2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 #include <sys/socket.h>
28 #include <sys/types.h>
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/index/index.h>
38 #include <common/kernel-ctl/kernel-ctl.h>
39 #include <common/sessiond-comm/relayd.h>
40 #include <common/sessiond-comm/sessiond-comm.h>
41 #include <common/kernel-consumer/kernel-consumer.h>
42 #include <common/relayd/relayd.h>
43 #include <common/ust-consumer/ust-consumer.h>
44 #include <common/consumer-timer.h>
47 #include "consumer-stream.h"
49 struct lttng_consumer_global_data consumer_data
= {
52 .type
= LTTNG_CONSUMER_UNKNOWN
,
55 enum consumer_channel_action
{
58 CONSUMER_CHANNEL_QUIT
,
61 struct consumer_channel_msg
{
62 enum consumer_channel_action action
;
63 struct lttng_consumer_channel
*chan
; /* add */
64 uint64_t key
; /* del */
68 * Flag to inform the polling thread to quit when all fd hung up. Updated by
69 * the consumer_thread_receive_fds when it notices that all fds has hung up.
70 * Also updated by the signal handler (consumer_should_exit()). Read by the
73 volatile int consumer_quit
;
76 * Global hash table containing respectively metadata and data streams. The
77 * stream element in this ht should only be updated by the metadata poll thread
78 * for the metadata and the data poll thread for the data.
80 static struct lttng_ht
*metadata_ht
;
81 static struct lttng_ht
*data_ht
;
84 * Notify a thread lttng pipe to poll back again. This usually means that some
85 * global state has changed so we just send back the thread in a poll wait
88 static void notify_thread_lttng_pipe(struct lttng_pipe
*pipe
)
90 struct lttng_consumer_stream
*null_stream
= NULL
;
94 (void) lttng_pipe_write(pipe
, &null_stream
, sizeof(null_stream
));
97 static void notify_health_quit_pipe(int *pipe
)
102 ret
= write(pipe
[1], "4", 1);
103 } while (ret
< 0 && errno
== EINTR
);
104 if (ret
< 0 || ret
!= 1) {
105 PERROR("write consumer health quit");
109 static void notify_channel_pipe(struct lttng_consumer_local_data
*ctx
,
110 struct lttng_consumer_channel
*chan
,
112 enum consumer_channel_action action
)
114 struct consumer_channel_msg msg
;
117 memset(&msg
, 0, sizeof(msg
));
123 ret
= write(ctx
->consumer_channel_pipe
[1], &msg
, sizeof(msg
));
124 } while (ret
< 0 && errno
== EINTR
);
127 void notify_thread_del_channel(struct lttng_consumer_local_data
*ctx
,
130 notify_channel_pipe(ctx
, NULL
, key
, CONSUMER_CHANNEL_DEL
);
133 static int read_channel_pipe(struct lttng_consumer_local_data
*ctx
,
134 struct lttng_consumer_channel
**chan
,
136 enum consumer_channel_action
*action
)
138 struct consumer_channel_msg msg
;
142 ret
= read(ctx
->consumer_channel_pipe
[0], &msg
, sizeof(msg
));
143 } while (ret
< 0 && errno
== EINTR
);
145 *action
= msg
.action
;
153 * Find a stream. The consumer_data.lock must be locked during this
156 static struct lttng_consumer_stream
*find_stream(uint64_t key
,
159 struct lttng_ht_iter iter
;
160 struct lttng_ht_node_u64
*node
;
161 struct lttng_consumer_stream
*stream
= NULL
;
165 /* -1ULL keys are lookup failures */
166 if (key
== (uint64_t) -1ULL) {
172 lttng_ht_lookup(ht
, &key
, &iter
);
173 node
= lttng_ht_iter_get_node_u64(&iter
);
175 stream
= caa_container_of(node
, struct lttng_consumer_stream
, node
);
183 static void steal_stream_key(uint64_t key
, struct lttng_ht
*ht
)
185 struct lttng_consumer_stream
*stream
;
188 stream
= find_stream(key
, ht
);
190 stream
->key
= (uint64_t) -1ULL;
192 * We don't want the lookup to match, but we still need
193 * to iterate on this stream when iterating over the hash table. Just
194 * change the node key.
196 stream
->node
.key
= (uint64_t) -1ULL;
202 * Return a channel object for the given key.
204 * RCU read side lock MUST be acquired before calling this function and
205 * protects the channel ptr.
207 struct lttng_consumer_channel
*consumer_find_channel(uint64_t key
)
209 struct lttng_ht_iter iter
;
210 struct lttng_ht_node_u64
*node
;
211 struct lttng_consumer_channel
*channel
= NULL
;
213 /* -1ULL keys are lookup failures */
214 if (key
== (uint64_t) -1ULL) {
218 lttng_ht_lookup(consumer_data
.channel_ht
, &key
, &iter
);
219 node
= lttng_ht_iter_get_node_u64(&iter
);
221 channel
= caa_container_of(node
, struct lttng_consumer_channel
, node
);
227 static void free_stream_rcu(struct rcu_head
*head
)
229 struct lttng_ht_node_u64
*node
=
230 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
231 struct lttng_consumer_stream
*stream
=
232 caa_container_of(node
, struct lttng_consumer_stream
, node
);
237 static void free_channel_rcu(struct rcu_head
*head
)
239 struct lttng_ht_node_u64
*node
=
240 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
241 struct lttng_consumer_channel
*channel
=
242 caa_container_of(node
, struct lttng_consumer_channel
, node
);
248 * RCU protected relayd socket pair free.
250 static void free_relayd_rcu(struct rcu_head
*head
)
252 struct lttng_ht_node_u64
*node
=
253 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
254 struct consumer_relayd_sock_pair
*relayd
=
255 caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
258 * Close all sockets. This is done in the call RCU since we don't want the
259 * socket fds to be reassigned thus potentially creating bad state of the
262 * We do not have to lock the control socket mutex here since at this stage
263 * there is no one referencing to this relayd object.
265 (void) relayd_close(&relayd
->control_sock
);
266 (void) relayd_close(&relayd
->data_sock
);
272 * Destroy and free relayd socket pair object.
274 void consumer_destroy_relayd(struct consumer_relayd_sock_pair
*relayd
)
277 struct lttng_ht_iter iter
;
279 if (relayd
== NULL
) {
283 DBG("Consumer destroy and close relayd socket pair");
285 iter
.iter
.node
= &relayd
->node
.node
;
286 ret
= lttng_ht_del(consumer_data
.relayd_ht
, &iter
);
288 /* We assume the relayd is being or is destroyed */
292 /* RCU free() call */
293 call_rcu(&relayd
->node
.head
, free_relayd_rcu
);
297 * Remove a channel from the global list protected by a mutex. This function is
298 * also responsible for freeing its data structures.
300 void consumer_del_channel(struct lttng_consumer_channel
*channel
)
303 struct lttng_ht_iter iter
;
304 struct lttng_consumer_stream
*stream
, *stmp
;
306 DBG("Consumer delete channel key %" PRIu64
, channel
->key
);
308 pthread_mutex_lock(&consumer_data
.lock
);
309 pthread_mutex_lock(&channel
->lock
);
311 /* Delete streams that might have been left in the stream list. */
312 cds_list_for_each_entry_safe(stream
, stmp
, &channel
->streams
.head
,
314 cds_list_del(&stream
->send_node
);
316 * Once a stream is added to this list, the buffers were created so
317 * we have a guarantee that this call will succeed.
319 consumer_stream_destroy(stream
, NULL
);
322 if (channel
->live_timer_enabled
== 1) {
323 consumer_timer_live_stop(channel
);
326 switch (consumer_data
.type
) {
327 case LTTNG_CONSUMER_KERNEL
:
329 case LTTNG_CONSUMER32_UST
:
330 case LTTNG_CONSUMER64_UST
:
331 lttng_ustconsumer_del_channel(channel
);
334 ERR("Unknown consumer_data type");
340 iter
.iter
.node
= &channel
->node
.node
;
341 ret
= lttng_ht_del(consumer_data
.channel_ht
, &iter
);
345 call_rcu(&channel
->node
.head
, free_channel_rcu
);
347 pthread_mutex_unlock(&channel
->lock
);
348 pthread_mutex_unlock(&consumer_data
.lock
);
352 * Iterate over the relayd hash table and destroy each element. Finally,
353 * destroy the whole hash table.
