NULL;
2338
2339 free(local_stream);
2340 local_stream = NULL;
2341
2342 /* allocate for all fds + 1 for the consumer_data_pipe */
2343 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2344 if (pollfd == NULL) {
2345 PERROR("pollfd malloc");
2346 pthread_mutex_unlock(&consumer_data.lock);
2347 goto end;
2348 }
2349
2350 /* allocate for all fds + 1 for the consumer_data_pipe */
2351 local_stream = zmalloc((consumer_data.stream_count + 1) *
2352 sizeof(struct lttng_consumer_stream));
2353 if (local_stream == NULL) {
2354 PERROR("local_stream malloc");
2355 pthread_mutex_unlock(&consumer_data.lock);
2356 goto end;
2357 }
2358 ret = update_poll_array(ctx, &pollfd, local_stream,
2359 data_ht);
2360 if (ret < 0) {
2361 ERR("Error in allocating pollfd or local_outfds");
2362 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2363 pthread_mutex_unlock(&consumer_data.lock);
2364 goto end;
2365 }
2366 nb_fd = ret;
2367 consumer_data.need_update = 0;
2368 }
2369 pthread_mutex_unlock(&consumer_data.lock);
2370
2371 /* No FDs and consumer_quit, consumer_cleanup the thread */
2372 if (nb_fd == 0 && consumer_quit == 1) {
2373 goto end;
2374 }
2375 /* poll on the array of fds */
2376 restart:
2377 DBG("polling on %d fd", nb_fd + 1);
2378 num_rdy = poll(pollfd, nb_fd + 1, -1);
2379 DBG("poll num_rdy : %d", num_rdy);
2380 if (num_rdy == -1) {
2381 /*
2382 * Restart interrupted system call.
2383 */
2384 if (errno == EINTR) {
2385 goto restart;
2386 }
2387 PERROR("Poll error");
2388 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2389 goto end;
2390 } else if (num_rdy == 0) {
2391 DBG("Polling thread timed out");
2392 goto end;
2393 }
2394
2395 /*
2396 * If the consumer_data_pipe triggered poll go directly to the
2397 * beginning of the loop to update the array. We want to prioritize
2398 * array update over low-priority reads.
2399 */
2400 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2401 ssize_t pipe_readlen;
2402
2403 DBG("consumer_data_pipe wake up");
2404 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2405 &new_stream, sizeof(new_stream));
2406 if (pipe_readlen < 0) {
2407 ERR("Consumer data pipe ret %ld", pipe_readlen);
2408 /* Continue so we can at least handle the current stream(s). */
2409 continue;
2410 }
2411
2412 /*
2413 * If the stream is NULL, just ignore it. It's also possible that
2414 * the sessiond poll thread changed the consumer_quit state and is
2415 * waking us up to test it.
2416 */
2417 if (new_stream == NULL) {
2418 validate_endpoint_status_data_stream();
2419 continue;
2420 }
2421
2422 ret = add_stream(new_stream, data_ht);
2423 if (ret) {
2424 ERR("Consumer add stream %" PRIu64 " failed. Continuing",
2425 new_stream->key);
2426 /*
2427 * At this point, if the add_stream fails, it is not in the
2428 * hash table thus passing the NULL value here.
2429 */
2430 consumer_del_stream(new_stream, NULL);
2431 }
2432
2433 /* Continue to update the local streams and handle prio ones */
2434 continue;
2435 }
2436
2437 /* Take care of high priority channels first. */
2438 for (i = 0; i < nb_fd; i++) {
2439 if (local_stream[i] == NULL) {
2440 continue;
2441 }
2442 if (pollfd[i].revents & POLLPRI) {
2443 DBG("Urgent read on fd %d", pollfd[i].fd);
2444 high_prio = 1;
2445 len = ctx->on_buffer_ready(local_stream[i], ctx);
2446 /* it's ok to have an unavailable sub-buffer */
2447 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2448 /* Clean the stream and free it. */
2449 consumer_del_stream(local_stream[i], data_ht);
2450 local_stream[i] = NULL;
2451 } else if (len > 0) {
2452 local_stream[i]->data_read = 1;
2453 }
2454 }
2455 }
2456
2457 /*
2458 * If we read high prio channel in this loop, try again
2459 * for more high prio data.
