2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 #include <sys/socket.h>
28 #include <sys/types.h>
32 #include <common/common.h>
33 #include <common/utils.h>
34 #include <common/compat/poll.h>
35 #include <common/kernel-ctl/kernel-ctl.h>
36 #include <common/sessiond-comm/relayd.h>
37 #include <common/sessiond-comm/sessiond-comm.h>
38 #include <common/kernel-consumer/kernel-consumer.h>
39 #include <common/relayd/relayd.h>
40 #include <common/ust-consumer/ust-consumer.h>
44 struct lttng_consumer_global_data consumer_data
= {
47 .type
= LTTNG_CONSUMER_UNKNOWN
,
51 * Flag to inform the polling thread to quit when all fd hung up. Updated by
52 * the consumer_thread_receive_fds when it notices that all fds has hung up.
53 * Also updated by the signal handler (consumer_should_exit()). Read by the
56 volatile int consumer_quit
;
59 * Global hash table containing respectively metadata and data streams. The
60 * stream element in this ht should only be updated by the metadata poll thread
61 * for the metadata and the data poll thread for the data.
63 static struct lttng_ht
*metadata_ht
;
64 static struct lttng_ht
*data_ht
;
67 * Notify a thread pipe to poll back again. This usually means that some global
68 * state has changed so we just send back the thread in a poll wait call.
70 static void notify_thread_pipe(int wpipe
)
75 struct lttng_consumer_stream
*null_stream
= NULL
;
77 ret
= write(wpipe
, &null_stream
, sizeof(null_stream
));
78 } while (ret
< 0 && errno
== EINTR
);
82 * Find a stream. The consumer_data.lock must be locked during this
85 static struct lttng_consumer_stream
*consumer_find_stream(int key
,
88 struct lttng_ht_iter iter
;
89 struct lttng_ht_node_ulong
*node
;
90 struct lttng_consumer_stream
*stream
= NULL
;
94 /* Negative keys are lookup failures */
101 lttng_ht_lookup(ht
, (void *)((unsigned long) key
), &iter
);
102 node
= lttng_ht_iter_get_node_ulong(&iter
);
104 stream
= caa_container_of(node
, struct lttng_consumer_stream
, node
);
112 void consumer_steal_stream_key(int key
, struct lttng_ht
*ht
)
114 struct lttng_consumer_stream
*stream
;
117 stream
= consumer_find_stream(key
, ht
);
121 * We don't want the lookup to match, but we still need
122 * to iterate on this stream when iterating over the hash table. Just
123 * change the node key.
125 stream
->node
.key
= -1;
131 * Return a channel object for the given key.
133 * RCU read side lock MUST be acquired before calling this function and
134 * protects the channel ptr.
136 static struct lttng_consumer_channel
*consumer_find_channel(int key
)
138 struct lttng_ht_iter iter
;
139 struct lttng_ht_node_ulong
*node
;
140 struct lttng_consumer_channel
*channel
= NULL
;
142 /* Negative keys are lookup failures */
147 lttng_ht_lookup(consumer_data
.channel_ht
, (void *)((unsigned long) key
),
149 node
= lttng_ht_iter_get_node_ulong(&iter
);
151 channel
= caa_container_of(node
, struct lttng_consumer_channel
, node
);
157 static void consumer_steal_channel_key(int key
)
159 struct lttng_consumer_channel
*channel
;
162 channel
= consumer_find_channel(key
);
166 * We don't want the lookup to match, but we still need
167 * to iterate on this channel when iterating over the hash table. Just
168 * change the node key.
170 channel
->node
.key
= -1;
176 void consumer_free_stream(struct rcu_head
*head
)
178 struct lttng_ht_node_ulong
*node
=
179 caa_container_of(head
, struct lttng_ht_node_ulong
, head
);
180 struct lttng_consumer_stream
*stream
=
181 caa_container_of(node
, struct lttng_consumer_stream
, node
);
187 * RCU protected relayd socket pair free.
189 static void consumer_rcu_free_relayd(struct rcu_head
*head
)
191 struct lttng_ht_node_ulong
*node
=
192 caa_container_of(head
, struct lttng_ht_node_ulong
, head
);
193 struct consumer_relayd_sock_pair
*relayd
=
194 caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
197 * Close all sockets. This is done in the call RCU since we don't want the
198 * socket fds to be reassigned thus potentially creating bad state of the
201 * We do not have to lock the control socket mutex here since at this stage
202 * there is no one referencing to this relayd object.
204 (void) relayd_close(&relayd
->control_sock
);
205 (void) relayd_close(&relayd
->data_sock
);
211 * Destroy and free relayd socket pair object.
213 * This function MUST be called with the consumer_data lock acquired.
215 static void destroy_relayd(struct consumer_relayd_sock_pair
*relayd
)
218 struct lttng_ht_iter iter
;
220 if (relayd
== NULL
) {
224 DBG("Consumer destroy and close relayd socket pair");
226 iter
.iter
.node
= &relayd
->node
.node
;
227 ret
= lttng_ht_del(consumer_data
.relayd_ht
, &iter
);
229 /* We assume the relayd is being or is destroyed */
233 /* RCU free() call */
234 call_rcu(&relayd
->node
.head
, consumer_rcu_free_relayd
);
238 * Iterate over the relayd hash table and destroy each element. Finally,
239 * destroy the whole hash table.
241 static void cleanup_relayd_ht(void)
243 struct lttng_ht_iter iter
;
244 struct consumer_relayd_sock_pair
*relayd
;
248 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
250 destroy_relayd(relayd
);
253 lttng_ht_destroy(consumer_data
.relayd_ht
);
259 * Update the end point status of all streams having the given network sequence
260 * index (relayd index).
262 * It's atomically set without having the stream mutex locked which is fine
263 * because we handle the write/read race with a pipe wakeup for each thread.
265 static void update_endpoint_status_by_netidx(int net_seq_idx
,
266 enum consumer_endpoint_status status
)
268 struct lttng_ht_iter iter
;
269 struct lttng_consumer_stream
*stream
;
271 DBG("Consumer set delete flag on stream by idx %d", net_seq_idx
);
275 /* Let's begin with metadata */
276 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
277 if (stream
->net_seq_idx
== net_seq_idx
) {
278 uatomic_set(&stream
->endpoint_status
, status
);
279 DBG("Delete flag set to metadata stream %d", stream
->wait_fd
);
283 /* Follow up by the data streams */
284 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
285 if (stream
->net_seq_idx
== net_seq_idx
) {
286 uatomic_set(&stream
->endpoint_status
, status
);
287 DBG("Delete flag set to data stream %d", stream
->wait_fd
);
294 * Cleanup a relayd object by flagging every associated streams for deletion,
295 * destroying the object meaning removing it from the relayd hash table,
296 * closing the sockets and freeing the memory in a RCU call.
298 * If a local data context is available, notify the threads that the streams'
299 * state have changed.
301 static void cleanup_relayd(struct consumer_relayd_sock_pair
*relayd
,
302 struct lttng_consumer_local_data
*ctx
)
308 DBG("Cleaning up relayd sockets");
310 /* Save the net sequence index before destroying the object */
311 netidx
= relayd
->net_seq_idx
;
314 * Delete the relayd from the relayd hash table, close the sockets and free
315 * the object in a RCU call.
317 destroy_relayd(relayd
);
319 /* Set inactive endpoint to all streams */
320 update_endpoint_status_by_netidx(netidx
, CONSUMER_ENDPOINT_INACTIVE
);
323 * With a local data context, notify the threads that the streams' state
324 * have changed. The write() action on the pipe acts as an "implicit"
325 * memory barrier ordering the updates of the end point status from the
326 * read of this status which happens AFTER receiving this notify.
329 notify_thread_pipe(ctx
->consumer_data_pipe
[1]);
330 notify_thread_pipe(ctx
->consumer_metadata_pipe
[1]);
335 * Flag a relayd socket pair for destruction. Destroy it if the refcount
338 * RCU read side lock MUST be aquired before calling this function.
340 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair
*relayd
)
344 /* Set destroy flag for this object */
345 uatomic_set(&relayd
->destroy_flag
, 1);
347 /* Destroy the relayd if refcount is 0 */
348 if (uatomic_read(&relayd
->refcount
) == 0) {
349 destroy_relayd(relayd
);
354 * Remove a stream from the global list protected by a mutex. This
355 * function is also responsible for freeing its data structures.
357 void consumer_del_stream(struct lttng_consumer_stream
*stream
,
361 struct lttng_ht_iter iter
;
362 struct lttng_consumer_channel
*free_chan
= NULL
;
363 struct consumer_relayd_sock_pair
*relayd
;
367 DBG("Consumer del stream %d", stream
->wait_fd
);
370 /* Means the stream was allocated but not successfully added */
374 pthread_mutex_lock(&consumer_data
.lock
);
375 pthread_mutex_lock(&stream
->lock
);
377 switch (consumer_data
.type
) {
378 case LTTNG_CONSUMER_KERNEL
:
379 if (stream
->mmap_base
!= NULL
) {
380 ret
= munmap(stream
->mmap_base
, stream
->mmap_len
);
386 case LTTNG_CONSUMER32_UST
:
387 case LTTNG_CONSUMER64_UST
:
388 lttng_ustconsumer_del_stream(stream
);
391 ERR("Unknown consumer_data type");
397 iter
.iter
.node
= &stream
->node
.node
;
398 ret
= lttng_ht_del(ht
, &iter
);
401 /* Remove node session id from the consumer_data stream ht */
402 iter
.iter
.node
= &stream
->node_session_id
.node
;
403 ret
= lttng_ht_del(consumer_data
.stream_list_ht
, &iter
);
407 assert(consumer_data
.stream_count
> 0);
408 consumer_data
.stream_count
--;
410 if (stream
->out_fd
>= 0) {
411 ret
= close(stream
->out_fd
);
416 if (stream
->wait_fd
>= 0 && !stream
->wait_fd_is_copy
) {
417 ret
= close(stream
->wait_fd
);
422 if (stream
->shm_fd
>= 0 && stream
->wait_fd
!= stream
->shm_fd
) {
423 ret
= close(stream
->shm_fd
);
429 /* Check and cleanup relayd */
431 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
432 if (relayd
!= NULL
) {
433 uatomic_dec(&relayd
->refcount
);
434 assert(uatomic_read(&relayd
->refcount
) >= 0);
436 /* Closing streams requires to lock the control socket. */
437 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
438 ret
= relayd_send_close_stream(&relayd
->control_sock
,
439 stream
->relayd_stream_id
,
440 stream
->next_net_seq_num
- 1);
441 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
443 DBG("Unable to close stream on the relayd. Continuing");
445 * Continue here. There is nothing we can do for the relayd.