355 static void cleanup_relayd_ht(void)
357 struct lttng_ht_iter iter
;
358 struct consumer_relayd_sock_pair
*relayd
;
362 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
364 consumer_destroy_relayd(relayd
);
369 lttng_ht_destroy(consumer_data
.relayd_ht
);
373 * Update the end point status of all streams having the given network sequence
374 * index (relayd index).
376 * It's atomically set without having the stream mutex locked which is fine
377 * because we handle the write/read race with a pipe wakeup for each thread.
379 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx
,
380 enum consumer_endpoint_status status
)
382 struct lttng_ht_iter iter
;
383 struct lttng_consumer_stream
*stream
;
385 DBG("Consumer set delete flag on stream by idx %" PRIu64
, net_seq_idx
);
389 /* Let's begin with metadata */
390 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
391 if (stream
->net_seq_idx
== net_seq_idx
) {
392 uatomic_set(&stream
->endpoint_status
, status
);
393 DBG("Delete flag set to metadata stream %d", stream
->wait_fd
);
397 /* Follow up by the data streams */
398 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
399 if (stream
->net_seq_idx
== net_seq_idx
) {
400 uatomic_set(&stream
->endpoint_status
, status
);
401 DBG("Delete flag set to data stream %d", stream
->wait_fd
);
408 * Cleanup a relayd object by flagging every associated streams for deletion,
409 * destroying the object meaning removing it from the relayd hash table,
410 * closing the sockets and freeing the memory in a RCU call.
412 * If a local data context is available, notify the threads that the streams'
413 * state have changed.
415 static void cleanup_relayd(struct consumer_relayd_sock_pair
*relayd
,
416 struct lttng_consumer_local_data
*ctx
)
422 DBG("Cleaning up relayd sockets");
424 /* Save the net sequence index before destroying the object */
425 netidx
= relayd
->net_seq_idx
;
428 * Delete the relayd from the relayd hash table, close the sockets and free
429 * the object in a RCU call.
431 consumer_destroy_relayd(relayd
);
433 /* Set inactive endpoint to all streams */
434 update_endpoint_status_by_netidx(netidx
, CONSUMER_ENDPOINT_INACTIVE
);
437 * With a local data context, notify the threads that the streams' state
438 * have changed. The write() action on the pipe acts as an "implicit"
439 * memory barrier ordering the updates of the end point status from the
440 * read of this status which happens AFTER receiving this notify.
443 notify_thread_lttng_pipe(ctx
->consumer_data_pipe
);
444 notify_thread_lttng_pipe(ctx
->consumer_metadata_pipe
);
449 * Flag a relayd socket pair for destruction. Destroy it if the refcount
452 * RCU read side lock MUST be aquired before calling this function.
454 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair
*relayd
)
458 /* Set destroy flag for this object */
459 uatomic_set(&relayd
->destroy_flag
, 1);
461 /* Destroy the relayd if refcount is 0 */
462 if (uatomic_read(&relayd
->refcount
) == 0) {
463 consumer_destroy_relayd(relayd
);
468 * Completly destroy stream from every visiable data structure and the given
471 * One this call returns, the stream object is not longer usable nor visible.
473 void consumer_del_stream(struct lttng_consumer_stream
*stream
,
476 consumer_stream_destroy(stream
, ht
);
480 * XXX naming of del vs destroy is all mixed up.
482 void consumer_del_stream_for_data(struct lttng_consumer_stream
*stream
)
484 consumer_stream_destroy(stream
, data_ht
);
487 void consumer_del_stream_for_metadata(struct lttng_consumer_stream
*stream
)
489 consumer_stream_destroy(stream
, metadata_ht
);
492 struct lttng_consumer_stream
*consumer_allocate_stream(uint64_t channel_key
,
494 enum lttng_consumer_stream_state state
,
495 const char *channel_name
,
502 enum consumer_channel_type type
,
503 unsigned int monitor
)
506 struct lttng_consumer_stream
*stream
;
508 stream
= zmalloc(sizeof(*stream
));
509 if (stream
== NULL
) {
510 PERROR("malloc struct lttng_consumer_stream");
517 stream
->key
= stream_key
;
519 stream
->out_fd_offset
= 0;
520 stream
->output_written
= 0;
521 stream
->state
= state
;
524 stream
->net_seq_idx
= relayd_id
;
525 stream
->session_id
= session_id
;
526 stream
->monitor
= monitor
;
527 stream
->endpoint_status
= CONSUMER_ENDPOINT_ACTIVE
;
528 stream
->index_fd
= -1;
529 pthread_mutex_init(&stream
->lock
, NULL
);
531 /* If channel is the metadata, flag this stream as metadata. */
532 if (type
== CONSUMER_CHANNEL_TYPE_METADATA
) {
533 stream
->metadata_flag
= 1;
534 /* Metadata is flat out. */
535 strncpy(stream
->name
, DEFAULT_METADATA_NAME
, sizeof(stream
->name
));
536 /* Live rendez-vous point. */
537 pthread_cond_init(&stream
->metadata_rdv
, NULL
);
538 pthread_mutex_init(&stream
->metadata_rdv_lock
, NULL
);
540 /* Format stream name to <channel_name>_<cpu_number> */
541 ret
= snprintf(stream
->name
, sizeof(stream
->name
), "%s_%d",
544 PERROR("snprintf stream name");
549 /* Key is always the wait_fd for streams. */
550 lttng_ht_node_init_u64(&stream
->node
, stream
->key
);
552 /* Init node per channel id key */
553 lttng_ht_node_init_u64(&stream
->node_channel_id
, channel_key
);
555 /* Init session id node with the stream session id */
556 lttng_ht_node_init_u64(&stream
->node_session_id
, stream
->session_id
);
558 DBG3("Allocated stream %s (key %" PRIu64
", chan_key %" PRIu64
559 " relayd_id %" PRIu64
", session_id %" PRIu64
,
560 stream
->name
, stream
->key
, channel_key
,
561 stream
->net_seq_idx
, stream
->session_id
);
577 * Add a stream to the global list protected by a mutex.
579 int consumer_add_data_stream(struct lttng_consumer_stream
*stream
)
581 struct lttng_ht
*ht
= data_ht
;
587 DBG3("Adding consumer stream %" PRIu64
, stream
->key
);
589 pthread_mutex_lock(&consumer_data
.lock
);
590 pthread_mutex_lock(&stream
->chan
->lock
);
591 pthread_mutex_lock(&stream
->chan
->timer_lock
);
592 pthread_mutex_lock(&stream
->lock
);
595 /* Steal stream identifier to avoid having streams with the same key */
596 steal_stream_key(stream
->key
, ht
);
598 lttng_ht_add_unique_u64(ht
, &stream
->node
);
600 lttng_ht_add_u64(consumer_data
.stream_per_chan_id_ht
,
601 &stream
->node_channel_id
);
604 * Add stream to the stream_list_ht of the consumer data. No need to steal
605 * the key since the HT does not use it and we allow to add redundant keys
608 lttng_ht_add_u64(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
611 * When nb_init_stream_left reaches 0, we don't need to trigger any action
612 * in terms of destroying the associated channel, because the action that
613 * causes the count to become 0 also causes a stream to be added. The
614 * channel deletion will thus be triggered by the following removal of this
617 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
618 /* Increment refcount before decrementing nb_init_stream_left */
620 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
623 /* Update consumer data once the node is inserted. */
624 consumer_data
.stream_count
++;
625 consumer_data
.need_update
= 1;
628 pthread_mutex_unlock(&stream
->lock
);
629 pthread_mutex_unlock(&stream
->chan
->timer_lock
);
630 pthread_mutex_unlock(&stream
->chan
->lock
);
631 pthread_mutex_unlock(&consumer_data
.lock
);
636 void consumer_del_data_stream(struct lttng_consumer_stream
*stream
)
638 consumer_del_stream(stream
, data_ht
);
642 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
643 * be acquired before calling this.
645 static int add_relayd(struct consumer_relayd_sock_pair
*relayd
)
648 struct lttng_ht_node_u64
*node
;
649 struct lttng_ht_iter iter
;
653 lttng_ht_lookup(consumer_data
.relayd_ht
,
654 &relayd
->net_seq_idx
, &iter
);
655 node
= lttng_ht_iter_get_node_u64(&iter
);
659 lttng_ht_add_unique_u64(consumer_data
.relayd_ht
, &relayd
->node
);
666 * Allocate and return a consumer relayd socket.