2460 */
2461 if (high_prio) {
2462 continue;
2463 }
2464
2465 /* Take care of low priority channels. */
2466 for (i = 0; i < nb_fd; i++) {
2467 if (local_stream[i] == NULL) {
2468 continue;
2469 }
2470 if ((pollfd[i].revents & POLLIN) ||
2471 local_stream[i]->hangup_flush_done) {
2472 DBG("Normal read on fd %d", pollfd[i].fd);
2473 len = ctx->on_buffer_ready(local_stream[i], ctx);
2474 /* it's ok to have an unavailable sub-buffer */
2475 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2476 /* Clean the stream and free it. */
2477 consumer_del_stream(local_stream[i], data_ht);
2478 local_stream[i] = NULL;
2479 } else if (len > 0) {
2480 local_stream[i]->data_read = 1;
2481 }
2482 }
2483 }
2484
2485 /* Handle hangup and errors */
2486 for (i = 0; i < nb_fd; i++) {
2487 if (local_stream[i] == NULL) {
2488 continue;
2489 }
2490 if (!local_stream[i]->hangup_flush_done
2491 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2492 && (consumer_data.type == LTTNG_CONSUMER32_UST
2493 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2494 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2495 pollfd[i].fd);
2496 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2497 /* Attempt read again, for the data we just flushed. */
2498 local_stream[i]->data_read = 1;
2499 }
2500 /*
2501 * If the poll flag is HUP/ERR/NVAL and we have
2502 * read no data in this pass, we can remove the
2503 * stream from its hash table.
2504 */
2505 if ((pollfd[i].revents & POLLHUP)) {
2506 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2507 if (!local_stream[i]->data_read) {
2508 consumer_del_stream(local_stream[i], data_ht);
2509 local_stream[i] = NULL;
2510 num_hup++;
2511 }
2512 } else if (pollfd[i].revents & POLLERR) {
2513 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2514 if (!local_stream[i]->data_read) {
2515 consumer_del_stream(local_stream[i], data_ht);
2516 local_stream[i] = NULL;
2517 num_hup++;
2518 }
2519 } else if (pollfd[i].revents & POLLNVAL) {
2520 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2521 if (!local_stream[i]->data_read) {
2522 consumer_del_stream(local_stream[i], data_ht);
2523 local_stream[i] = NULL;
2524 num_hup++;
2525 }
2526 }
2527 if (local_stream[i] != NULL) {
2528 local_stream[i]->data_read = 0;
2529 }
2530 }
2531 }
2532 end:
2533 DBG("polling thread exiting");
2534 free(pollfd);
2535 free(local_stream);
2536
2537 /*
2538 * Close the write side of the pipe so epoll_wait() in
2539 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2540 * read side of the pipe. If we close them both, epoll_wait strangely does
2541 * not return and could create a endless wait period if the pipe is the
2542 * only tracked fd in the poll set. The thread will take care of closing
2543 * the read side.
2544 */
2545 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2546
2547 destroy_data_stream_ht(data_ht);
2548
2549 rcu_unregister_thread();
2550 return NULL;
2551 }
2552
2553 /*
2554 * Close wake-up end of each stream belonging to the channel. This will
2555 * allow the poll() on the stream read-side to detect when the
2556 * write-side (application) finally closes them.
2557 */
2558 static
2559 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2560 {
2561 struct lttng_ht *ht;
2562 struct lttng_consumer_stream *stream;
2563 struct lttng_ht_iter iter;
2564
2565 ht = consumer_data.stream_per_chan_id_ht;
2566
2567 rcu_read_lock();
2568 cds_lfht_for_each_entry_duplicate(ht->ht,
2569 ht->hash_fct(&channel->key, lttng_ht_seed),
2570 ht->match_fct, &channel->key,
2571 &iter.iter, stream, node_channel_id.node) {
2572 /*
2573 * Protect against teardown with mutex.
2574 */
2575 pthread_mutex_lock(&stream->lock);
2576 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2577 goto next;
2578 }
2579 switch (consumer_data.type) {
2580 case LTTNG_CONSUMER_KERNEL:
2581 break;
2582 case LTTNG_CONSUMER32_UST:
2583 case LTTNG_CONSUMER64_UST:
2584 /*
2585 * Note: a mutex is taken internally within
2586 * liblttng-ust-ctl to protect timer wakeup_fd
2587 * use from concurrent close.