446 * Chances are that the relayd has closed the socket so we just
447 * continue cleaning up.
451 /* Both conditions are met, we destroy the relayd. */
452 if (uatomic_read(&relayd
->refcount
) == 0 &&
453 uatomic_read(&relayd
->destroy_flag
)) {
454 destroy_relayd(relayd
);
459 uatomic_dec(&stream
->chan
->refcount
);
460 if (!uatomic_read(&stream
->chan
->refcount
)
461 && !uatomic_read(&stream
->chan
->nb_init_streams
)) {
462 free_chan
= stream
->chan
;
466 consumer_data
.need_update
= 1;
467 pthread_mutex_unlock(&stream
->lock
);
468 pthread_mutex_unlock(&consumer_data
.lock
);
471 consumer_del_channel(free_chan
);
475 call_rcu(&stream
->node
.head
, consumer_free_stream
);
478 struct lttng_consumer_stream
*consumer_allocate_stream(
479 int channel_key
, int stream_key
,
480 int shm_fd
, int wait_fd
,
481 enum lttng_consumer_stream_state state
,
483 enum lttng_event_output output
,
484 const char *path_name
,
492 struct lttng_consumer_stream
*stream
;
494 stream
= zmalloc(sizeof(*stream
));
495 if (stream
== NULL
) {
496 PERROR("malloc struct lttng_consumer_stream");
497 *alloc_ret
= -ENOMEM
;
504 * Get stream's channel reference. Needed when adding the stream to the
507 stream
->chan
= consumer_find_channel(channel_key
);
509 *alloc_ret
= -ENOENT
;
510 ERR("Unable to find channel for stream %d", stream_key
);
514 stream
->key
= stream_key
;
515 stream
->shm_fd
= shm_fd
;
516 stream
->wait_fd
= wait_fd
;
518 stream
->out_fd_offset
= 0;
519 stream
->state
= state
;
520 stream
->mmap_len
= mmap_len
;
521 stream
->mmap_base
= NULL
;
522 stream
->output
= output
;
525 stream
->net_seq_idx
= net_index
;
526 stream
->metadata_flag
= metadata_flag
;
527 stream
->session_id
= session_id
;
528 strncpy(stream
->path_name
, path_name
, sizeof(stream
->path_name
));
529 stream
->path_name
[sizeof(stream
->path_name
) - 1] = '\0';
530 pthread_mutex_init(&stream
->lock
, NULL
);
533 * Index differently the metadata node because the thread is using an
534 * internal hash table to match streams in the metadata_ht to the epoll set
538 lttng_ht_node_init_ulong(&stream
->node
, stream
->wait_fd
);
540 lttng_ht_node_init_ulong(&stream
->node
, stream
->key
);
543 /* Init session id node with the stream session id */
544 lttng_ht_node_init_ulong(&stream
->node_session_id
, stream
->session_id
);
547 * The cpu number is needed before using any ustctl_* actions. Ignored for
548 * the kernel so the value does not matter.
550 pthread_mutex_lock(&consumer_data
.lock
);
551 stream
->cpu
= stream
->chan
->cpucount
++;
552 pthread_mutex_unlock(&consumer_data
.lock
);
554 DBG3("Allocated stream %s (key %d, shm_fd %d, wait_fd %d, mmap_len %llu,"
555 " out_fd %d, net_seq_idx %d, session_id %" PRIu64
,
556 stream
->path_name
, stream
->key
, stream
->shm_fd
, stream
->wait_fd
,
557 (unsigned long long) stream
->mmap_len
, stream
->out_fd
,
558 stream
->net_seq_idx
, stream
->session_id
);
571 * Add a stream to the global list protected by a mutex.
573 static int consumer_add_stream(struct lttng_consumer_stream
*stream
,
577 struct consumer_relayd_sock_pair
*relayd
;
582 DBG3("Adding consumer stream %d", stream
->key
);
584 pthread_mutex_lock(&consumer_data
.lock
);
585 pthread_mutex_lock(&stream
->lock
);
588 /* Steal stream identifier to avoid having streams with the same key */
589 consumer_steal_stream_key(stream
->key
, ht
);
591 lttng_ht_add_unique_ulong(ht
, &stream
->node
);
594 * Add stream to the stream_list_ht of the consumer data. No need to steal
595 * the key since the HT does not use it and we allow to add redundant keys
598 lttng_ht_add_ulong(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
600 /* Check and cleanup relayd */
601 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
602 if (relayd
!= NULL
) {
603 uatomic_inc(&relayd
->refcount
);
606 /* Update channel refcount once added without error(s). */
607 uatomic_inc(&stream
->chan
->refcount
);
610 * When nb_init_streams reaches 0, we don't need to trigger any action in
611 * terms of destroying the associated channel, because the action that
612 * causes the count to become 0 also causes a stream to be added. The
613 * channel deletion will thus be triggered by the following removal of this
616 if (uatomic_read(&stream
->chan
->nb_init_streams
) > 0) {
617 uatomic_dec(&stream
->chan
->nb_init_streams
);
620 /* Update consumer data once the node is inserted. */
621 consumer_data
.stream_count
++;
622 consumer_data
.need_update
= 1;
625 pthread_mutex_unlock(&stream
->lock
);
626 pthread_mutex_unlock(&consumer_data
.lock
);
632 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
633 * be acquired before calling this.
635 static int add_relayd(struct consumer_relayd_sock_pair
*relayd
)
638 struct lttng_ht_node_ulong
*node
;
639 struct lttng_ht_iter iter
;
641 if (relayd
== NULL
) {
646 lttng_ht_lookup(consumer_data
.relayd_ht
,
647 (void *)((unsigned long) relayd
->net_seq_idx
), &iter
);
648 node
= lttng_ht_iter_get_node_ulong(&iter
);
650 /* Relayd already exist. Ignore the insertion */
653 lttng_ht_add_unique_ulong(consumer_data
.relayd_ht
, &relayd
->node
);
660 * Allocate and return a consumer relayd socket.
662 struct consumer_relayd_sock_pair
*consumer_allocate_relayd_sock_pair(
665 struct consumer_relayd_sock_pair
*obj
= NULL
;
667 /* Negative net sequence index is a failure */
668 if (net_seq_idx
< 0) {
672 obj
= zmalloc(sizeof(struct consumer_relayd_sock_pair
));
674 PERROR("zmalloc relayd sock");
678 obj
->net_seq_idx
= net_seq_idx
;
680 obj
->destroy_flag
= 0;
681 lttng_ht_node_init_ulong(&obj
->node
, obj
->net_seq_idx
);
682 pthread_mutex_init(&obj
->ctrl_sock_mutex
, NULL
);
689 * Find a relayd socket pair in the global consumer data.
691 * Return the object if found else NULL.
692 * RCU read-side lock must be held across this call and while using the
695 struct consumer_relayd_sock_pair
*consumer_find_relayd(int key
)
697 struct lttng_ht_iter iter
;
698 struct lttng_ht_node_ulong
*node
;
699 struct consumer_relayd_sock_pair
*relayd
= NULL
;
701 /* Negative keys are lookup failures */
706 lttng_ht_lookup(consumer_data
.relayd_ht
, (void *)((unsigned long) key
),
708 node
= lttng_ht_iter_get_node_ulong(&iter
);
710 relayd
= caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
718 * Handle stream for relayd transmission if the stream applies for network
719 * streaming where the net sequence index is set.
721 * Return destination file descriptor or negative value on error.
723 static int write_relayd_stream_header(struct lttng_consumer_stream
*stream
,
724 size_t data_size
, unsigned long padding
,
725 struct consumer_relayd_sock_pair
*relayd
)
728 struct lttcomm_relayd_data_hdr data_hdr
;
734 /* Reset data header */
735 memset(&data_hdr
, 0, sizeof(data_hdr
));
737 if (stream
->metadata_flag
) {
738 /* Caller MUST acquire the relayd control socket lock */
739 ret
= relayd_send_metadata(&relayd
->control_sock
, data_size
);
744 /* Metadata are always sent on the control socket. */
745 outfd
= relayd
->control_sock
.fd
;
747 /* Set header with stream information */
748 data_hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
749 data_hdr
.data_size
= htobe32(data_size
);
750 data_hdr
.padding_size
= htobe32(padding
);
752 * Note that net_seq_num below is assigned with the *current* value of
753 * next_net_seq_num and only after that the next_net_seq_num will be
754 * increment. This is why when issuing a command on the relayd using
755 * this next value, 1 should always be substracted in order to compare
756 * the last seen sequence number on the relayd side to the last sent.
758 data_hdr
.net_seq_num
= htobe64(stream
->next_net_seq_num
++);
759 /* Other fields are zeroed previously */
761 ret
= relayd_send_data_hdr(&relayd
->data_sock
, &data_hdr
,
767 /* Set to go on data socket */
768 outfd
= relayd
->data_sock
.fd
;
776 void consumer_free_channel(struct rcu_head
*head
)
778 struct lttng_ht_node_ulong
*node
=
779 caa_container_of(head
, struct lttng_ht_node_ulong
, head
);
780 struct lttng_consumer_channel
*channel
=
781 caa_container_of(node
, struct lttng_consumer_channel
, node
);
787 * Remove a channel from the global list protected by a mutex. This
788 * function is also responsible for freeing its data structures.