668 struct consumer_relayd_sock_pair
*consumer_allocate_relayd_sock_pair(
669 uint64_t net_seq_idx
)
671 struct consumer_relayd_sock_pair
*obj
= NULL
;
673 /* net sequence index of -1 is a failure */
674 if (net_seq_idx
== (uint64_t) -1ULL) {
678 obj
= zmalloc(sizeof(struct consumer_relayd_sock_pair
));
680 PERROR("zmalloc relayd sock");
684 obj
->net_seq_idx
= net_seq_idx
;
686 obj
->destroy_flag
= 0;
687 obj
->control_sock
.sock
.fd
= -1;
688 obj
->data_sock
.sock
.fd
= -1;
689 lttng_ht_node_init_u64(&obj
->node
, obj
->net_seq_idx
);
690 pthread_mutex_init(&obj
->ctrl_sock_mutex
, NULL
);
697 * Find a relayd socket pair in the global consumer data.
699 * Return the object if found else NULL.
700 * RCU read-side lock must be held across this call and while using the
703 struct consumer_relayd_sock_pair
*consumer_find_relayd(uint64_t key
)
705 struct lttng_ht_iter iter
;
706 struct lttng_ht_node_u64
*node
;
707 struct consumer_relayd_sock_pair
*relayd
= NULL
;
709 /* Negative keys are lookup failures */
710 if (key
== (uint64_t) -1ULL) {
714 lttng_ht_lookup(consumer_data
.relayd_ht
, &key
,
716 node
= lttng_ht_iter_get_node_u64(&iter
);
718 relayd
= caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
726 * Find a relayd and send the stream
728 * Returns 0 on success, < 0 on error
730 int consumer_send_relayd_stream(struct lttng_consumer_stream
*stream
,
734 struct consumer_relayd_sock_pair
*relayd
;
737 assert(stream
->net_seq_idx
!= -1ULL);
740 /* The stream is not metadata. Get relayd reference if exists. */
742 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
743 if (relayd
!= NULL
) {
744 /* Add stream on the relayd */
745 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
746 ret
= relayd_add_stream(&relayd
->control_sock
, stream
->name
,
747 path
, &stream
->relayd_stream_id
,
748 stream
->chan
->tracefile_size
, stream
->chan
->tracefile_count
);
749 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
754 uatomic_inc(&relayd
->refcount
);
755 stream
->sent_to_relayd
= 1;
757 ERR("Stream %" PRIu64
" relayd ID %" PRIu64
" unknown. Can't send it.",
758 stream
->key
, stream
->net_seq_idx
);
763 DBG("Stream %s with key %" PRIu64
" sent to relayd id %" PRIu64
,
764 stream
->name
, stream
->key
, stream
->net_seq_idx
);
772 * Find a relayd and close the stream
774 void close_relayd_stream(struct lttng_consumer_stream
*stream
)
776 struct consumer_relayd_sock_pair
*relayd
;
778 /* The stream is not metadata. Get relayd reference if exists. */
780 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
782 consumer_stream_relayd_close(stream
, relayd
);
788 * Handle stream for relayd transmission if the stream applies for network
789 * streaming where the net sequence index is set.
791 * Return destination file descriptor or negative value on error.
793 static int write_relayd_stream_header(struct lttng_consumer_stream
*stream
,
794 size_t data_size
, unsigned long padding
,
795 struct consumer_relayd_sock_pair
*relayd
)
798 struct lttcomm_relayd_data_hdr data_hdr
;
804 /* Reset data header */
805 memset(&data_hdr
, 0, sizeof(data_hdr
));
807 if (stream
->metadata_flag
) {
808 /* Caller MUST acquire the relayd control socket lock */
809 ret
= relayd_send_metadata(&relayd
->control_sock
, data_size
);
814 /* Metadata are always sent on the control socket. */
815 outfd
= relayd
->control_sock
.sock
.fd
;
817 /* Set header with stream information */
818 data_hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
819 data_hdr
.data_size
= htobe32(data_size
);
820 data_hdr
.padding_size
= htobe32(padding
);
822 * Note that net_seq_num below is assigned with the *current* value of
823 * next_net_seq_num and only after that the next_net_seq_num will be
824 * increment. This is why when issuing a command on the relayd using
825 * this next value, 1 should always be substracted in order to compare
826 * the last seen sequence number on the relayd side to the last sent.
828 data_hdr
.net_seq_num
= htobe64(stream
->next_net_seq_num
);
829 /* Other fields are zeroed previously */
831 ret
= relayd_send_data_hdr(&relayd
->data_sock
, &data_hdr
,
837 ++stream
->next_net_seq_num
;
839 /* Set to go on data socket */
840 outfd
= relayd
->data_sock
.sock
.fd
;
848 * Allocate and return a new lttng_consumer_channel object using the given key
849 * to initialize the hash table node.
851 * On error, return NULL.
853 struct lttng_consumer_channel
*consumer_allocate_channel(uint64_t key
,
855 const char *pathname
,
860 enum lttng_event_output output
,
861 uint64_t tracefile_size
,
862 uint64_t tracefile_count
,
863 uint64_t session_id_per_pid
,
864 unsigned int monitor
,
865 unsigned int live_timer_interval
)
867 struct lttng_consumer_channel
*channel
;
869 channel
= zmalloc(sizeof(*channel
));
870 if (channel
== NULL
) {
871 PERROR("malloc struct lttng_consumer_channel");
876 channel
->refcount
= 0;
877 channel
->session_id
= session_id
;
878 channel
->session_id_per_pid
= session_id_per_pid
;
881 channel
->relayd_id
= relayd_id
;
882 channel
->output
= output
;
883 channel
->tracefile_size
= tracefile_size
;
884 channel
->tracefile_count
= tracefile_count
;
885 channel
->monitor
= monitor
;
886 channel
->live_timer_interval
= live_timer_interval
;
887 pthread_mutex_init(&channel
->lock
, NULL
);
888 pthread_mutex_init(&channel
->timer_lock
, NULL
);
891 * In monitor mode, the streams associated with the channel will be put in
892 * a special list ONLY owned by this channel. So, the refcount is set to 1
893 * here meaning that the channel itself has streams that are referenced.
895 * On a channel deletion, once the channel is no longer visible, the
896 * refcount is decremented and checked for a zero value to delete it. With
897 * streams in no monitor mode, it will now be safe to destroy the channel.
899 if (!channel
->monitor
) {
900 channel
->refcount
= 1;
903 strncpy(channel
->pathname
, pathname
, sizeof(channel
->pathname
));
904 channel
->pathname
[sizeof(channel
->pathname
) - 1] = '\0';
906 strncpy(channel
->name
, name
, sizeof(channel
->name
));
907 channel
->name
[sizeof(channel
->name
) - 1] = '\0';
909 lttng_ht_node_init_u64(&channel
->node
, channel
->key
);
911 channel
->wait_fd
= -1;
913 CDS_INIT_LIST_HEAD(&channel
->streams
.head
);
915 DBG("Allocated channel (key %" PRIu64
")", channel
->key
)
922 * Add a channel to the global list protected by a mutex.
924 * On success 0 is returned else a negative value.
926 int consumer_add_channel(struct lttng_consumer_channel
*channel
,
927 struct lttng_consumer_local_data
*ctx
)
930 struct lttng_ht_node_u64
*node
;
931 struct lttng_ht_iter iter
;
933 pthread_mutex_lock(&consumer_data
.lock
);
934 pthread_mutex_lock(&channel
->lock
);
935 pthread_mutex_lock(&channel
->timer_lock
);
938 lttng_ht_lookup(consumer_data
.channel_ht
, &channel
->key
, &iter
);
939 node
= lttng_ht_iter_get_node_u64(&iter
);
941 /* Channel already exist. Ignore the insertion */
942 ERR("Consumer add channel key %" PRIu64
" already exists!",
948 lttng_ht_add_unique_u64(consumer_data
.channel_ht
, &channel
->node
);
952 pthread_mutex_unlock(&channel
->timer_lock
);
953 pthread_mutex_unlock(&channel
->lock
);
954 pthread_mutex_unlock(&consumer_data
.lock
);
956 if (!ret
&& channel
->wait_fd
!= -1 &&
957 channel
->type
== CONSUMER_CHANNEL_TYPE_DATA
) {
958 notify_channel_pipe(ctx
, channel
, -1, CONSUMER_CHANNEL_ADD
);
964 * Allocate the pollfd structure and the local view of the out fds to avoid
965 * doing a lookup in the linked list and concurrency issues when writing is
966 * needed. Called with consumer_data.lock held.