2588 */
2589 lttng_ustconsumer_close_stream_wakeup(stream);
2590 break;
2591 default:
2592 ERR("Unknown consumer_data type");
2593 assert(0);
2594 }
2595 next:
2596 pthread_mutex_unlock(&stream->lock);
2597 }
2598 rcu_read_unlock();
2599 }
2600
2601 static void destroy_channel_ht(struct lttng_ht *ht)
2602 {
2603 struct lttng_ht_iter iter;
2604 struct lttng_consumer_channel *channel;
2605 int ret;
2606
2607 if (ht == NULL) {
2608 return;
2609 }
2610
2611 rcu_read_lock();
2612 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2613 ret = lttng_ht_del(ht, &iter);
2614 assert(ret != 0);
2615 }
2616 rcu_read_unlock();
2617
2618 lttng_ht_destroy(ht);
2619 }
2620
2621 /*
2622 * This thread polls the channel fds to detect when they are being
2623 * closed. It closes all related streams if the channel is detected as
2624 * closed. It is currently only used as a shim layer for UST because the
2625 * consumerd needs to keep the per-stream wakeup end of pipes open for
2626 * periodical flush.
2627 */
2628 void *consumer_thread_channel_poll(void *data)
2629 {
2630 int ret, i, pollfd;
2631 uint32_t revents, nb_fd;
2632 struct lttng_consumer_channel *chan = NULL;
2633 struct lttng_ht_iter iter;
2634 struct lttng_ht_node_u64 *node;
2635 struct lttng_poll_event events;
2636 struct lttng_consumer_local_data *ctx = data;
2637 struct lttng_ht *channel_ht;
2638
2639 rcu_register_thread();
2640
2641 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2642 if (!channel_ht) {
2643 /* ENOMEM at this point. Better to bail out. */
2644 goto end_ht;
2645 }
2646
2647 DBG("Thread channel poll started");
2648
2649 /* Size is set to 1 for the consumer_channel pipe */
2650 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2651 if (ret < 0) {
2652 ERR("Poll set creation failed");
2653 goto end_poll;
2654 }
2655
2656 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2657 if (ret < 0) {
2658 goto end;
2659 }
2660
2661 /* Main loop */
2662 DBG("Channel main loop started");
2663
2664 while (1) {
2665 /* Only the channel pipe is set */
2666 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2667 goto end;
2668 }
2669
2670 restart:
2671 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2672 ret = lttng_poll_wait(&events, -1);
2673 DBG("Channel event catched in thread");
2674 if (ret < 0) {
2675 if (errno == EINTR) {
2676 ERR("Poll EINTR catched");
2677 goto restart;
2678 }
2679 goto end;
2680 }
2681
2682 nb_fd = ret;
2683
2684 /* From here, the event is a channel wait fd */
2685 for (i = 0; i < nb_fd; i++) {
2686 revents = LTTNG_POLL_GETEV(&events, i);
2687 pollfd = LTTNG_POLL_GETFD(&events, i);
2688
2689 /* Just don't waste time if no returned events for the fd */
2690 if (!revents) {
2691 continue;
2692 }
2693 if (pollfd == ctx->consumer_channel_pipe[0]) {
2694 if (revents & (LPOLLERR | LPOLLHUP)) {
2695 DBG("Channel thread pipe hung up");
2696 /*
2697 * Remove the pipe from the poll set and continue the loop
2698 * since their might be data to consume.