790 void consumer_del_channel(struct lttng_consumer_channel
*channel
)
793 struct lttng_ht_iter iter
;
795 DBG("Consumer delete channel key %d", channel
->key
);
797 pthread_mutex_lock(&consumer_data
.lock
);
799 switch (consumer_data
.type
) {
800 case LTTNG_CONSUMER_KERNEL
:
802 case LTTNG_CONSUMER32_UST
:
803 case LTTNG_CONSUMER64_UST
:
804 lttng_ustconsumer_del_channel(channel
);
807 ERR("Unknown consumer_data type");
813 iter
.iter
.node
= &channel
->node
.node
;
814 ret
= lttng_ht_del(consumer_data
.channel_ht
, &iter
);
818 if (channel
->mmap_base
!= NULL
) {
819 ret
= munmap(channel
->mmap_base
, channel
->mmap_len
);
824 if (channel
->wait_fd
>= 0 && !channel
->wait_fd_is_copy
) {
825 ret
= close(channel
->wait_fd
);
830 if (channel
->shm_fd
>= 0 && channel
->wait_fd
!= channel
->shm_fd
) {
831 ret
= close(channel
->shm_fd
);
837 call_rcu(&channel
->node
.head
, consumer_free_channel
);
839 pthread_mutex_unlock(&consumer_data
.lock
);
842 struct lttng_consumer_channel
*consumer_allocate_channel(
844 int shm_fd
, int wait_fd
,
846 uint64_t max_sb_size
,
847 unsigned int nb_init_streams
)
849 struct lttng_consumer_channel
*channel
;
852 channel
= zmalloc(sizeof(*channel
));
853 if (channel
== NULL
) {
854 PERROR("malloc struct lttng_consumer_channel");
857 channel
->key
= channel_key
;
858 channel
->shm_fd
= shm_fd
;
859 channel
->wait_fd
= wait_fd
;
860 channel
->mmap_len
= mmap_len
;
861 channel
->max_sb_size
= max_sb_size
;
862 channel
->refcount
= 0;
863 channel
->nb_init_streams
= nb_init_streams
;
864 lttng_ht_node_init_ulong(&channel
->node
, channel
->key
);
866 switch (consumer_data
.type
) {
867 case LTTNG_CONSUMER_KERNEL
:
868 channel
->mmap_base
= NULL
;
869 channel
->mmap_len
= 0;
871 case LTTNG_CONSUMER32_UST
:
872 case LTTNG_CONSUMER64_UST
:
873 ret
= lttng_ustconsumer_allocate_channel(channel
);
880 ERR("Unknown consumer_data type");
884 DBG("Allocated channel (key %d, shm_fd %d, wait_fd %d, mmap_len %llu, max_sb_size %llu)",
885 channel
->key
, channel
->shm_fd
, channel
->wait_fd
,
886 (unsigned long long) channel
->mmap_len
,
887 (unsigned long long) channel
->max_sb_size
);
893 * Add a channel to the global list protected by a mutex.
895 int consumer_add_channel(struct lttng_consumer_channel
*channel
)
897 struct lttng_ht_node_ulong
*node
;
898 struct lttng_ht_iter iter
;
900 pthread_mutex_lock(&consumer_data
.lock
);
901 /* Steal channel identifier, for UST */
902 consumer_steal_channel_key(channel
->key
);
905 lttng_ht_lookup(consumer_data
.channel_ht
,
906 (void *)((unsigned long) channel
->key
), &iter
);
907 node
= lttng_ht_iter_get_node_ulong(&iter
);
909 /* Channel already exist. Ignore the insertion */
913 lttng_ht_add_unique_ulong(consumer_data
.channel_ht
, &channel
->node
);
917 pthread_mutex_unlock(&consumer_data
.lock
);
923 * Allocate the pollfd structure and the local view of the out fds to avoid
924 * doing a lookup in the linked list and concurrency issues when writing is
925 * needed. Called with consumer_data.lock held.
927 * Returns the number of fds in the structures.
929 static int consumer_update_poll_array(
930 struct lttng_consumer_local_data
*ctx
, struct pollfd
**pollfd
,
931 struct lttng_consumer_stream
**local_stream
, struct lttng_ht
*ht
)
934 struct lttng_ht_iter iter
;
935 struct lttng_consumer_stream
*stream
;
937 DBG("Updating poll fd array");
939 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
941 * Only active streams with an active end point can be added to the
942 * poll set and local stream storage of the thread.
944 * There is a potential race here for endpoint_status to be updated
945 * just after the check. However, this is OK since the stream(s) will
946 * be deleted once the thread is notified that the end point state has
947 * changed where this function will be called back again.
949 if (stream
->state
!= LTTNG_CONSUMER_ACTIVE_STREAM
||
950 stream
->endpoint_status
== CONSUMER_ENDPOINT_INACTIVE
) {
953 DBG("Active FD %d", stream
->wait_fd
);
954 (*pollfd
)[i
].fd
= stream
->wait_fd
;
955 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
956 local_stream
[i
] = stream
;
962 * Insert the consumer_data_pipe at the end of the array and don't
963 * increment i so nb_fd is the number of real FD.
965 (*pollfd
)[i
].fd
= ctx
->consumer_data_pipe
[0];
966 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
971 * Poll on the should_quit pipe and the command socket return -1 on error and
972 * should exit, 0 if data is available on the command socket
974 int lttng_consumer_poll_socket(struct pollfd
*consumer_sockpoll
)
979 num_rdy
= poll(consumer_sockpoll
, 2, -1);
982 * Restart interrupted system call.
984 if (errno
== EINTR
) {
987 PERROR("Poll error");
990 if (consumer_sockpoll
[0].revents
& (POLLIN
| POLLPRI
)) {
991 DBG("consumer_should_quit wake up");
1001 * Set the error socket.
1003 void lttng_consumer_set_error_sock(
1004 struct lttng_consumer_local_data
*ctx
, int sock
)
1006 ctx
->consumer_error_socket
= sock
;
1010 * Set the command socket path.
1012 void lttng_consumer_set_command_sock_path(
1013 struct lttng_consumer_local_data
*ctx
, char *sock
)
1015 ctx
->consumer_command_sock_path
= sock
;
1019 * Send return code to the session daemon.
1020 * If the socket is not defined, we return 0, it is not a fatal error
1022 int lttng_consumer_send_error(
1023 struct lttng_consumer_local_data
*ctx
, int cmd
)
1025 if (ctx
->consumer_error_socket
> 0) {
1026 return lttcomm_send_unix_sock(ctx
->consumer_error_socket
, &cmd
,
1027 sizeof(enum lttcomm_sessiond_command
));
1034 * Close all the tracefiles and stream fds and MUST be called when all
1035 * instances are destroyed i.e. when all threads were joined and are ended.
1037 void lttng_consumer_cleanup(void)
1039 struct lttng_ht_iter iter
;
1040 struct lttng_ht_node_ulong
*node
;
1044 cds_lfht_for_each_entry(consumer_data
.channel_ht
->ht
, &iter
.iter
, node
,
1046 struct lttng_consumer_channel
*channel
=
1047 caa_container_of(node
, struct lttng_consumer_channel
, node
);
1048 consumer_del_channel(channel
);
1053 lttng_ht_destroy(consumer_data
.channel_ht
);
1055 cleanup_relayd_ht();
1058 * This HT contains streams that are freed by either the metadata thread or
1059 * the data thread so we do *nothing* on the hash table and simply destroy
1062 lttng_ht_destroy(consumer_data
.stream_list_ht
);
1066 * Called from signal handler.
1068 void lttng_consumer_should_exit(struct lttng_consumer_local_data
*ctx
)
1073 ret
= write(ctx
->consumer_should_quit
[1], "4", 1);
1074 } while (ret
< 0 && errno
== EINTR
);
1075 if (ret
< 0 || ret
!= 1) {
1076 PERROR("write consumer quit");
1079 DBG("Consumer flag that it should quit");
1082 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream
*stream
,
1085 int outfd
= stream
->out_fd
;
1088 * This does a blocking write-and-wait on any page that belongs to the
1089 * subbuffer prior to the one we just wrote.
1090 * Don't care about error values, as these are just hints and ways to
1091 * limit the amount of page cache used.
1093 if (orig_offset
< stream
->chan
->max_sb_size
) {
1096 lttng_sync_file_range(outfd
, orig_offset
- stream
->chan
->max_sb_size
,
1097 stream
->chan
->max_sb_size
,
1098 SYNC_FILE_RANGE_WAIT_BEFORE
1099 | SYNC_FILE_RANGE_WRITE
1100 | SYNC_FILE_RANGE_WAIT_AFTER
);
1102 * Give hints to the kernel about how we access the file:
1103 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1106 * We need to call fadvise again after the file grows because the
1107 * kernel does not seem to apply fadvise to non-existing parts of the
1110 * Call fadvise _after_ having waited for the page writeback to
1111 * complete because the dirty page writeback semantic is not well
1112 * defined. So it can be expected to lead to lower throughput in
1115 posix_fadvise(outfd
, orig_offset
- stream
->chan
->max_sb_size
,
1116 stream
->chan
->max_sb_size
, POSIX_FADV_DONTNEED
);
1120 * Initialise the necessary environnement :
1121 * - create a new context
1122 * - create the poll_pipe
1123 * - create the should_quit pipe (for signal handler)
1124 * - create the thread pipe (for splice)
1126 * Takes a function pointer as argument, this function is called when data is
1127 * available on a buffer. This function is responsible to do the
1128 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1129 * buffer configuration and then kernctl_put_next_subbuf at the end.
1131 * Returns a pointer to the new context or NULL on error.