968 * Returns the number of fds in the structures.
970 static int update_poll_array(struct lttng_consumer_local_data
*ctx
,
971 struct pollfd
**pollfd
, struct lttng_consumer_stream
**local_stream
,
975 struct lttng_ht_iter iter
;
976 struct lttng_consumer_stream
*stream
;
981 assert(local_stream
);
983 DBG("Updating poll fd array");
985 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
987 * Only active streams with an active end point can be added to the
988 * poll set and local stream storage of the thread.
990 * There is a potential race here for endpoint_status to be updated
991 * just after the check. However, this is OK since the stream(s) will
992 * be deleted once the thread is notified that the end point state has
993 * changed where this function will be called back again.
995 if (stream
->state
!= LTTNG_CONSUMER_ACTIVE_STREAM
||
996 stream
->endpoint_status
== CONSUMER_ENDPOINT_INACTIVE
) {
1000 * This clobbers way too much the debug output. Uncomment that if you
1001 * need it for debugging purposes.
1003 * DBG("Active FD %d", stream->wait_fd);
1005 (*pollfd
)[i
].fd
= stream
->wait_fd
;
1006 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1007 local_stream
[i
] = stream
;
1013 * Insert the consumer_data_pipe at the end of the array and don't
1014 * increment i so nb_fd is the number of real FD.
1016 (*pollfd
)[i
].fd
= lttng_pipe_get_readfd(ctx
->consumer_data_pipe
);
1017 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1022 * Poll on the should_quit pipe and the command socket return -1 on error and
1023 * should exit, 0 if data is available on the command socket
1025 int lttng_consumer_poll_socket(struct pollfd
*consumer_sockpoll
)
1030 num_rdy
= poll(consumer_sockpoll
, 2, -1);
1031 if (num_rdy
== -1) {
1033 * Restart interrupted system call.
1035 if (errno
== EINTR
) {
1038 PERROR("Poll error");
1041 if (consumer_sockpoll
[0].revents
& (POLLIN
| POLLPRI
)) {
1042 DBG("consumer_should_quit wake up");
1052 * Set the error socket.
1054 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data
*ctx
,
1057 ctx
->consumer_error_socket
= sock
;
1061 * Set the command socket path.
1063 void lttng_consumer_set_command_sock_path(
1064 struct lttng_consumer_local_data
*ctx
, char *sock
)
1066 ctx
->consumer_command_sock_path
= sock
;
1070 * Send return code to the session daemon.
1071 * If the socket is not defined, we return 0, it is not a fatal error
1073 int lttng_consumer_send_error(struct lttng_consumer_local_data
*ctx
, int cmd
)
1075 if (ctx
->consumer_error_socket
> 0) {
1076 return lttcomm_send_unix_sock(ctx
->consumer_error_socket
, &cmd
,
1077 sizeof(enum lttcomm_sessiond_command
));
1084 * Close all the tracefiles and stream fds and MUST be called when all
1085 * instances are destroyed i.e. when all threads were joined and are ended.
1087 void lttng_consumer_cleanup(void)
1089 struct lttng_ht_iter iter
;
1090 struct lttng_consumer_channel
*channel
;
1094 cds_lfht_for_each_entry(consumer_data
.channel_ht
->ht
, &iter
.iter
, channel
,
1096 consumer_del_channel(channel
);
1101 lttng_ht_destroy(consumer_data
.channel_ht
);
1103 cleanup_relayd_ht();
1105 lttng_ht_destroy(consumer_data
.stream_per_chan_id_ht
);
1108 * This HT contains streams that are freed by either the metadata thread or
1109 * the data thread so we do *nothing* on the hash table and simply destroy
1112 lttng_ht_destroy(consumer_data
.stream_list_ht
);
1116 * Called from signal handler.
1118 void lttng_consumer_should_exit(struct lttng_consumer_local_data
*ctx
)
1123 ret
= write(ctx
->consumer_should_quit
[1], "4", 1);
1124 } while (ret
< 0 && errno
== EINTR
);
1125 if (ret
< 0 || ret
!= 1) {
1126 PERROR("write consumer quit");
1129 DBG("Consumer flag that it should quit");
1132 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream
*stream
,
1135 int outfd
= stream
->out_fd
;
1138 * This does a blocking write-and-wait on any page that belongs to the
1139 * subbuffer prior to the one we just wrote.
1140 * Don't care about error values, as these are just hints and ways to
1141 * limit the amount of page cache used.
1143 if (orig_offset
< stream
->max_sb_size
) {
1146 lttng_sync_file_range(outfd
, orig_offset
- stream
->max_sb_size
,
1147 stream
->max_sb_size
,
1148 SYNC_FILE_RANGE_WAIT_BEFORE
1149 | SYNC_FILE_RANGE_WRITE
1150 | SYNC_FILE_RANGE_WAIT_AFTER
);
1152 * Give hints to the kernel about how we access the file:
1153 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1156 * We need to call fadvise again after the file grows because the
1157 * kernel does not seem to apply fadvise to non-existing parts of the
1160 * Call fadvise _after_ having waited for the page writeback to
1161 * complete because the dirty page writeback semantic is not well
1162 * defined. So it can be expected to lead to lower throughput in
1165 posix_fadvise(outfd
, orig_offset
- stream
->max_sb_size
,
1166 stream
->max_sb_size
, POSIX_FADV_DONTNEED
);
1170 * Initialise the necessary environnement :
1171 * - create a new context
1172 * - create the poll_pipe
1173 * - create the should_quit pipe (for signal handler)
1174 * - create the thread pipe (for splice)
1176 * Takes a function pointer as argument, this function is called when data is
1177 * available on a buffer. This function is responsible to do the
1178 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1179 * buffer configuration and then kernctl_put_next_subbuf at the end.
1181 * Returns a pointer to the new context or NULL on error.
1183 struct lttng_consumer_local_data
*lttng_consumer_create(
1184 enum lttng_consumer_type type
,
1185 ssize_t (*buffer_ready
)(struct lttng_consumer_stream
*stream
,
1186 struct lttng_consumer_local_data
*ctx
),
1187 int (*recv_channel
)(struct lttng_consumer_channel
*channel
),
1188 int (*recv_stream
)(struct lttng_consumer_stream
*stream
),
1189 int (*update_stream
)(uint64_t stream_key
, uint32_t state
))
1192 struct lttng_consumer_local_data
*ctx
;
1194 assert(consumer_data
.type
== LTTNG_CONSUMER_UNKNOWN
||
1195 consumer_data
.type
== type
);
1196 consumer_data
.type
= type
;
1198 ctx
= zmalloc(sizeof(struct lttng_consumer_local_data
));
1200 PERROR("allocating context");
1204 ctx
->consumer_error_socket
= -1;
1205 ctx
->consumer_metadata_socket
= -1;
1206 pthread_mutex_init(&ctx
->metadata_socket_lock
, NULL
);
1207 /* assign the callbacks */
1208 ctx
->on_buffer_ready
= buffer_ready
;
1209 ctx
->on_recv_channel
= recv_channel
;
1210 ctx
->on_recv_stream
= recv_stream
;
1211 ctx
->on_update_stream
= update_stream
;
1213 ctx
->consumer_data_pipe
= lttng_pipe_open(0);
1214 if (!ctx
->consumer_data_pipe
) {
1215 goto error_poll_pipe
;
1218 ret
= pipe(ctx
->consumer_should_quit
);
1220 PERROR("Error creating recv pipe");
1221 goto error_quit_pipe
;
1224 ret
= pipe(ctx
->consumer_thread_pipe
);
1226 PERROR("Error creating thread pipe");
1227 goto error_thread_pipe
;
1230 ret
= pipe(ctx
->consumer_channel_pipe
);
1232 PERROR("Error creating channel pipe");
1233 goto error_channel_pipe
;
1236 ctx
->consumer_metadata_pipe
= lttng_pipe_open(0);
1237 if (!ctx
->consumer_metadata_pipe
) {
1238 goto error_metadata_pipe
;
1241 ret
= utils_create_pipe(ctx
->consumer_splice_metadata_pipe
);
1243 goto error_splice_pipe
;
1249 lttng_pipe_destroy(ctx
->consumer_metadata_pipe
);
1250 error_metadata_pipe
:
1251 utils_close_pipe(ctx
->consumer_channel_pipe
);
1253 utils_close_pipe(ctx
->consumer_thread_pipe
);
1255 utils_close_pipe(ctx
->consumer_should_quit
);
1257 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1265 * Close all fds associated with the instance and free the context.