2699 */
2700 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2701 continue;
2702 } else if (revents & LPOLLIN) {
2703 enum consumer_channel_action action;
2704 uint64_t key;
2705
2706 ret = read_channel_pipe(ctx, &chan, &key, &action);
2707 if (ret <= 0) {
2708 ERR("Error reading channel pipe");
2709 continue;
2710 }
2711
2712 switch (action) {
2713 case CONSUMER_CHANNEL_ADD:
2714 DBG("Adding channel %d to poll set",
2715 chan->wait_fd);
2716
2717 lttng_ht_node_init_u64(&chan->wait_fd_node,
2718 chan->wait_fd);
2719 rcu_read_lock();
2720 lttng_ht_add_unique_u64(channel_ht,
2721 &chan->wait_fd_node);
2722 rcu_read_unlock();
2723 /* Add channel to the global poll events list */
2724 lttng_poll_add(&events, chan->wait_fd,
2725 LPOLLIN | LPOLLPRI);
2726 break;
2727 case CONSUMER_CHANNEL_DEL:
2728 {
2729 rcu_read_lock();
2730 chan = consumer_find_channel(key);
2731 if (!chan) {
2732 rcu_read_unlock();
2733 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2734 break;
2735 }
2736 lttng_poll_del(&events, chan->wait_fd);
2737 iter.iter.node = &chan->wait_fd_node.node;
2738 ret = lttng_ht_del(channel_ht, &iter);
2739 assert(ret == 0);
2740 consumer_close_channel_streams(chan);
2741
2742 /*
2743 * Release our own refcount. Force channel deletion even if
2744 * streams were not initialized.
2745 */
2746 if (!uatomic_sub_return(&chan->refcount, 1)) {
2747 consumer_del_channel(chan);
2748 }
2749 rcu_read_unlock();
2750 goto restart;
2751 }
2752 case CONSUMER_CHANNEL_QUIT:
2753 /*
2754 * Remove the pipe from the poll set and continue the loop
2755 * since their might be data to consume.
2756 */
2757 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2758 continue;
2759 default:
2760 ERR("Unknown action");
2761 break;
2762 }
2763 }
2764
2765 /* Handle other stream */
2766 continue;
2767 }
2768
2769 rcu_read_lock();
2770 {
2771 uint64_t tmp_id = (uint64_t) pollfd;
2772
2773 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2774 }
2775 node = lttng_ht_iter_get_node_u64(&iter);
2776 assert(node);
2777
2778 chan = caa_container_of(node, struct lttng_consumer_channel,
2779 wait_fd_node);
2780
2781 /* Check for error event */
2782 if (revents & (LPOLLERR | LPOLLHUP)) {
2783 DBG("Channel fd %d is hup|err.", pollfd);
2784
2785 lttng_poll_del(&events, chan->wait_fd);
2786 ret = lttng_ht_del(channel_ht, &iter);
2787 assert(ret == 0);
2788 consumer_close_channel_streams(chan);
2789
2790 /* Release our own refcount */
2791 if (!uatomic_sub_return(&chan->refcount, 1)
2792 && !uatomic_read(&chan->nb_init_stream_left)) {
2793 consumer_del_channel(chan);
2794 }
2795 }
2796
2797 /* Release RCU lock for the channel looked up */
2798 rcu_read_unlock();
2799 }
2800 }
2801
2802 end:
2803 lttng_poll_clean(&events);
2804 end_poll:
2805 destroy_channel_ht(channel_ht);
2806 end_ht:
2807 DBG("Channel poll thread exiting");
2808 rcu_unregister_thread();
2809 return NULL;
2810 }
2811
2812 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2813 struct pollfd *sockpoll, int client_socket)
2814 {
2815 int ret;
2816
2817 assert(ctx);
2818 assert(sockpoll);
2819
2820 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2821 ret = -1;
2822 goto error;
2823 }
2824 DBG("Metadata connection on client_socket");
2825
2826 /* Blocking call, waiting for transmission */
2827 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2828 if (ctx->consumer_metadata_socket < 0) {
2829 WARN("On accept metadata");
2830 ret = -1;
2831 goto error;
2832 }
2833 ret = 0;
2834
2835 error:
2836 return ret;
2837 }
2838
2839 /*
2840 * This thread listens on the consumerd socket and receives the file
2841 * descriptors from the session daemon.
2842 */
2843 void *consumer_thread_sessiond_poll(void *data)
2844 {
2845 int sock = -1, client_socket, ret;
2846 /*
2847 * structure to poll for incoming data on communication socket avoids
2848 * making blocking sockets.