1133 struct lttng_consumer_local_data
*lttng_consumer_create(
1134 enum lttng_consumer_type type
,
1135 ssize_t (*buffer_ready
)(struct lttng_consumer_stream
*stream
,
1136 struct lttng_consumer_local_data
*ctx
),
1137 int (*recv_channel
)(struct lttng_consumer_channel
*channel
),
1138 int (*recv_stream
)(struct lttng_consumer_stream
*stream
),
1139 int (*update_stream
)(int stream_key
, uint32_t state
))
1142 struct lttng_consumer_local_data
*ctx
;
1144 assert(consumer_data
.type
== LTTNG_CONSUMER_UNKNOWN
||
1145 consumer_data
.type
== type
);
1146 consumer_data
.type
= type
;
1148 ctx
= zmalloc(sizeof(struct lttng_consumer_local_data
));
1150 PERROR("allocating context");
1154 ctx
->consumer_error_socket
= -1;
1155 /* assign the callbacks */
1156 ctx
->on_buffer_ready
= buffer_ready
;
1157 ctx
->on_recv_channel
= recv_channel
;
1158 ctx
->on_recv_stream
= recv_stream
;
1159 ctx
->on_update_stream
= update_stream
;
1161 ret
= pipe(ctx
->consumer_data_pipe
);
1163 PERROR("Error creating poll pipe");
1164 goto error_poll_pipe
;
1167 /* set read end of the pipe to non-blocking */
1168 ret
= fcntl(ctx
->consumer_data_pipe
[0], F_SETFL
, O_NONBLOCK
);
1170 PERROR("fcntl O_NONBLOCK");
1171 goto error_poll_fcntl
;
1174 /* set write end of the pipe to non-blocking */
1175 ret
= fcntl(ctx
->consumer_data_pipe
[1], F_SETFL
, O_NONBLOCK
);
1177 PERROR("fcntl O_NONBLOCK");
1178 goto error_poll_fcntl
;
1181 ret
= pipe(ctx
->consumer_should_quit
);
1183 PERROR("Error creating recv pipe");
1184 goto error_quit_pipe
;
1187 ret
= pipe(ctx
->consumer_thread_pipe
);
1189 PERROR("Error creating thread pipe");
1190 goto error_thread_pipe
;
1193 ret
= utils_create_pipe(ctx
->consumer_metadata_pipe
);
1195 goto error_metadata_pipe
;
1198 ret
= utils_create_pipe(ctx
->consumer_splice_metadata_pipe
);
1200 goto error_splice_pipe
;
1206 utils_close_pipe(ctx
->consumer_metadata_pipe
);
1207 error_metadata_pipe
:
1208 utils_close_pipe(ctx
->consumer_thread_pipe
);
1210 for (i
= 0; i
< 2; i
++) {
1213 err
= close(ctx
->consumer_should_quit
[i
]);
1220 for (i
= 0; i
< 2; i
++) {
1223 err
= close(ctx
->consumer_data_pipe
[i
]);
1235 * Close all fds associated with the instance and free the context.
1237 void lttng_consumer_destroy(struct lttng_consumer_local_data
*ctx
)
1241 DBG("Consumer destroying it. Closing everything.");
1243 ret
= close(ctx
->consumer_error_socket
);
1247 ret
= close(ctx
->consumer_thread_pipe
[0]);
1251 ret
= close(ctx
->consumer_thread_pipe
[1]);
1255 ret
= close(ctx
->consumer_data_pipe
[0]);
1259 ret
= close(ctx
->consumer_data_pipe
[1]);
1263 ret
= close(ctx
->consumer_should_quit
[0]);
1267 ret
= close(ctx
->consumer_should_quit
[1]);
1271 utils_close_pipe(ctx
->consumer_splice_metadata_pipe
);
1273 unlink(ctx
->consumer_command_sock_path
);
1278 * Write the metadata stream id on the specified file descriptor.
1280 static int write_relayd_metadata_id(int fd
,
1281 struct lttng_consumer_stream
*stream
,
1282 struct consumer_relayd_sock_pair
*relayd
,
1283 unsigned long padding
)
1286 struct lttcomm_relayd_metadata_payload hdr
;
1288 hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
1289 hdr
.padding_size
= htobe32(padding
);
1291 ret
= write(fd
, (void *) &hdr
, sizeof(hdr
));
1292 } while (ret
< 0 && errno
== EINTR
);
1293 if (ret
< 0 || ret
!= sizeof(hdr
)) {
1295 * This error means that the fd's end is closed so ignore the perror
1296 * not to clubber the error output since this can happen in a normal
1299 if (errno
!= EPIPE
) {
1300 PERROR("write metadata stream id");
1302 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno
);
1304 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1305 * handle writting the missing part so report that as an error and
1306 * don't lie to the caller.
1311 DBG("Metadata stream id %" PRIu64
" with padding %lu written before data",
1312 stream
->relayd_stream_id
, padding
);
1319 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1320 * core function for writing trace buffers to either the local filesystem or
1323 * It must be called with the stream lock held.
1325 * Careful review MUST be put if any changes occur!
1327 * Returns the number of bytes written
1329 ssize_t
lttng_consumer_on_read_subbuffer_mmap(
1330 struct lttng_consumer_local_data
*ctx
,
1331 struct lttng_consumer_stream
*stream
, unsigned long len
,
1332 unsigned long padding
)
1334 unsigned long mmap_offset
;
1335 ssize_t ret
= 0, written
= 0;
1336 off_t orig_offset
= stream
->out_fd_offset
;
1337 /* Default is on the disk */
1338 int outfd
= stream
->out_fd
;
1339 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1340 unsigned int relayd_hang_up
= 0;
1342 /* RCU lock for the relayd pointer */
1345 /* Flag that the current stream if set for network streaming. */
1346 if (stream
->net_seq_idx
!= -1) {
1347 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1348 if (relayd
== NULL
) {
1353 /* get the offset inside the fd to mmap */
1354 switch (consumer_data
.type
) {
1355 case LTTNG_CONSUMER_KERNEL
:
1356 ret
= kernctl_get_mmap_read_offset(stream
->wait_fd
, &mmap_offset
);
1358 case LTTNG_CONSUMER32_UST
:
1359 case LTTNG_CONSUMER64_UST
:
1360 ret
= lttng_ustctl_get_mmap_read_offset(stream
->chan
->handle
,
1361 stream
->buf
, &mmap_offset
);
1364 ERR("Unknown consumer_data type");
1369 PERROR("tracer ctl get_mmap_read_offset");
1374 /* Handle stream on the relayd if the output is on the network */
1376 unsigned long netlen
= len
;
1379 * Lock the control socket for the complete duration of the function
1380 * since from this point on we will use the socket.
1382 if (stream
->metadata_flag
) {
1383 /* Metadata requires the control socket. */
1384 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1385 netlen
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1388 ret
= write_relayd_stream_header(stream
, netlen
, padding
, relayd
);
1390 /* Use the returned socket. */
1393 /* Write metadata stream id before payload */
1394 if (stream
->metadata_flag
) {
1395 ret
= write_relayd_metadata_id(outfd
, stream
, relayd
, padding
);
1398 /* Socket operation failed. We consider the relayd dead */
1399 if (ret
== -EPIPE
|| ret
== -EINVAL
) {
1407 /* Socket operation failed. We consider the relayd dead */
1408 if (ret
== -EPIPE
|| ret
== -EINVAL
) {
1412 /* Else, use the default set before which is the filesystem. */
1415 /* No streaming, we have to set the len with the full padding */
1421 ret
= write(outfd
, stream
->mmap_base
+ mmap_offset
, len
);
1422 } while (ret
< 0 && errno
== EINTR
);
1423 DBG("Consumer mmap write() ret %zd (len %lu)", ret
, len
);
1426 * This is possible if the fd is closed on the other side (outfd)
1427 * or any write problem. It can be verbose a bit for a normal
1428 * execution if for instance the relayd is stopped abruptly. This
1429 * can happen so set this to a DBG statement.
1431 DBG("Error in file write mmap");
1435 /* Socket operation failed. We consider the relayd dead */
1436 if (errno
== EPIPE
|| errno
== EINVAL
) {
1441 } else if (ret
> len
) {
1442 PERROR("Error in file write (ret %zd > len %lu)", ret
, len
);
1450 /* This call is useless on a socket so better save a syscall. */
1452 /* This won't block, but will start writeout asynchronously */
1453 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret
,
1454 SYNC_FILE_RANGE_WRITE
);
1455 stream
->out_fd_offset
+= ret
;
1459 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1463 * This is a special case that the relayd has closed its socket. Let's
1464 * cleanup the relayd object and all associated streams.
1466 if (relayd
&& relayd_hang_up
) {
1467 cleanup_relayd(relayd
, ctx
);
1471 /* Unlock only if ctrl socket used */
1472 if (relayd
&& stream
->metadata_flag
) {
1473 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1481 * Splice the data from the ring buffer to the tracefile.
1483 * It must be called with the stream lock held.
1485 * Returns the number of bytes spliced.
1487 ssize_t
lttng_consumer_on_read_subbuffer_splice(
1488 struct lttng_consumer_local_data
*ctx
,
1489 struct lttng_consumer_stream
*stream
, unsigned long len
,
1490 unsigned long padding
)
1492 ssize_t ret
= 0, written
= 0, ret_splice
= 0;
1494 off_t orig_offset
= stream
->out_fd_offset
;
1495 int fd
= stream
->wait_fd
;
1496 /* Default is on the disk */
1497 int outfd
= stream
->out_fd
;
1498 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1500 unsigned int relayd_hang_up
= 0;
1502 switch (consumer_data
.type
) {
1503 case LTTNG_CONSUMER_KERNEL
:
1505 case LTTNG_CONSUMER32_UST
:
1506 case LTTNG_CONSUMER64_UST
:
1507 /* Not supported for user space tracing */
1510 ERR("Unknown consumer_data type");
1514 /* RCU lock for the relayd pointer */
1517 /* Flag that the current stream if set for network streaming. */
1518 if (stream
->net_seq_idx
!= -1) {
1519 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1520 if (relayd
== NULL
) {
1526 * Choose right pipe for splice. Metadata and trace data are handled by
1527 * different threads hence the use of two pipes in order not to race or
1528 * corrupt the written data.