1267 void lttng_consumer_destroy(struct lttng_consumer_local_data
*ctx
)
1271 DBG("Consumer destroying it. Closing everything.");
1273 ret
= close(ctx
->consumer_error_socket
);
1277 ret
= close(ctx
->consumer_metadata_socket
);
1281 utils_close_pipe(ctx
->consumer_thread_pipe
);
1282 utils_close_pipe(ctx
->consumer_channel_pipe
);
1283 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1284 lttng_pipe_destroy(ctx
->consumer_metadata_pipe
);
1285 utils_close_pipe(ctx
->consumer_should_quit
);
1286 utils_close_pipe(ctx
->consumer_splice_metadata_pipe
);
1288 unlink(ctx
->consumer_command_sock_path
);
1293 * Write the metadata stream id on the specified file descriptor.
1295 static int write_relayd_metadata_id(int fd
,
1296 struct lttng_consumer_stream
*stream
,
1297 struct consumer_relayd_sock_pair
*relayd
, unsigned long padding
)
1300 struct lttcomm_relayd_metadata_payload hdr
;
1302 hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
1303 hdr
.padding_size
= htobe32(padding
);
1305 ret
= write(fd
, (void *) &hdr
, sizeof(hdr
));
1306 } while (ret
< 0 && errno
== EINTR
);
1307 if (ret
< 0 || ret
!= sizeof(hdr
)) {
1309 * This error means that the fd's end is closed so ignore the perror
1310 * not to clubber the error output since this can happen in a normal
1313 if (errno
!= EPIPE
) {
1314 PERROR("write metadata stream id");
1316 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno
);
1318 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1319 * handle writting the missing part so report that as an error and
1320 * don't lie to the caller.
1325 DBG("Metadata stream id %" PRIu64
" with padding %lu written before data",
1326 stream
->relayd_stream_id
, padding
);
1333 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1334 * core function for writing trace buffers to either the local filesystem or
1337 * It must be called with the stream lock held.
1339 * Careful review MUST be put if any changes occur!
1341 * Returns the number of bytes written
1343 ssize_t
lttng_consumer_on_read_subbuffer_mmap(
1344 struct lttng_consumer_local_data
*ctx
,
1345 struct lttng_consumer_stream
*stream
, unsigned long len
,
1346 unsigned long padding
,
1347 struct lttng_packet_index
*index
)
1349 unsigned long mmap_offset
;
1351 ssize_t ret
= 0, written
= 0;
1352 off_t orig_offset
= stream
->out_fd_offset
;
1353 /* Default is on the disk */
1354 int outfd
= stream
->out_fd
;
1355 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1356 unsigned int relayd_hang_up
= 0;
1358 /* RCU lock for the relayd pointer */
1361 /* Flag that the current stream if set for network streaming. */
1362 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1363 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1364 if (relayd
== NULL
) {
1370 /* get the offset inside the fd to mmap */
1371 switch (consumer_data
.type
) {
1372 case LTTNG_CONSUMER_KERNEL
:
1373 mmap_base
= stream
->mmap_base
;
1374 ret
= kernctl_get_mmap_read_offset(stream
->wait_fd
, &mmap_offset
);
1376 PERROR("tracer ctl get_mmap_read_offset");
1381 case LTTNG_CONSUMER32_UST
:
1382 case LTTNG_CONSUMER64_UST
:
1383 mmap_base
= lttng_ustctl_get_mmap_base(stream
);
1385 ERR("read mmap get mmap base for stream %s", stream
->name
);
1389 ret
= lttng_ustctl_get_mmap_read_offset(stream
, &mmap_offset
);
1391 PERROR("tracer ctl get_mmap_read_offset");
1397 ERR("Unknown consumer_data type");
1401 /* Handle stream on the relayd if the output is on the network */
1403 unsigned long netlen
= len
;
1406 * Lock the control socket for the complete duration of the function
1407 * since from this point on we will use the socket.
1409 if (stream
->metadata_flag
) {
1410 /* Metadata requires the control socket. */
1411 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1412 netlen
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1415 ret
= write_relayd_stream_header(stream
, netlen
, padding
, relayd
);
1417 /* Use the returned socket. */
1420 /* Write metadata stream id before payload */
1421 if (stream
->metadata_flag
) {
1422 ret
= write_relayd_metadata_id(outfd
, stream
, relayd
, padding
);
1425 /* Socket operation failed. We consider the relayd dead */
1426 if (ret
== -EPIPE
|| ret
== -EINVAL
) {
1434 /* Socket operation failed. We consider the relayd dead */
1435 if (ret
== -EPIPE
|| ret
== -EINVAL
) {
1439 /* Else, use the default set before which is the filesystem. */
1442 /* No streaming, we have to set the len with the full padding */
1446 * Check if we need to change the tracefile before writing the packet.
1448 if (stream
->chan
->tracefile_size
> 0 &&
1449 (stream
->tracefile_size_current
+ len
) >
1450 stream
->chan
->tracefile_size
) {
1451 ret
= utils_rotate_stream_file(stream
->chan
->pathname
,
1452 stream
->name
, stream
->chan
->tracefile_size
,
1453 stream
->chan
->tracefile_count
, stream
->uid
, stream
->gid
,
1454 stream
->out_fd
, &(stream
->tracefile_count_current
),
1457 ERR("Rotating output file");
1460 outfd
= stream
->out_fd
;
1462 if (stream
->index_fd
>= 0) {
1463 ret
= index_create_file(stream
->chan
->pathname
,
1464 stream
->name
, stream
->uid
, stream
->gid
,
1465 stream
->chan
->tracefile_size
,
1466 stream
->tracefile_count_current
);
1470 stream
->index_fd
= ret
;
1473 /* Reset current size because we just perform a rotation. */
1474 stream
->tracefile_size_current
= 0;
1475 stream
->out_fd_offset
= 0;
1478 stream
->tracefile_size_current
+= len
;
1480 index
->offset
= htobe64(stream
->out_fd_offset
);
1486 ret
= write(outfd
, mmap_base
+ mmap_offset
, len
);
1487 } while (ret
< 0 && errno
== EINTR
);
1488 DBG("Consumer mmap write() ret %zd (len %lu)", ret
, len
);
1491 * This is possible if the fd is closed on the other side (outfd)
1492 * or any write problem. It can be verbose a bit for a normal
1493 * execution if for instance the relayd is stopped abruptly. This
1494 * can happen so set this to a DBG statement.
1496 DBG("Error in file write mmap");
1500 /* Socket operation failed. We consider the relayd dead */
1501 if (errno
== EPIPE
|| errno
== EINVAL
) {
1506 } else if (ret
> len
) {
1507 PERROR("Error in file write (ret %zd > len %lu)", ret
, len
);
1515 /* This call is useless on a socket so better save a syscall. */
1517 /* This won't block, but will start writeout asynchronously */
1518 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret
,
1519 SYNC_FILE_RANGE_WRITE
);
1520 stream
->out_fd_offset
+= ret
;
1522 stream
->output_written
+= ret
;
1525 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1529 * This is a special case that the relayd has closed its socket. Let's
1530 * cleanup the relayd object and all associated streams.
1532 if (relayd
&& relayd_hang_up
) {
1533 cleanup_relayd(relayd
, ctx
);
1537 /* Unlock only if ctrl socket used */
1538 if (relayd
&& stream
->metadata_flag
) {
1539 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1547 * Splice the data from the ring buffer to the tracefile.
1549 * It must be called with the stream lock held.
1551 * Returns the number of bytes spliced.