2849 */
2850 struct pollfd consumer_sockpoll[2];
2851 struct lttng_consumer_local_data *ctx = data;
2852
2853 rcu_register_thread();
2854
2855 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2856 unlink(ctx->consumer_command_sock_path);
2857 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2858 if (client_socket < 0) {
2859 ERR("Cannot create command socket");
2860 goto end;
2861 }
2862
2863 ret = lttcomm_listen_unix_sock(client_socket);
2864 if (ret < 0) {
2865 goto end;
2866 }
2867
2868 DBG("Sending ready command to lttng-sessiond");
2869 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2870 /* return < 0 on error, but == 0 is not fatal */
2871 if (ret < 0) {
2872 ERR("Error sending ready command to lttng-sessiond");
2873 goto end;
2874 }
2875
2876 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2877 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2878 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2879 consumer_sockpoll[1].fd = client_socket;
2880 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2881
2882 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2883 goto end;
2884 }
2885 DBG("Connection on client_socket");
2886
2887 /* Blocking call, waiting for transmission */
2888 sock = lttcomm_accept_unix_sock(client_socket);
2889 if (sock < 0) {
2890 WARN("On accept");
2891 goto end;
2892 }
2893
2894 /*
2895 * Setup metadata socket which is the second socket connection on the
2896 * command unix socket.
2897 */
2898 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
2899 if (ret < 0) {
2900 goto end;
2901 }
2902
2903 /* This socket is not useful anymore. */
2904 ret = close(client_socket);
2905 if (ret < 0) {
2906 PERROR("close client_socket");
2907 }
2908 client_socket = -1;
2909
2910 /* update the polling structure to poll on the established socket */
2911 consumer_sockpoll[1].fd = sock;
2912 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2913
2914 while (1) {
2915 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2916 goto end;
2917 }
2918 DBG("Incoming command on sock");
2919 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2920 if (ret == -ENOENT) {
2921 DBG("Received STOP command");
2922 goto end;
2923 }
2924 if (ret <= 0) {
2925 /*
2926 * This could simply be a session daemon quitting. Don't output
2927 * ERR() here.
2928 */
2929 DBG("Communication interrupted on command socket");
2930 goto end;
2931 }
2932 if (consumer_quit) {
2933 DBG("consumer_thread_receive_fds received quit from signal");
2934 goto end;
2935 }
2936 DBG("received command on sock");
2937 }
2938 end:
2939 DBG("Consumer thread sessiond poll exiting");
2940
2941 /*
2942 * Close metadata streams since the producer is the session daemon which
2943 * just died.
2944 *
2945 * NOTE: for now, this only applies to the UST tracer.
2946 */
2947 lttng_consumer_close_metadata();
2948
2949 /*
2950 * when all fds have hung up, the polling thread
2951 * can exit cleanly
2952 */
2953 consumer_quit = 1;
2954
2955 /*
2956 * Notify the data poll thread to poll back again and test the
2957 * consumer_quit state that we just set so to quit gracefully.
2958 */
2959 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
2960
2961 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
2962
2963 /* Cleaning up possibly open sockets. */
2964 if (sock >= 0) {
2965 ret = close(sock);
2966 if (ret < 0) {
2967 PERROR("close sock sessiond poll");
2968 }
2969 }
2970 if (client_socket >= 0) {
2971 ret = close(client_socket);
2972 if (ret < 0) {
2973 PERROR("close client_socket sessiond poll");
2974 }
2975 }
2976
2977 rcu_unregister_thread();
2978 return NULL;
2979 }
2980
2981 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
2982 struct lttng_consumer_local_data *ctx)
2983 {
2984 ssize_t ret;
2985
2986 pthread_mutex_lock(&stream->lock);
2987
2988 switch (consumer_data.type) {
2989 case LTTNG_CONSUMER_KERNEL:
2990 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
2991 break;
2992 case LTTNG_CONSUMER32_UST:
2993 case LTTNG_CONSUMER64_UST:
2994 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
2995 break;
2996 default:
2997 ERR("Unknown consumer_data type");
2998 assert(0);
2999 ret = -ENOSYS;
3000 break;
3001 }
3002
3003 pthread_mutex_unlock(&stream->lock);
3004 return ret;
3005 }
3006
3007 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3008 {
3009 switch (consumer_data.type) {
3010 case LTTNG_CONSUMER_KERNEL:
3011 return lttng_kconsumer_on_recv_stream(stream);
3012 case LTTNG_CONSUMER32_UST:
3013 case LTTNG_CONSUMER64_UST:
3014 return lttng_ustconsumer_on_recv_stream(stream);
3015 default:
3016 ERR("Unknown consumer_data type");
3017 assert(0);
3018 return -ENOSYS;
3019 }
3020 }
3021
3022 /*
3023 * Allocate and set consumer data hash tables.