1530 if (stream
->metadata_flag
) {
1531 splice_pipe
= ctx
->consumer_splice_metadata_pipe
;
1533 splice_pipe
= ctx
->consumer_thread_pipe
;
1536 /* Write metadata stream id before payload */
1538 int total_len
= len
;
1540 if (stream
->metadata_flag
) {
1542 * Lock the control socket for the complete duration of the function
1543 * since from this point on we will use the socket.
1545 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1547 ret
= write_relayd_metadata_id(splice_pipe
[1], stream
, relayd
,
1551 /* Socket operation failed. We consider the relayd dead */
1552 if (ret
== -EBADF
) {
1553 WARN("Remote relayd disconnected. Stopping");
1560 total_len
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1563 ret
= write_relayd_stream_header(stream
, total_len
, padding
, relayd
);
1565 /* Use the returned socket. */
1568 /* Socket operation failed. We consider the relayd dead */
1569 if (ret
== -EBADF
) {
1570 WARN("Remote relayd disconnected. Stopping");
1577 /* No streaming, we have to set the len with the full padding */
1582 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1583 (unsigned long)offset
, len
, fd
, splice_pipe
[1]);
1584 ret_splice
= splice(fd
, &offset
, splice_pipe
[1], NULL
, len
,
1585 SPLICE_F_MOVE
| SPLICE_F_MORE
);
1586 DBG("splice chan to pipe, ret %zd", ret_splice
);
1587 if (ret_splice
< 0) {
1588 PERROR("Error in relay splice");
1590 written
= ret_splice
;
1596 /* Handle stream on the relayd if the output is on the network */
1598 if (stream
->metadata_flag
) {
1599 size_t metadata_payload_size
=
1600 sizeof(struct lttcomm_relayd_metadata_payload
);
1602 /* Update counter to fit the spliced data */
1603 ret_splice
+= metadata_payload_size
;
1604 len
+= metadata_payload_size
;
1606 * We do this so the return value can match the len passed as
1607 * argument to this function.
1609 written
-= metadata_payload_size
;
1613 /* Splice data out */
1614 ret_splice
= splice(splice_pipe
[0], NULL
, outfd
, NULL
,
1615 ret_splice
, SPLICE_F_MOVE
| SPLICE_F_MORE
);
1616 DBG("Consumer splice pipe to file, ret %zd", ret_splice
);
1617 if (ret_splice
< 0) {
1618 PERROR("Error in file splice");
1620 written
= ret_splice
;
1622 /* Socket operation failed. We consider the relayd dead */
1623 if (errno
== EBADF
|| errno
== EPIPE
) {
1624 WARN("Remote relayd disconnected. Stopping");
1630 } else if (ret_splice
> len
) {
1632 PERROR("Wrote more data than requested %zd (len: %lu)",
1634 written
+= ret_splice
;
1640 /* This call is useless on a socket so better save a syscall. */
1642 /* This won't block, but will start writeout asynchronously */
1643 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret_splice
,
1644 SYNC_FILE_RANGE_WRITE
);
1645 stream
->out_fd_offset
+= ret_splice
;
1647 written
+= ret_splice
;
1649 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1657 * This is a special case that the relayd has closed its socket. Let's
1658 * cleanup the relayd object and all associated streams.
1660 if (relayd
&& relayd_hang_up
) {
1661 cleanup_relayd(relayd
, ctx
);
1662 /* Skip splice error so the consumer does not fail */
1667 /* send the appropriate error description to sessiond */
1670 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_EINVAL
);
1673 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ENOMEM
);
1676 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ESPIPE
);
1681 if (relayd
&& stream
->metadata_flag
) {
1682 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1690 * Take a snapshot for a specific fd
1692 * Returns 0 on success, < 0 on error
1694 int lttng_consumer_take_snapshot(struct lttng_consumer_local_data
*ctx
,
1695 struct lttng_consumer_stream
*stream
)
1697 switch (consumer_data
.type
) {
1698 case LTTNG_CONSUMER_KERNEL
:
1699 return lttng_kconsumer_take_snapshot(ctx
, stream
);
1700 case LTTNG_CONSUMER32_UST
:
1701 case LTTNG_CONSUMER64_UST
:
1702 return lttng_ustconsumer_take_snapshot(ctx
, stream
);
1704 ERR("Unknown consumer_data type");
1712 * Get the produced position
1714 * Returns 0 on success, < 0 on error
1716 int lttng_consumer_get_produced_snapshot(
1717 struct lttng_consumer_local_data
*ctx
,
1718 struct lttng_consumer_stream
*stream
,
1721 switch (consumer_data
.type
) {
1722 case LTTNG_CONSUMER_KERNEL
:
1723 return lttng_kconsumer_get_produced_snapshot(ctx
, stream
, pos
);
1724 case LTTNG_CONSUMER32_UST
:
1725 case LTTNG_CONSUMER64_UST
:
1726 return lttng_ustconsumer_get_produced_snapshot(ctx
, stream
, pos
);
1728 ERR("Unknown consumer_data type");
1734 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data
*ctx
,
1735 int sock
, struct pollfd
*consumer_sockpoll
)
1737 switch (consumer_data
.type
) {
1738 case LTTNG_CONSUMER_KERNEL
:
1739 return lttng_kconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1740 case LTTNG_CONSUMER32_UST
:
1741 case LTTNG_CONSUMER64_UST
:
1742 return lttng_ustconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1744 ERR("Unknown consumer_data type");
1751 * Iterate over all streams of the hashtable and free them properly.
1753 * WARNING: *MUST* be used with data stream only.
1755 static void destroy_data_stream_ht(struct lttng_ht
*ht
)
1757 struct lttng_ht_iter iter
;
1758 struct lttng_consumer_stream
*stream
;
1765 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1767 * Ignore return value since we are currently cleaning up so any error
1770 (void) consumer_del_stream(stream
, ht
);
1774 lttng_ht_destroy(ht
);
1778 * Iterate over all streams of the hashtable and free them properly.
1780 * XXX: Should not be only for metadata stream or else use an other name.
1782 static void destroy_stream_ht(struct lttng_ht
*ht
)
1784 struct lttng_ht_iter iter
;
1785 struct lttng_consumer_stream
*stream
;
1792 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1794 * Ignore return value since we are currently cleaning up so any error
1797 (void) consumer_del_metadata_stream(stream
, ht
);
1801 lttng_ht_destroy(ht
);
1805 * Clean up a metadata stream and free its memory.
1807 void consumer_del_metadata_stream(struct lttng_consumer_stream
*stream
,
1808 struct lttng_ht
*ht
)
1811 struct lttng_ht_iter iter
;
1812 struct lttng_consumer_channel
*free_chan
= NULL
;
1813 struct consumer_relayd_sock_pair
*relayd
;
1817 * This call should NEVER receive regular stream. It must always be
1818 * metadata stream and this is crucial for data structure synchronization.
1820 assert(stream
->metadata_flag
);
1822 DBG3("Consumer delete metadata stream %d", stream
->wait_fd
);
1825 /* Means the stream was allocated but not successfully added */
1829 pthread_mutex_lock(&consumer_data
.lock
);
1830 pthread_mutex_lock(&stream
->lock
);
1832 switch (consumer_data
.type
) {
1833 case LTTNG_CONSUMER_KERNEL
:
1834 if (stream
->mmap_base
!= NULL
) {
1835 ret
= munmap(stream
->mmap_base
, stream
->mmap_len
);
1837 PERROR("munmap metadata stream");
1841 case LTTNG_CONSUMER32_UST
:
1842 case LTTNG_CONSUMER64_UST
:
1843 lttng_ustconsumer_del_stream(stream
);
1846 ERR("Unknown consumer_data type");
1852 iter
.iter
.node
= &stream
->node
.node
;
1853 ret
= lttng_ht_del(ht
, &iter
);
1856 /* Remove node session id from the consumer_data stream ht */
1857 iter
.iter
.node
= &stream
->node_session_id
.node
;
1858 ret
= lttng_ht_del(consumer_data
.stream_list_ht
, &iter
);
1862 if (stream
->out_fd
>= 0) {
1863 ret
= close(stream
->out_fd
);
1869 if (stream
->wait_fd
>= 0 && !stream
->wait_fd_is_copy
) {
1870 ret
= close(stream
->wait_fd
);
1876 if (stream
->shm_fd
>= 0 && stream
->wait_fd
!= stream
->shm_fd
) {
1877 ret
= close(stream
->shm_fd
);
1883 /* Check and cleanup relayd */
1885 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1886 if (relayd
!= NULL
) {
1887 uatomic_dec(&relayd
->refcount
);
1888 assert(uatomic_read(&relayd
->refcount
) >= 0);
1890 /* Closing streams requires to lock the control socket. */
1891 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1892 ret
= relayd_send_close_stream(&relayd
->control_sock
,
1893 stream
->relayd_stream_id
, stream
->next_net_seq_num
- 1);
1894 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1896 DBG("Unable to close stream on the relayd. Continuing");
1898 * Continue here. There is nothing we can do for the relayd.
1899 * Chances are that the relayd has closed the socket so we just
1900 * continue cleaning up.
1904 /* Both conditions are met, we destroy the relayd. */
1905 if (uatomic_read(&relayd
->refcount
) == 0 &&
1906 uatomic_read(&relayd
->destroy_flag
)) {
1907 destroy_relayd(relayd
);
1912 /* Atomically decrement channel refcount since other threads can use it. */
1913 uatomic_dec(&stream
->chan
->refcount
);
1914 if (!uatomic_read(&stream
->chan
->refcount
)
1915 && !uatomic_read(&stream
->chan
->nb_init_streams
)) {
1916 /* Go for channel deletion! */
1917 free_chan
= stream
->chan
;
1921 pthread_mutex_unlock(&stream
->lock
);
1922 pthread_mutex_unlock(&consumer_data
.lock
);
1925 consumer_del_channel(free_chan
);
1929 call_rcu(&stream
->node
.head
, consumer_free_stream
);
1933 * Action done with the metadata stream when adding it to the consumer internal
1934 * data structures to handle it.