1553 ssize_t
lttng_consumer_on_read_subbuffer_splice(
1554 struct lttng_consumer_local_data
*ctx
,
1555 struct lttng_consumer_stream
*stream
, unsigned long len
,
1556 unsigned long padding
,
1557 struct lttng_packet_index
*index
)
1559 ssize_t ret
= 0, written
= 0, ret_splice
= 0;
1561 off_t orig_offset
= stream
->out_fd_offset
;
1562 int fd
= stream
->wait_fd
;
1563 /* Default is on the disk */
1564 int outfd
= stream
->out_fd
;
1565 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1567 unsigned int relayd_hang_up
= 0;
1569 switch (consumer_data
.type
) {
1570 case LTTNG_CONSUMER_KERNEL
:
1572 case LTTNG_CONSUMER32_UST
:
1573 case LTTNG_CONSUMER64_UST
:
1574 /* Not supported for user space tracing */
1577 ERR("Unknown consumer_data type");
1581 /* RCU lock for the relayd pointer */
1584 /* Flag that the current stream if set for network streaming. */
1585 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1586 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1587 if (relayd
== NULL
) {
1594 * Choose right pipe for splice. Metadata and trace data are handled by
1595 * different threads hence the use of two pipes in order not to race or
1596 * corrupt the written data.
1598 if (stream
->metadata_flag
) {
1599 splice_pipe
= ctx
->consumer_splice_metadata_pipe
;
1601 splice_pipe
= ctx
->consumer_thread_pipe
;
1604 /* Write metadata stream id before payload */
1606 int total_len
= len
;
1608 if (stream
->metadata_flag
) {
1610 * Lock the control socket for the complete duration of the function
1611 * since from this point on we will use the socket.
1613 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1615 ret
= write_relayd_metadata_id(splice_pipe
[1], stream
, relayd
,
1619 /* Socket operation failed. We consider the relayd dead */
1620 if (ret
== -EBADF
) {
1621 WARN("Remote relayd disconnected. Stopping");
1628 total_len
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1631 ret
= write_relayd_stream_header(stream
, total_len
, padding
, relayd
);
1633 /* Use the returned socket. */
1636 /* Socket operation failed. We consider the relayd dead */
1637 if (ret
== -EBADF
) {
1638 WARN("Remote relayd disconnected. Stopping");
1645 /* No streaming, we have to set the len with the full padding */
1649 * Check if we need to change the tracefile before writing the packet.
1651 if (stream
->chan
->tracefile_size
> 0 &&
1652 (stream
->tracefile_size_current
+ len
) >
1653 stream
->chan
->tracefile_size
) {
1654 ret
= utils_rotate_stream_file(stream
->chan
->pathname
,
1655 stream
->name
, stream
->chan
->tracefile_size
,
1656 stream
->chan
->tracefile_count
, stream
->uid
, stream
->gid
,
1657 stream
->out_fd
, &(stream
->tracefile_count_current
),
1660 ERR("Rotating output file");
1663 outfd
= stream
->out_fd
;
1665 if (stream
->index_fd
>= 0) {
1666 ret
= index_create_file(stream
->chan
->pathname
,
1667 stream
->name
, stream
->uid
, stream
->gid
,
1668 stream
->chan
->tracefile_size
,
1669 stream
->tracefile_count_current
);
1673 stream
->index_fd
= ret
;
1676 /* Reset current size because we just perform a rotation. */
1677 stream
->tracefile_size_current
= 0;
1678 stream
->out_fd_offset
= 0;
1681 stream
->tracefile_size_current
+= len
;
1682 index
->offset
= htobe64(stream
->out_fd_offset
);
1686 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1687 (unsigned long)offset
, len
, fd
, splice_pipe
[1]);
1688 ret_splice
= splice(fd
, &offset
, splice_pipe
[1], NULL
, len
,
1689 SPLICE_F_MOVE
| SPLICE_F_MORE
);
1690 DBG("splice chan to pipe, ret %zd", ret_splice
);
1691 if (ret_splice
< 0) {
1692 PERROR("Error in relay splice");
1694 written
= ret_splice
;
1700 /* Handle stream on the relayd if the output is on the network */
1702 if (stream
->metadata_flag
) {
1703 size_t metadata_payload_size
=
1704 sizeof(struct lttcomm_relayd_metadata_payload
);
1706 /* Update counter to fit the spliced data */
1707 ret_splice
+= metadata_payload_size
;
1708 len
+= metadata_payload_size
;
1710 * We do this so the return value can match the len passed as
1711 * argument to this function.
1713 written
-= metadata_payload_size
;
1717 /* Splice data out */
1718 ret_splice
= splice(splice_pipe
[0], NULL
, outfd
, NULL
,
1719 ret_splice
, SPLICE_F_MOVE
| SPLICE_F_MORE
);
1720 DBG("Consumer splice pipe to file, ret %zd", ret_splice
);
1721 if (ret_splice
< 0) {
1722 PERROR("Error in file splice");
1724 written
= ret_splice
;
1726 /* Socket operation failed. We consider the relayd dead */
1727 if (errno
== EBADF
|| errno
== EPIPE
) {
1728 WARN("Remote relayd disconnected. Stopping");
1734 } else if (ret_splice
> len
) {
1736 PERROR("Wrote more data than requested %zd (len: %lu)",
1738 written
+= ret_splice
;
1744 /* This call is useless on a socket so better save a syscall. */
1746 /* This won't block, but will start writeout asynchronously */
1747 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret_splice
,
1748 SYNC_FILE_RANGE_WRITE
);
1749 stream
->out_fd_offset
+= ret_splice
;
1751 stream
->output_written
+= ret_splice
;
1752 written
+= ret_splice
;
1754 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1762 * This is a special case that the relayd has closed its socket. Let's
1763 * cleanup the relayd object and all associated streams.
1765 if (relayd
&& relayd_hang_up
) {
1766 cleanup_relayd(relayd
, ctx
);
1767 /* Skip splice error so the consumer does not fail */
1772 /* send the appropriate error description to sessiond */
1775 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_EINVAL
);
1778 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ENOMEM
);
1781 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ESPIPE
);
1786 if (relayd
&& stream
->metadata_flag
) {
1787 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1795 * Take a snapshot for a specific fd
1797 * Returns 0 on success, < 0 on error
1799 int lttng_consumer_take_snapshot(struct lttng_consumer_stream
*stream
)
1801 switch (consumer_data
.type
) {
1802 case LTTNG_CONSUMER_KERNEL
:
1803 return lttng_kconsumer_take_snapshot(stream
);
1804 case LTTNG_CONSUMER32_UST
:
1805 case LTTNG_CONSUMER64_UST
:
1806 return lttng_ustconsumer_take_snapshot(stream
);
1808 ERR("Unknown consumer_data type");
1815 * Get the produced position
1817 * Returns 0 on success, < 0 on error
1819 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream
*stream
,
1822 switch (consumer_data
.type
) {
1823 case LTTNG_CONSUMER_KERNEL
:
1824 return lttng_kconsumer_get_produced_snapshot(stream
, pos
);
1825 case LTTNG_CONSUMER32_UST
:
1826 case LTTNG_CONSUMER64_UST
:
1827 return lttng_ustconsumer_get_produced_snapshot(stream
, pos
);
1829 ERR("Unknown consumer_data type");
1835 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data
*ctx
,
1836 int sock
, struct pollfd
*consumer_sockpoll
)
1838 switch (consumer_data
.type
) {
1839 case LTTNG_CONSUMER_KERNEL
:
1840 return lttng_kconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1841 case LTTNG_CONSUMER32_UST
:
1842 case LTTNG_CONSUMER64_UST
:
1843 return lttng_ustconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1845 ERR("Unknown consumer_data type");
1852 * Iterate over all streams of the hashtable and free them properly.
1854 * WARNING: *MUST* be used with data stream only.
1856 static void destroy_data_stream_ht(struct lttng_ht
*ht
)
1858 struct lttng_ht_iter iter
;
1859 struct lttng_consumer_stream
*stream
;
1866 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1868 * Ignore return value since we are currently cleaning up so any error
1871 (void) consumer_del_stream(stream
, ht
);
1875 lttng_ht_destroy(ht
);
1879 * Iterate over all streams of the hashtable and free them properly.