3024 */
3025 void lttng_consumer_init(void)
3026 {
3027 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3028 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3029 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3030 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3031 }
3032
3033 /*
3034 * Process the ADD_RELAYD command receive by a consumer.
3035 *
3036 * This will create a relayd socket pair and add it to the relayd hash table.
3037 * The caller MUST acquire a RCU read side lock before calling it.
3038 */
3039 int consumer_add_relayd_socket(int net_seq_idx, int sock_type,
3040 struct lttng_consumer_local_data *ctx, int sock,
3041 struct pollfd *consumer_sockpoll,
3042 struct lttcomm_relayd_sock *relayd_sock, unsigned int sessiond_id)
3043 {
3044 int fd = -1, ret = -1, relayd_created = 0;
3045 enum lttng_error_code ret_code = LTTNG_OK;
3046 struct consumer_relayd_sock_pair *relayd = NULL;
3047
3048 assert(ctx);
3049 assert(relayd_sock);
3050
3051 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx);
3052
3053 /* First send a status message before receiving the fds. */
3054 ret = consumer_send_status_msg(sock, ret_code);
3055 if (ret < 0) {
3056 /* Somehow, the session daemon is not responding anymore. */
3057 goto error;
3058 }
3059
3060 /* Get relayd reference if exists. */
3061 relayd = consumer_find_relayd(net_seq_idx);
3062 if (relayd == NULL) {
3063 /* Not found. Allocate one. */
3064 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3065 if (relayd == NULL) {
3066 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
3067 ret = -1;
3068 goto error;
3069 }
3070 relayd->sessiond_session_id = (uint64_t) sessiond_id;
3071 relayd_created = 1;
3072 }
3073
3074 /* Poll on consumer socket. */
3075 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3076 ret = -EINTR;
3077 goto error;
3078 }
3079
3080 /* Get relayd socket from session daemon */
3081 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3082 if (ret != sizeof(fd)) {
3083 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3084 ret = -1;
3085 fd = -1; /* Just in case it gets set with an invalid value. */
3086 goto error_close;
3087 }
3088
3089 /* We have the fds without error. Send status back. */
3090 ret = consumer_send_status_msg(sock, ret_code);
3091 if (ret < 0) {
3092 /* Somehow, the session daemon is not responding anymore. */
3093 goto error;
3094 }
3095
3096 /* Copy socket information and received FD */
3097 switch (sock_type) {
3098 case LTTNG_STREAM_CONTROL:
3099 /* Copy received lttcomm socket */
3100 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3101 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3102 /* Immediately try to close the created socket if valid. */
3103 if (relayd->control_sock.sock.fd >= 0) {
3104 if (close(relayd->control_sock.sock.fd)) {
3105 PERROR("close relayd control socket");
3106 }
3107 }
3108 /* Handle create_sock error. */
3109 if (ret < 0) {
3110 goto error;
3111 }
3112
3113 /* Assign new file descriptor */
3114 relayd->control_sock.sock.fd = fd;
3115 /* Assign version values. */
3116 relayd->control_sock.major = relayd_sock->major;
3117 relayd->control_sock.minor = relayd_sock->minor;
3118
3119 /*
3120 * Create a session on the relayd and store the returned id. Lock the
3121 * control socket mutex if the relayd was NOT created before.
3122 */
3123 if (!relayd_created) {
3124 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3125 }
3126 ret = relayd_create_session(&relayd->control_sock,
3127 &relayd->relayd_session_id);
3128 if (!relayd_created) {
3129 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3130 }
3131 if (ret < 0) {
3132 /*
3133 * Close all sockets of a relayd object. It will be freed if it was
3134 * created at the error code path or else it will be garbage
3135 * collect.