1936 static int consumer_add_metadata_stream(struct lttng_consumer_stream
*stream
,
1937 struct lttng_ht
*ht
)
1940 struct consumer_relayd_sock_pair
*relayd
;
1941 struct lttng_ht_iter iter
;
1942 struct lttng_ht_node_ulong
*node
;
1947 DBG3("Adding metadata stream %d to hash table", stream
->wait_fd
);
1949 pthread_mutex_lock(&consumer_data
.lock
);
1950 pthread_mutex_lock(&stream
->lock
);
1953 * From here, refcounts are updated so be _careful_ when returning an error
1960 * Lookup the stream just to make sure it does not exist in our internal
1961 * state. This should NEVER happen.
1963 lttng_ht_lookup(ht
, (void *)((unsigned long) stream
->wait_fd
), &iter
);
1964 node
= lttng_ht_iter_get_node_ulong(&iter
);
1967 /* Find relayd and, if one is found, increment refcount. */
1968 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1969 if (relayd
!= NULL
) {
1970 uatomic_inc(&relayd
->refcount
);
1973 /* Update channel refcount once added without error(s). */
1974 uatomic_inc(&stream
->chan
->refcount
);
1977 * When nb_init_streams reaches 0, we don't need to trigger any action in
1978 * terms of destroying the associated channel, because the action that
1979 * causes the count to become 0 also causes a stream to be added. The
1980 * channel deletion will thus be triggered by the following removal of this
1983 if (uatomic_read(&stream
->chan
->nb_init_streams
) > 0) {
1984 uatomic_dec(&stream
->chan
->nb_init_streams
);
1987 lttng_ht_add_unique_ulong(ht
, &stream
->node
);
1990 * Add stream to the stream_list_ht of the consumer data. No need to steal
1991 * the key since the HT does not use it and we allow to add redundant keys
1994 lttng_ht_add_ulong(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
1998 pthread_mutex_unlock(&stream
->lock
);
1999 pthread_mutex_unlock(&consumer_data
.lock
);
2004 * Delete data stream that are flagged for deletion (endpoint_status).
2006 static void validate_endpoint_status_data_stream(void)
2008 struct lttng_ht_iter iter
;
2009 struct lttng_consumer_stream
*stream
;
2011 DBG("Consumer delete flagged data stream");
2014 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2015 /* Validate delete flag of the stream */
2016 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2019 /* Delete it right now */
2020 consumer_del_stream(stream
, data_ht
);
2026 * Delete metadata stream that are flagged for deletion (endpoint_status).
2028 static void validate_endpoint_status_metadata_stream(
2029 struct lttng_poll_event
*pollset
)
2031 struct lttng_ht_iter iter
;
2032 struct lttng_consumer_stream
*stream
;
2034 DBG("Consumer delete flagged metadata stream");
2039 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2040 /* Validate delete flag of the stream */
2041 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2045 * Remove from pollset so the metadata thread can continue without
2046 * blocking on a deleted stream.
2048 lttng_poll_del(pollset
, stream
->wait_fd
);
2050 /* Delete it right now */
2051 consumer_del_metadata_stream(stream
, metadata_ht
);
2057 * Thread polls on metadata file descriptor and write them on disk or on the
2060 void *consumer_thread_metadata_poll(void *data
)
2063 uint32_t revents
, nb_fd
;
2064 struct lttng_consumer_stream
*stream
= NULL
;
2065 struct lttng_ht_iter iter
;
2066 struct lttng_ht_node_ulong
*node
;
2067 struct lttng_poll_event events
;
2068 struct lttng_consumer_local_data
*ctx
= data
;
2071 rcu_register_thread();
2073 metadata_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2075 /* ENOMEM at this point. Better to bail out. */
2079 DBG("Thread metadata poll started");
2081 /* Size is set to 1 for the consumer_metadata pipe */
2082 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2084 ERR("Poll set creation failed");
2088 ret
= lttng_poll_add(&events
, ctx
->consumer_metadata_pipe
[0], LPOLLIN
);
2094 DBG("Metadata main loop started");
2097 /* Only the metadata pipe is set */
2098 if (LTTNG_POLL_GETNB(&events
) == 0 && consumer_quit
== 1) {
2103 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events
));
2104 ret
= lttng_poll_wait(&events
, -1);
2105 DBG("Metadata event catched in thread");
2107 if (errno
== EINTR
) {
2108 ERR("Poll EINTR catched");
2116 /* From here, the event is a metadata wait fd */
2117 for (i
= 0; i
< nb_fd
; i
++) {
2118 revents
= LTTNG_POLL_GETEV(&events
, i
);
2119 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2121 /* Just don't waste time if no returned events for the fd */
2126 if (pollfd
== ctx
->consumer_metadata_pipe
[0]) {
2127 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2128 DBG("Metadata thread pipe hung up");
2130 * Remove the pipe from the poll set and continue the loop
2131 * since their might be data to consume.
2133 lttng_poll_del(&events
, ctx
->consumer_metadata_pipe
[0]);
2134 ret
= close(ctx
->consumer_metadata_pipe
[0]);
2136 PERROR("close metadata pipe");
2139 } else if (revents
& LPOLLIN
) {
2141 /* Get the stream pointer received */
2142 ret
= read(pollfd
, &stream
, sizeof(stream
));
2143 } while (ret
< 0 && errno
== EINTR
);
2145 ret
< sizeof(struct lttng_consumer_stream
*)) {
2146 PERROR("read metadata stream");
2148 * Let's continue here and hope we can still work
2149 * without stopping the consumer. XXX: Should we?
2154 /* A NULL stream means that the state has changed. */
2155 if (stream
== NULL
) {
2156 /* Check for deleted streams. */
2157 validate_endpoint_status_metadata_stream(&events
);
2161 DBG("Adding metadata stream %d to poll set",
2164 ret
= consumer_add_metadata_stream(stream
, metadata_ht
);
2166 ERR("Unable to add metadata stream");
2167 /* Stream was not setup properly. Continuing. */
2168 consumer_del_metadata_stream(stream
, NULL
);
2172 /* Add metadata stream to the global poll events list */
2173 lttng_poll_add(&events
, stream
->wait_fd
,
2174 LPOLLIN
| LPOLLPRI
);
2177 /* Handle other stream */
2182 lttng_ht_lookup(metadata_ht
, (void *)((unsigned long) pollfd
),
2184 node
= lttng_ht_iter_get_node_ulong(&iter
);
2187 stream
= caa_container_of(node
, struct lttng_consumer_stream
,
2190 /* Check for error event */
2191 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2192 DBG("Metadata fd %d is hup|err.", pollfd
);
2193 if (!stream
->hangup_flush_done
2194 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2195 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2196 DBG("Attempting to flush and consume the UST buffers");
2197 lttng_ustconsumer_on_stream_hangup(stream
);
2199 /* We just flushed the stream now read it. */
2201 len
= ctx
->on_buffer_ready(stream
, ctx
);
2203 * We don't check the return value here since if we get
2204 * a negative len, it means an error occured thus we
2205 * simply remove it from the poll set and free the
2211 lttng_poll_del(&events
, stream
->wait_fd
);
2213 * This call update the channel states, closes file descriptors
2214 * and securely free the stream.
2216 consumer_del_metadata_stream(stream
, metadata_ht
);
2217 } else if (revents
& (LPOLLIN
| LPOLLPRI
)) {
2218 /* Get the data out of the metadata file descriptor */
2219 DBG("Metadata available on fd %d", pollfd
);
2220 assert(stream
->wait_fd
== pollfd
);
2222 len
= ctx
->on_buffer_ready(stream
, ctx
);
2223 /* It's ok to have an unavailable sub-buffer */
2224 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2225 /* Clean up stream from consumer and free it. */
2226 lttng_poll_del(&events
, stream
->wait_fd
);
2227 consumer_del_metadata_stream(stream
, metadata_ht
);
2228 } else if (len
> 0) {
2229 stream
->data_read
= 1;
2233 /* Release RCU lock for the stream looked up */
2240 DBG("Metadata poll thread exiting");
2241 lttng_poll_clean(&events
);
2243 destroy_stream_ht(metadata_ht
);
2245 rcu_unregister_thread();
2250 * This thread polls the fds in the set to consume the data and write
2251 * it to tracefile if necessary.
2253 void *consumer_thread_data_poll(void *data
)
2255 int num_rdy
, num_hup
, high_prio
, ret
, i
;
2256 struct pollfd
*pollfd
= NULL
;
2257 /* local view of the streams */
2258 struct lttng_consumer_stream
**local_stream
= NULL
, *new_stream
= NULL
;
2259 /* local view of consumer_data.fds_count */
2261 struct lttng_consumer_local_data
*ctx
= data
;
2264 rcu_register_thread();
2266 data_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2267 if (data_ht
== NULL
) {
2268 /* ENOMEM at this point. Better to bail out. */
2272 local_stream
= zmalloc(sizeof(struct lttng_consumer_stream
));
2279 * the fds set has been updated, we need to update our
2280 * local array as well
2282 pthread_mutex_lock(&consumer_data
.lock
);
2283 if (consumer_data
.need_update
) {
2284 if (pollfd
!= NULL
) {
2288 if (local_stream
!= NULL
) {
2290 local_stream
= NULL
;
2293 /* allocate for all fds + 1 for the consumer_data_pipe */
2294 pollfd
= zmalloc((consumer_data
.stream_count
+ 1) * sizeof(struct pollfd
));
2295 if (pollfd
== NULL
) {
2296 PERROR("pollfd malloc");
2297 pthread_mutex_unlock(&consumer_data
.lock
);
2301 /* allocate for all fds + 1 for the consumer_data_pipe */
2302 local_stream
= zmalloc((consumer_data
.stream_count
+ 1) *
2303 sizeof(struct lttng_consumer_stream
));
2304 if (local_stream
== NULL
) {
2305 PERROR("local_stream malloc");
2306 pthread_mutex_unlock(&consumer_data
.lock
);
2309 ret
= consumer_update_poll_array(ctx
, &pollfd
, local_stream
,
2312 ERR("Error in allocating pollfd or local_outfds");
2313 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2314 pthread_mutex_unlock(&consumer_data
.lock
);
2318 consumer_data
.need_update
= 0;
2320 pthread_mutex_unlock(&consumer_data
.lock
);
2322 /* No FDs and consumer_quit, consumer_cleanup the thread */
2323 if (nb_fd
== 0 && consumer_quit
== 1) {
2326 /* poll on the array of fds */
2328 DBG("polling on %d fd", nb_fd
+ 1);
2329 num_rdy
= poll(pollfd
, nb_fd
+ 1, -1);
2330 DBG("poll num_rdy : %d", num_rdy
);
2331 if (num_rdy
== -1) {
2333 * Restart interrupted system call.