1881 * XXX: Should not be only for metadata stream or else use an other name.
1883 static void destroy_stream_ht(struct lttng_ht
*ht
)
1885 struct lttng_ht_iter iter
;
1886 struct lttng_consumer_stream
*stream
;
1893 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1895 * Ignore return value since we are currently cleaning up so any error
1898 (void) consumer_del_metadata_stream(stream
, ht
);
1902 lttng_ht_destroy(ht
);
1905 void lttng_consumer_close_metadata(void)
1907 switch (consumer_data
.type
) {
1908 case LTTNG_CONSUMER_KERNEL
:
1910 * The Kernel consumer has a different metadata scheme so we don't
1911 * close anything because the stream will be closed by the session
1915 case LTTNG_CONSUMER32_UST
:
1916 case LTTNG_CONSUMER64_UST
:
1918 * Close all metadata streams. The metadata hash table is passed and
1919 * this call iterates over it by closing all wakeup fd. This is safe
1920 * because at this point we are sure that the metadata producer is
1921 * either dead or blocked.
1923 lttng_ustconsumer_close_metadata(metadata_ht
);
1926 ERR("Unknown consumer_data type");
1932 * Clean up a metadata stream and free its memory.
1934 void consumer_del_metadata_stream(struct lttng_consumer_stream
*stream
,
1935 struct lttng_ht
*ht
)
1938 struct lttng_ht_iter iter
;
1939 struct lttng_consumer_channel
*free_chan
= NULL
;
1940 struct consumer_relayd_sock_pair
*relayd
;
1944 * This call should NEVER receive regular stream. It must always be
1945 * metadata stream and this is crucial for data structure synchronization.
1947 assert(stream
->metadata_flag
);
1949 DBG3("Consumer delete metadata stream %d", stream
->wait_fd
);
1952 /* Means the stream was allocated but not successfully added */
1953 goto free_stream_rcu
;
1956 pthread_mutex_lock(&consumer_data
.lock
);
1957 pthread_mutex_lock(&stream
->chan
->lock
);
1958 pthread_mutex_lock(&stream
->lock
);
1960 switch (consumer_data
.type
) {
1961 case LTTNG_CONSUMER_KERNEL
:
1962 if (stream
->mmap_base
!= NULL
) {
1963 ret
= munmap(stream
->mmap_base
, stream
->mmap_len
);
1965 PERROR("munmap metadata stream");
1968 if (stream
->wait_fd
>= 0) {
1969 ret
= close(stream
->wait_fd
);
1971 PERROR("close kernel metadata wait_fd");
1975 case LTTNG_CONSUMER32_UST
:
1976 case LTTNG_CONSUMER64_UST
:
1977 if (stream
->monitor
) {
1978 /* close the write-side in close_metadata */
1979 ret
= close(stream
->ust_metadata_poll_pipe
[0]);
1981 PERROR("Close UST metadata read-side poll pipe");
1984 lttng_ustconsumer_del_stream(stream
);
1987 ERR("Unknown consumer_data type");
1993 iter
.iter
.node
= &stream
->node
.node
;
1994 ret
= lttng_ht_del(ht
, &iter
);
1997 iter
.iter
.node
= &stream
->node_channel_id
.node
;
1998 ret
= lttng_ht_del(consumer_data
.stream_per_chan_id_ht
, &iter
);
2001 iter
.iter
.node
= &stream
->node_session_id
.node
;
2002 ret
= lttng_ht_del(consumer_data
.stream_list_ht
, &iter
);
2006 if (stream
->out_fd
>= 0) {
2007 ret
= close(stream
->out_fd
);
2013 /* Check and cleanup relayd */
2015 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
2016 if (relayd
!= NULL
) {
2017 uatomic_dec(&relayd
->refcount
);
2018 assert(uatomic_read(&relayd
->refcount
) >= 0);
2020 /* Closing streams requires to lock the control socket. */
2021 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
2022 ret
= relayd_send_close_stream(&relayd
->control_sock
,
2023 stream
->relayd_stream_id
, stream
->next_net_seq_num
- 1);
2024 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
2026 DBG("Unable to close stream on the relayd. Continuing");
2028 * Continue here. There is nothing we can do for the relayd.
2029 * Chances are that the relayd has closed the socket so we just
2030 * continue cleaning up.
2034 /* Both conditions are met, we destroy the relayd. */
2035 if (uatomic_read(&relayd
->refcount
) == 0 &&
2036 uatomic_read(&relayd
->destroy_flag
)) {
2037 consumer_destroy_relayd(relayd
);
2042 /* Atomically decrement channel refcount since other threads can use it. */
2043 if (!uatomic_sub_return(&stream
->chan
->refcount
, 1)
2044 && !uatomic_read(&stream
->chan
->nb_init_stream_left
)) {
2045 /* Go for channel deletion! */
2046 free_chan
= stream
->chan
;
2051 * Nullify the stream reference so it is not used after deletion. The
2052 * channel lock MUST be acquired before being able to check for
2053 * a NULL pointer value.
2055 stream
->chan
->metadata_stream
= NULL
;
2057 pthread_mutex_unlock(&stream
->lock
);
2058 pthread_mutex_unlock(&stream
->chan
->lock
);
2059 pthread_mutex_unlock(&consumer_data
.lock
);
2062 consumer_del_channel(free_chan
);
2066 call_rcu(&stream
->node
.head
, free_stream_rcu
);
2070 * Action done with the metadata stream when adding it to the consumer internal
2071 * data structures to handle it.
2073 int consumer_add_metadata_stream(struct lttng_consumer_stream
*stream
)
2075 struct lttng_ht
*ht
= metadata_ht
;
2077 struct lttng_ht_iter iter
;
2078 struct lttng_ht_node_u64
*node
;
2083 DBG3("Adding metadata stream %" PRIu64
" to hash table", stream
->key
);
2085 pthread_mutex_lock(&consumer_data
.lock
);
2086 pthread_mutex_lock(&stream
->chan
->lock
);
2087 pthread_mutex_lock(&stream
->chan
->timer_lock
);
2088 pthread_mutex_lock(&stream
->lock
);
2091 * From here, refcounts are updated so be _careful_ when returning an error
2098 * Lookup the stream just to make sure it does not exist in our internal
2099 * state. This should NEVER happen.
2101 lttng_ht_lookup(ht
, &stream
->key
, &iter
);
2102 node
= lttng_ht_iter_get_node_u64(&iter
);
2106 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2107 * in terms of destroying the associated channel, because the action that
2108 * causes the count to become 0 also causes a stream to be added. The
2109 * channel deletion will thus be triggered by the following removal of this
2112 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
2113 /* Increment refcount before decrementing nb_init_stream_left */
2115 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
2118 lttng_ht_add_unique_u64(ht
, &stream
->node
);
2120 lttng_ht_add_unique_u64(consumer_data
.stream_per_chan_id_ht
,
2121 &stream
->node_channel_id
);
2124 * Add stream to the stream_list_ht of the consumer data. No need to steal
2125 * the key since the HT does not use it and we allow to add redundant keys
2128 lttng_ht_add_u64(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
2132 pthread_mutex_unlock(&stream
->lock
);
2133 pthread_mutex_unlock(&stream
->chan
->lock
);
2134 pthread_mutex_unlock(&stream
->chan
->timer_lock
);
2135 pthread_mutex_unlock(&consumer_data
.lock
);
2140 * Delete data stream that are flagged for deletion (endpoint_status).
2142 static void validate_endpoint_status_data_stream(void)
2144 struct lttng_ht_iter iter
;
2145 struct lttng_consumer_stream
*stream
;
2147 DBG("Consumer delete flagged data stream");
2150 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2151 /* Validate delete flag of the stream */
2152 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2155 /* Delete it right now */
2156 consumer_del_stream(stream
, data_ht
);
2162 * Delete metadata stream that are flagged for deletion (endpoint_status).
2164 static void validate_endpoint_status_metadata_stream(
2165 struct lttng_poll_event
*pollset
)
2167 struct lttng_ht_iter iter
;
2168 struct lttng_consumer_stream
*stream
;
2170 DBG("Consumer delete flagged metadata stream");
2175 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2176 /* Validate delete flag of the stream */
2177 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2181 * Remove from pollset so the metadata thread can continue without
2182 * blocking on a deleted stream.