3136 */
3137 (void) relayd_close(&relayd->control_sock);
3138 (void) relayd_close(&relayd->data_sock);
3139 goto error;
3140 }
3141
3142 break;
3143 case LTTNG_STREAM_DATA:
3144 /* Copy received lttcomm socket */
3145 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3146 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3147 /* Immediately try to close the created socket if valid. */
3148 if (relayd->data_sock.sock.fd >= 0) {
3149 if (close(relayd->data_sock.sock.fd)) {
3150 PERROR("close relayd data socket");
3151 }
3152 }
3153 /* Handle create_sock error. */
3154 if (ret < 0) {
3155 goto error;
3156 }
3157
3158 /* Assign new file descriptor */
3159 relayd->data_sock.sock.fd = fd;
3160 /* Assign version values. */
3161 relayd->data_sock.major = relayd_sock->major;
3162 relayd->data_sock.minor = relayd_sock->minor;
3163 break;
3164 default:
3165 ERR("Unknown relayd socket type (%d)", sock_type);
3166 ret = -1;
3167 goto error;
3168 }
3169
3170 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3171 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3172 relayd->net_seq_idx, fd);
3173
3174 /*
3175 * Add relayd socket pair to consumer data hashtable. If object already
3176 * exists or on error, the function gracefully returns.
3177 */
3178 add_relayd(relayd);
3179
3180 /* All good! */
3181 return 0;
3182
3183 error:
3184 /* Close received socket if valid. */
3185 if (fd >= 0) {
3186 if (close(fd)) {
3187 PERROR("close received socket");
3188 }
3189 }
3190
3191 error_close:
3192 if (relayd_created) {
3193 free(relayd);
3194 }
3195
3196 return ret;
3197 }
3198
3199 /*
3200 * Try to lock the stream mutex.
3201 *
3202 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3203 */
3204 static int stream_try_lock(struct lttng_consumer_stream *stream)
3205 {
3206 int ret;
3207
3208 assert(stream);
3209
3210 /*
3211 * Try to lock the stream mutex. On failure, we know that the stream is
3212 * being used else where hence there is data still being extracted.
3213 */
3214 ret = pthread_mutex_trylock(&stream->lock);
3215 if (ret) {
3216 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3217 ret = 0;
3218 goto end;
3219 }
3220
3221 ret = 1;
3222
3223 end:
3224 return ret;
3225 }
3226
3227 /*
3228 * Search for a relayd associated to the session id and return the reference.
3229 *
3230 * A rcu read side lock MUST be acquire before calling this function and locked
3231 * until the relayd object is no longer necessary.
3232 */
3233 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3234 {
3235 struct lttng_ht_iter iter;
3236 struct consumer_relayd_sock_pair *relayd = NULL;
3237
3238 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3239 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3240 node.node) {
3241 /*
3242 * Check by sessiond id which is unique here where the relayd session
3243 * id might not be when having multiple relayd.
3244 */
3245 if (relayd->sessiond_session_id == id) {
3246 /* Found the relayd. There can be only one per id. */
3247 goto found;
3248 }
3249 }
3250
3251 return NULL;
3252
3253 found:
3254 return relayd;
3255 }
3256
3257 /*
3258 * Check if for a given session id there is still data needed to be extract
3259 * from the buffers.
3260 *
3261 * Return 1 if data is pending or else 0 meaning ready to be read.
3262 */
3263 int consumer_data_pending(uint64_t id)
3264 {
3265 int ret;
3266 struct lttng_ht_iter iter;
3267 struct lttng_ht *ht;
3268 struct lttng_consumer_stream *stream;
3269 struct consumer_relayd_sock_pair *relayd = NULL;
3270 int (*data_pending)(struct lttng_consumer_stream *);
3271
3272 DBG("Consumer data pending command on session id %" PRIu64, id);
3273
3274 rcu_read_lock();
3275 pthread_mutex_lock(&consumer_data.lock);
3276
3277 switch (consumer_data.type) {
3278 case LTTNG_CONSUMER_KERNEL:
3279 data_pending = lttng_kconsumer_data_pending;
3280 break;
3281 case LTTNG_CONSUMER32_UST:
3282 case LTTNG_CONSUMER64_UST:
3283 data_pending = lttng_ustconsumer_data_pending;
3284 break;
3285 default:
3286 ERR("Unknown consumer data type");
3287 assert(0);
3288 }
3289
3290 /* Ease our life a bit */
3291 ht = consumer_data.stream_list_ht;
3292
3293 relayd = find_relayd_by_session_id(id);
3294 if (relayd) {
3295 /* Send init command for data pending. */
3296 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3297 ret = relayd_begin_data_pending(&relayd->control_sock,
3298 relayd->relayd_session_id);
3299 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3300 if (ret < 0) {
3301 /* Communication error thus the relayd so no data pending. */
3302 goto data_not_pending;
3303 }
3304 }
3305
3306 cds_lfht_for_each_entry_duplicate(ht->ht,
3307 ht->hash_fct(&id, lttng_ht_seed),
3308 ht->match_fct, &id,
3309 &iter.iter, stream, node_session_id.node) {
3310 /* If this call fails, the stream is being used hence data pending. */
3311 ret = stream_try_lock(stream);
3312 if (!ret) {
3313 goto data_pending;
3314 }
3315
3316 /*
3317 * A removed node from the hash table indicates that the stream has
3318 * been deleted thus having a guarantee that the buffers are closed
3319 * on the consumer side. However, data can still be transmitted
3320 * over the network so don't skip the relayd check.