2335 if (errno
== EINTR
) {
2338 PERROR("Poll error");
2339 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2341 } else if (num_rdy
== 0) {
2342 DBG("Polling thread timed out");
2347 * If the consumer_data_pipe triggered poll go directly to the
2348 * beginning of the loop to update the array. We want to prioritize
2349 * array update over low-priority reads.
2351 if (pollfd
[nb_fd
].revents
& (POLLIN
| POLLPRI
)) {
2352 size_t pipe_readlen
;
2354 DBG("consumer_data_pipe wake up");
2355 /* Consume 1 byte of pipe data */
2357 pipe_readlen
= read(ctx
->consumer_data_pipe
[0], &new_stream
,
2358 sizeof(new_stream
));
2359 } while (pipe_readlen
== -1 && errno
== EINTR
);
2360 if (pipe_readlen
< 0) {
2361 PERROR("read consumer data pipe");
2362 /* Continue so we can at least handle the current stream(s). */
2367 * If the stream is NULL, just ignore it. It's also possible that
2368 * the sessiond poll thread changed the consumer_quit state and is
2369 * waking us up to test it.
2371 if (new_stream
== NULL
) {
2372 validate_endpoint_status_data_stream();
2376 ret
= consumer_add_stream(new_stream
, data_ht
);
2378 ERR("Consumer add stream %d failed. Continuing",
2381 * At this point, if the add_stream fails, it is not in the
2382 * hash table thus passing the NULL value here.
2384 consumer_del_stream(new_stream
, NULL
);
2387 /* Continue to update the local streams and handle prio ones */
2391 /* Take care of high priority channels first. */
2392 for (i
= 0; i
< nb_fd
; i
++) {
2393 if (local_stream
[i
] == NULL
) {
2396 if (pollfd
[i
].revents
& POLLPRI
) {
2397 DBG("Urgent read on fd %d", pollfd
[i
].fd
);
2399 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2400 /* it's ok to have an unavailable sub-buffer */
2401 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2402 /* Clean the stream and free it. */
2403 consumer_del_stream(local_stream
[i
], data_ht
);
2404 local_stream
[i
] = NULL
;
2405 } else if (len
> 0) {
2406 local_stream
[i
]->data_read
= 1;
2412 * If we read high prio channel in this loop, try again
2413 * for more high prio data.
2419 /* Take care of low priority channels. */
2420 for (i
= 0; i
< nb_fd
; i
++) {
2421 if (local_stream
[i
] == NULL
) {
2424 if ((pollfd
[i
].revents
& POLLIN
) ||
2425 local_stream
[i
]->hangup_flush_done
) {
2426 DBG("Normal read on fd %d", pollfd
[i
].fd
);
2427 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2428 /* it's ok to have an unavailable sub-buffer */
2429 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2430 /* Clean the stream and free it. */
2431 consumer_del_stream(local_stream
[i
], data_ht
);
2432 local_stream
[i
] = NULL
;
2433 } else if (len
> 0) {
2434 local_stream
[i
]->data_read
= 1;
2439 /* Handle hangup and errors */
2440 for (i
= 0; i
< nb_fd
; i
++) {
2441 if (local_stream
[i
] == NULL
) {
2444 if (!local_stream
[i
]->hangup_flush_done
2445 && (pollfd
[i
].revents
& (POLLHUP
| POLLERR
| POLLNVAL
))
2446 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2447 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2448 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2450 lttng_ustconsumer_on_stream_hangup(local_stream
[i
]);
2451 /* Attempt read again, for the data we just flushed. */
2452 local_stream
[i
]->data_read
= 1;
2455 * If the poll flag is HUP/ERR/NVAL and we have
2456 * read no data in this pass, we can remove the
2457 * stream from its hash table.
2459 if ((pollfd
[i
].revents
& POLLHUP
)) {
2460 DBG("Polling fd %d tells it has hung up.", pollfd
[i
].fd
);
2461 if (!local_stream
[i
]->data_read
) {
2462 consumer_del_stream(local_stream
[i
], data_ht
);
2463 local_stream
[i
] = NULL
;
2466 } else if (pollfd
[i
].revents
& POLLERR
) {
2467 ERR("Error returned in polling fd %d.", pollfd
[i
].fd
);
2468 if (!local_stream
[i
]->data_read
) {
2469 consumer_del_stream(local_stream
[i
], data_ht
);
2470 local_stream
[i
] = NULL
;
2473 } else if (pollfd
[i
].revents
& POLLNVAL
) {
2474 ERR("Polling fd %d tells fd is not open.", pollfd
[i
].fd
);
2475 if (!local_stream
[i
]->data_read
) {
2476 consumer_del_stream(local_stream
[i
], data_ht
);
2477 local_stream
[i
] = NULL
;
2481 if (local_stream
[i
] != NULL
) {
2482 local_stream
[i
]->data_read
= 0;
2487 DBG("polling thread exiting");
2488 if (pollfd
!= NULL
) {
2492 if (local_stream
!= NULL
) {
2494 local_stream
= NULL
;
2498 * Close the write side of the pipe so epoll_wait() in
2499 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2500 * read side of the pipe. If we close them both, epoll_wait strangely does
2501 * not return and could create a endless wait period if the pipe is the
2502 * only tracked fd in the poll set. The thread will take care of closing
2505 ret
= close(ctx
->consumer_metadata_pipe
[1]);
2507 PERROR("close data pipe");
2510 destroy_data_stream_ht(data_ht
);
2512 rcu_unregister_thread();
2517 * This thread listens on the consumerd socket and receives the file
2518 * descriptors from the session daemon.
2520 void *consumer_thread_sessiond_poll(void *data
)
2522 int sock
= -1, client_socket
, ret
;
2524 * structure to poll for incoming data on communication socket avoids
2525 * making blocking sockets.
2527 struct pollfd consumer_sockpoll
[2];
2528 struct lttng_consumer_local_data
*ctx
= data
;
2530 rcu_register_thread();
2532 DBG("Creating command socket %s", ctx
->consumer_command_sock_path
);
2533 unlink(ctx
->consumer_command_sock_path
);
2534 client_socket
= lttcomm_create_unix_sock(ctx
->consumer_command_sock_path
);
2535 if (client_socket
< 0) {
2536 ERR("Cannot create command socket");
2540 ret
= lttcomm_listen_unix_sock(client_socket
);
2545 DBG("Sending ready command to lttng-sessiond");
2546 ret
= lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY
);
2547 /* return < 0 on error, but == 0 is not fatal */
2549 ERR("Error sending ready command to lttng-sessiond");
2553 ret
= fcntl(client_socket
, F_SETFL
, O_NONBLOCK
);
2555 PERROR("fcntl O_NONBLOCK");
2559 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2560 consumer_sockpoll
[0].fd
= ctx
->consumer_should_quit
[0];
2561 consumer_sockpoll
[0].events
= POLLIN
| POLLPRI
;
2562 consumer_sockpoll
[1].fd
= client_socket
;
2563 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
2565 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2568 DBG("Connection on client_socket");
2570 /* Blocking call, waiting for transmission */
2571 sock
= lttcomm_accept_unix_sock(client_socket
);
2576 ret
= fcntl(sock
, F_SETFL
, O_NONBLOCK
);
2578 PERROR("fcntl O_NONBLOCK");
2582 /* This socket is not useful anymore. */
2583 ret
= close(client_socket
);
2585 PERROR("close client_socket");
2589 /* update the polling structure to poll on the established socket */
2590 consumer_sockpoll
[1].fd
= sock
;
2591 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
2594 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2597 DBG("Incoming command on sock");
2598 ret
= lttng_consumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
2599 if (ret
== -ENOENT
) {
2600 DBG("Received STOP command");
2605 * This could simply be a session daemon quitting. Don't output
2608 DBG("Communication interrupted on command socket");
2611 if (consumer_quit
) {
2612 DBG("consumer_thread_receive_fds received quit from signal");
2615 DBG("received fds on sock");
2618 DBG("consumer_thread_receive_fds exiting");
2621 * when all fds have hung up, the polling thread
2627 * Notify the data poll thread to poll back again and test the
2628 * consumer_quit state that we just set so to quit gracefully.
2630 notify_thread_pipe(ctx
->consumer_data_pipe
[1]);
2632 /* Cleaning up possibly open sockets. */
2636 PERROR("close sock sessiond poll");
2639 if (client_socket
>= 0) {
2642 PERROR("close client_socket sessiond poll");
2646 rcu_unregister_thread();
2650 ssize_t
lttng_consumer_read_subbuffer(struct lttng_consumer_stream
*stream
,
2651 struct lttng_consumer_local_data
*ctx
)
2655 pthread_mutex_lock(&stream
->lock
);
2657 switch (consumer_data
.type
) {
2658 case LTTNG_CONSUMER_KERNEL
:
2659 ret
= lttng_kconsumer_read_subbuffer(stream
, ctx
);
2661 case LTTNG_CONSUMER32_UST
:
2662 case LTTNG_CONSUMER64_UST
:
2663 ret
= lttng_ustconsumer_read_subbuffer(stream
, ctx
);
2666 ERR("Unknown consumer_data type");
2672 pthread_mutex_unlock(&stream
->lock
);
2676 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream
*stream
)
2678 switch (consumer_data
.type
) {
2679 case LTTNG_CONSUMER_KERNEL
:
2680 return lttng_kconsumer_on_recv_stream(stream
);
2681 case LTTNG_CONSUMER32_UST
:
2682 case LTTNG_CONSUMER64_UST
:
2683 return lttng_ustconsumer_on_recv_stream(stream
);
2685 ERR("Unknown consumer_data type");
2692 * Allocate and set consumer data hash tables.