3321 */
3322 ret = cds_lfht_is_node_deleted(&stream->node.node);
3323 if (!ret) {
3324 /* Check the stream if there is data in the buffers. */
3325 ret = data_pending(stream);
3326 if (ret == 1) {
3327 pthread_mutex_unlock(&stream->lock);
3328 goto data_pending;
3329 }
3330 }
3331
3332 /* Relayd check */
3333 if (relayd) {
3334 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3335 if (stream->metadata_flag) {
3336 ret = relayd_quiescent_control(&relayd->control_sock,
3337 stream->relayd_stream_id);
3338 } else {
3339 ret = relayd_data_pending(&relayd->control_sock,
3340 stream->relayd_stream_id,
3341 stream->next_net_seq_num - 1);
3342 }
3343 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3344 if (ret == 1) {
3345 pthread_mutex_unlock(&stream->lock);
3346 goto data_pending;
3347 }
3348 }
3349 pthread_mutex_unlock(&stream->lock);
3350 }
3351
3352 if (relayd) {
3353 unsigned int is_data_inflight = 0;
3354
3355 /* Send init command for data pending. */
3356 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3357 ret = relayd_end_data_pending(&relayd->control_sock,
3358 relayd->relayd_session_id, &is_data_inflight);
3359 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3360 if (ret < 0) {
3361 goto data_not_pending;
3362 }
3363 if (is_data_inflight) {
3364 goto data_pending;
3365 }
3366 }
3367
3368 /*
3369 * Finding _no_ node in the hash table and no inflight data means that the
3370 * stream(s) have been removed thus data is guaranteed to be available for
3371 * analysis from the trace files.
3372 */
3373
3374 data_not_pending:
3375 /* Data is available to be read by a viewer. */
3376 pthread_mutex_unlock(&consumer_data.lock);
3377 rcu_read_unlock();
3378 return 0;
3379
3380 data_pending:
3381 /* Data is still being extracted from buffers. */
3382 pthread_mutex_unlock(&consumer_data.lock);
3383 rcu_read_unlock();
3384 return 1;
3385 }
3386
3387 /*
3388 * Send a ret code status message to the sessiond daemon.
3389 *
3390 * Return the sendmsg() return value.
3391 */
3392 int consumer_send_status_msg(int sock, int ret_code)
3393 {
3394 struct lttcomm_consumer_status_msg msg;
3395
3396 msg.ret_code = ret_code;
3397
3398 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3399 }
3400
3401 /*
3402 * Send a channel status message to the sessiond daemon.
3403 *
3404 * Return the sendmsg() return value.
3405 */
3406 int consumer_send_status_channel(int sock,
3407 struct lttng_consumer_channel *channel)
3408 {
3409 struct lttcomm_consumer_status_channel msg;
3410
3411 assert(sock >= 0);
3412
3413 if (!channel) {
3414 msg.ret_code = -LTTNG_ERR_UST_CHAN_FAIL;
3415 } else {
3416 msg.ret_code = LTTNG_OK;
3417 msg.key = channel->key;
3418 msg.stream_count = channel->streams.count;
3419 }
3420
3421 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3422 }
This page took 0.100587 seconds and 4 git commands to generate.