2694 void lttng_consumer_init(void)
2696 consumer_data
.channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2697 consumer_data
.relayd_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2698 consumer_data
.stream_list_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2702 * Process the ADD_RELAYD command receive by a consumer.
2704 * This will create a relayd socket pair and add it to the relayd hash table.
2705 * The caller MUST acquire a RCU read side lock before calling it.
2707 int consumer_add_relayd_socket(int net_seq_idx
, int sock_type
,
2708 struct lttng_consumer_local_data
*ctx
, int sock
,
2709 struct pollfd
*consumer_sockpoll
, struct lttcomm_sock
*relayd_sock
,
2710 unsigned int sessiond_id
)
2712 int fd
= -1, ret
= -1, relayd_created
= 0;
2713 enum lttng_error_code ret_code
= LTTNG_OK
;
2714 struct consumer_relayd_sock_pair
*relayd
;
2716 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx
);
2718 /* First send a status message before receiving the fds. */
2719 ret
= consumer_send_status_msg(sock
, ret_code
);
2721 /* Somehow, the session daemon is not responding anymore. */
2725 /* Get relayd reference if exists. */
2726 relayd
= consumer_find_relayd(net_seq_idx
);
2727 if (relayd
== NULL
) {
2728 /* Not found. Allocate one. */
2729 relayd
= consumer_allocate_relayd_sock_pair(net_seq_idx
);
2730 if (relayd
== NULL
) {
2731 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_OUTFD_ERROR
);
2735 relayd
->sessiond_session_id
= (uint64_t) sessiond_id
;
2739 /* Poll on consumer socket. */
2740 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2745 /* Get relayd socket from session daemon */
2746 ret
= lttcomm_recv_fds_unix_sock(sock
, &fd
, 1);
2747 if (ret
!= sizeof(fd
)) {
2748 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_ERROR_RECV_FD
);
2750 fd
= -1; /* Just in case it gets set with an invalid value. */
2754 /* We have the fds without error. Send status back. */
2755 ret
= consumer_send_status_msg(sock
, ret_code
);
2757 /* Somehow, the session daemon is not responding anymore. */
2761 /* Copy socket information and received FD */
2762 switch (sock_type
) {
2763 case LTTNG_STREAM_CONTROL
:
2764 /* Copy received lttcomm socket */
2765 lttcomm_copy_sock(&relayd
->control_sock
, relayd_sock
);
2766 ret
= lttcomm_create_sock(&relayd
->control_sock
);
2767 /* Immediately try to close the created socket if valid. */
2768 if (relayd
->control_sock
.fd
>= 0) {
2769 if (close(relayd
->control_sock
.fd
)) {
2770 PERROR("close relayd control socket");
2773 /* Handle create_sock error. */
2778 /* Assign new file descriptor */
2779 relayd
->control_sock
.fd
= fd
;
2782 * Create a session on the relayd and store the returned id. Lock the
2783 * control socket mutex if the relayd was NOT created before.
2785 if (!relayd_created
) {
2786 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
2788 ret
= relayd_create_session(&relayd
->control_sock
,
2789 &relayd
->relayd_session_id
);
2790 if (!relayd_created
) {
2791 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
2798 case LTTNG_STREAM_DATA
:
2799 /* Copy received lttcomm socket */
2800 lttcomm_copy_sock(&relayd
->data_sock
, relayd_sock
);
2801 ret
= lttcomm_create_sock(&relayd
->data_sock
);
2802 /* Immediately try to close the created socket if valid. */
2803 if (relayd
->data_sock
.fd
>= 0) {
2804 if (close(relayd
->data_sock
.fd
)) {
2805 PERROR("close relayd data socket");
2808 /* Handle create_sock error. */
2813 /* Assign new file descriptor */
2814 relayd
->data_sock
.fd
= fd
;
2817 ERR("Unknown relayd socket type (%d)", sock_type
);
2822 DBG("Consumer %s socket created successfully with net idx %d (fd: %d)",
2823 sock_type
== LTTNG_STREAM_CONTROL
? "control" : "data",
2824 relayd
->net_seq_idx
, fd
);
2827 * Add relayd socket pair to consumer data hashtable. If object already
2828 * exists or on error, the function gracefully returns.
2836 /* Close received socket if valid. */
2839 PERROR("close received socket");
2843 if (relayd_created
) {
2844 /* We just want to cleanup. Ignore ret value. */
2845 (void) relayd_close(&relayd
->control_sock
);
2846 (void) relayd_close(&relayd
->data_sock
);
2854 * Try to lock the stream mutex.
2856 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
2858 static int stream_try_lock(struct lttng_consumer_stream
*stream
)
2865 * Try to lock the stream mutex. On failure, we know that the stream is
2866 * being used else where hence there is data still being extracted.
2868 ret
= pthread_mutex_trylock(&stream
->lock
);
2870 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
2882 * Search for a relayd associated to the session id and return the reference.
2884 * A rcu read side lock MUST be acquire before calling this function and locked
2885 * until the relayd object is no longer necessary.
2887 static struct consumer_relayd_sock_pair
*find_relayd_by_session_id(uint64_t id
)
2889 struct lttng_ht_iter iter
;
2890 struct consumer_relayd_sock_pair
*relayd
= NULL
;
2892 /* Iterate over all relayd since they are indexed by net_seq_idx. */
2893 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
2896 * Check by sessiond id which is unique here where the relayd session
2897 * id might not be when having multiple relayd.
2899 if (relayd
->sessiond_session_id
== id
) {
2900 /* Found the relayd. There can be only one per id. */
2912 * Check if for a given session id there is still data needed to be extract
2915 * Return 1 if data is pending or else 0 meaning ready to be read.
2917 int consumer_data_pending(uint64_t id
)
2920 struct lttng_ht_iter iter
;
2921 struct lttng_ht
*ht
;
2922 struct lttng_consumer_stream
*stream
;
2923 struct consumer_relayd_sock_pair
*relayd
= NULL
;
2924 int (*data_pending
)(struct lttng_consumer_stream
*);
2926 DBG("Consumer data pending command on session id %" PRIu64
, id
);
2929 pthread_mutex_lock(&consumer_data
.lock
);
2931 switch (consumer_data
.type
) {
2932 case LTTNG_CONSUMER_KERNEL
:
2933 data_pending
= lttng_kconsumer_data_pending
;
2935 case LTTNG_CONSUMER32_UST
:
2936 case LTTNG_CONSUMER64_UST
:
2937 data_pending
= lttng_ustconsumer_data_pending
;
2940 ERR("Unknown consumer data type");
2944 /* Ease our life a bit */
2945 ht
= consumer_data
.stream_list_ht
;
2947 relayd
= find_relayd_by_session_id(id
);
2949 /* Send init command for data pending. */
2950 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
2951 ret
= relayd_begin_data_pending(&relayd
->control_sock
,
2952 relayd
->relayd_session_id
);
2953 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
2955 /* Communication error thus the relayd so no data pending. */
2956 goto data_not_pending
;
2960 cds_lfht_for_each_entry_duplicate(ht
->ht
,
2961 ht
->hash_fct((void *)((unsigned long) id
), lttng_ht_seed
),
2962 ht
->match_fct
, (void *)((unsigned long) id
),
2963 &iter
.iter
, stream
, node_session_id
.node
) {
2964 /* If this call fails, the stream is being used hence data pending. */
2965 ret
= stream_try_lock(stream
);
2971 * A removed node from the hash table indicates that the stream has
2972 * been deleted thus having a guarantee that the buffers are closed
2973 * on the consumer side. However, data can still be transmitted
2974 * over the network so don't skip the relayd check.
2976 ret
= cds_lfht_is_node_deleted(&stream
->node
.node
);
2978 /* Check the stream if there is data in the buffers. */
2979 ret
= data_pending(stream
);
2981 pthread_mutex_unlock(&stream
->lock
);
2988 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
2989 if (stream
->metadata_flag
) {
2990 ret
= relayd_quiescent_control(&relayd
->control_sock
,
2991 stream
->relayd_stream_id
);
2993 ret
= relayd_data_pending(&relayd
->control_sock
,
2994 stream
->relayd_stream_id
,
2995 stream
->next_net_seq_num
- 1);
2997 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
2999 pthread_mutex_unlock(&stream
->lock
);
3003 pthread_mutex_unlock(&stream
->lock
);
3007 unsigned int is_data_inflight
= 0;
3009 /* Send init command for data pending. */
3010 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3011 ret
= relayd_end_data_pending(&relayd
->control_sock
,
3012 relayd
->relayd_session_id
, &is_data_inflight
);
3013 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3015 goto data_not_pending
;
3017 if (is_data_inflight
) {
3023 * Finding _no_ node in the hash table and no inflight data means that the
3024 * stream(s) have been removed thus data is guaranteed to be available for
3025 * analysis from the trace files.
3029 /* Data is available to be read by a viewer. */
3030 pthread_mutex_unlock(&consumer_data
.lock
);
3035 /* Data is still being extracted from buffers. */
3036 pthread_mutex_unlock(&consumer_data
.lock
);
3042 * Send a ret code status message to the sessiond daemon.
3044 * Return the sendmsg() return value.
3046 int consumer_send_status_msg(int sock
, int ret_code
)
3048 struct lttcomm_consumer_status_msg msg
;
3050 msg
.ret_code
= ret_code
;
3052 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));