2184 lttng_poll_del(pollset
, stream
->wait_fd
);
2186 /* Delete it right now */
2187 consumer_del_metadata_stream(stream
, metadata_ht
);
2193 * Thread polls on metadata file descriptor and write them on disk or on the
2196 void *consumer_thread_metadata_poll(void *data
)
2198 int ret
, i
, pollfd
, err
= -1;
2199 uint32_t revents
, nb_fd
;
2200 struct lttng_consumer_stream
*stream
= NULL
;
2201 struct lttng_ht_iter iter
;
2202 struct lttng_ht_node_u64
*node
;
2203 struct lttng_poll_event events
;
2204 struct lttng_consumer_local_data
*ctx
= data
;
2207 rcu_register_thread();
2209 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_METADATA
);
2211 health_code_update();
2213 metadata_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
2215 /* ENOMEM at this point. Better to bail out. */
2219 DBG("Thread metadata poll started");
2221 /* Size is set to 1 for the consumer_metadata pipe */
2222 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2224 ERR("Poll set creation failed");
2228 ret
= lttng_poll_add(&events
,
2229 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
), LPOLLIN
);
2235 DBG("Metadata main loop started");
2238 health_code_update();
2240 /* Only the metadata pipe is set */
2241 if (LTTNG_POLL_GETNB(&events
) == 0 && consumer_quit
== 1) {
2242 err
= 0; /* All is OK */
2247 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events
));
2248 health_poll_entry();
2249 ret
= lttng_poll_wait(&events
, -1);
2251 DBG("Metadata event catched in thread");
2253 if (errno
== EINTR
) {
2254 ERR("Poll EINTR catched");
2262 /* From here, the event is a metadata wait fd */
2263 for (i
= 0; i
< nb_fd
; i
++) {
2264 health_code_update();
2266 revents
= LTTNG_POLL_GETEV(&events
, i
);
2267 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2269 if (pollfd
== lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
)) {
2270 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2271 DBG("Metadata thread pipe hung up");
2273 * Remove the pipe from the poll set and continue the loop
2274 * since their might be data to consume.
2276 lttng_poll_del(&events
,
2277 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
));
2278 lttng_pipe_read_close(ctx
->consumer_metadata_pipe
);
2280 } else if (revents
& LPOLLIN
) {
2283 pipe_len
= lttng_pipe_read(ctx
->consumer_metadata_pipe
,
2284 &stream
, sizeof(stream
));
2286 ERR("read metadata stream, ret: %zd", pipe_len
);
2288 * Continue here to handle the rest of the streams.
2293 /* A NULL stream means that the state has changed. */
2294 if (stream
== NULL
) {
2295 /* Check for deleted streams. */
2296 validate_endpoint_status_metadata_stream(&events
);
2300 DBG("Adding metadata stream %d to poll set",
2303 /* Add metadata stream to the global poll events list */
2304 lttng_poll_add(&events
, stream
->wait_fd
,
2305 LPOLLIN
| LPOLLPRI
);
2308 /* Handle other stream */
2314 uint64_t tmp_id
= (uint64_t) pollfd
;
2316 lttng_ht_lookup(metadata_ht
, &tmp_id
, &iter
);
2318 node
= lttng_ht_iter_get_node_u64(&iter
);
2321 stream
= caa_container_of(node
, struct lttng_consumer_stream
,
2324 /* Check for error event */
2325 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2326 DBG("Metadata fd %d is hup|err.", pollfd
);
2327 if (!stream
->hangup_flush_done
2328 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2329 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2330 DBG("Attempting to flush and consume the UST buffers");
2331 lttng_ustconsumer_on_stream_hangup(stream
);
2333 /* We just flushed the stream now read it. */
2335 health_code_update();
2337 len
= ctx
->on_buffer_ready(stream
, ctx
);
2339 * We don't check the return value here since if we get
2340 * a negative len, it means an error occured thus we
2341 * simply remove it from the poll set and free the
2347 lttng_poll_del(&events
, stream
->wait_fd
);
2349 * This call update the channel states, closes file descriptors
2350 * and securely free the stream.
2352 consumer_del_metadata_stream(stream
, metadata_ht
);
2353 } else if (revents
& (LPOLLIN
| LPOLLPRI
)) {
2354 /* Get the data out of the metadata file descriptor */
2355 DBG("Metadata available on fd %d", pollfd
);
2356 assert(stream
->wait_fd
== pollfd
);
2359 health_code_update();
2361 len
= ctx
->on_buffer_ready(stream
, ctx
);
2363 * We don't check the return value here since if we get
2364 * a negative len, it means an error occured thus we
2365 * simply remove it from the poll set and free the
2370 /* It's ok to have an unavailable sub-buffer */
2371 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2372 /* Clean up stream from consumer and free it. */
2373 lttng_poll_del(&events
, stream
->wait_fd
);
2374 consumer_del_metadata_stream(stream
, metadata_ht
);
2378 /* Release RCU lock for the stream looked up */
2387 DBG("Metadata poll thread exiting");
2389 lttng_poll_clean(&events
);
2391 destroy_stream_ht(metadata_ht
);
2395 ERR("Health error occurred in %s", __func__
);
2397 health_unregister(health_consumerd
);
2398 rcu_unregister_thread();
2403 * This thread polls the fds in the set to consume the data and write
2404 * it to tracefile if necessary.
2406 void *consumer_thread_data_poll(void *data
)
2408 int num_rdy
, num_hup
, high_prio
, ret
, i
, err
= -1;
2409 struct pollfd
*pollfd
= NULL
;
2410 /* local view of the streams */
2411 struct lttng_consumer_stream
**local_stream
= NULL
, *new_stream
= NULL
;
2412 /* local view of consumer_data.fds_count */
2414 struct lttng_consumer_local_data
*ctx
= data
;
2417 rcu_register_thread();
2419 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_DATA
);
2421 health_code_update();
2423 data_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
2424 if (data_ht
== NULL
) {
2425 /* ENOMEM at this point. Better to bail out. */
2429 local_stream
= zmalloc(sizeof(struct lttng_consumer_stream
*));
2430 if (local_stream
== NULL
) {
2431 PERROR("local_stream malloc");
2436 health_code_update();
2442 * the fds set has been updated, we need to update our
2443 * local array as well
2445 pthread_mutex_lock(&consumer_data
.lock
);
2446 if (consumer_data
.need_update
) {
2451 local_stream
= NULL
;
2453 /* allocate for all fds + 1 for the consumer_data_pipe */
2454 pollfd
= zmalloc((consumer_data
.stream_count
+ 1) * sizeof(struct pollfd
));
2455 if (pollfd
== NULL
) {
2456 PERROR("pollfd malloc");
2457 pthread_mutex_unlock(&consumer_data
.lock
);
2461 /* allocate for all fds + 1 for the consumer_data_pipe */
2462 local_stream
= zmalloc((consumer_data
.stream_count
+ 1) *
2463 sizeof(struct lttng_consumer_stream
*));
2464 if (local_stream
== NULL
) {
2465 PERROR("local_stream malloc");
2466 pthread_mutex_unlock(&consumer_data
.lock
);
2469 ret
= update_poll_array(ctx
, &pollfd
, local_stream
,
2472 ERR("Error in allocating pollfd or local_outfds");
2473 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2474 pthread_mutex_unlock(&consumer_data
.lock
);
2478 consumer_data
.need_update
= 0;
2480 pthread_mutex_unlock(&consumer_data
.lock
);
2482 /* No FDs and consumer_quit, consumer_cleanup the thread */
2483 if (nb_fd
== 0 && consumer_quit
== 1) {
2484 err
= 0; /* All is OK */
2487 /* poll on the array of fds */
2489 DBG("polling on %d fd", nb_fd
+ 1);
2490 health_poll_entry();
2491 num_rdy
= poll(pollfd
, nb_fd
+ 1, -1);
2493 DBG("poll num_rdy : %d", num_rdy
);
2494 if (num_rdy
== -1) {
2496 * Restart interrupted system call.
2498 if (errno
== EINTR
) {
2501 PERROR("Poll error");
2502 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2504 } else if (num_rdy
== 0) {
2505 DBG("Polling thread timed out");
2510 * If the consumer_data_pipe triggered poll go directly to the
2511 * beginning of the loop to update the array. We want to prioritize
2512 * array update over low-priority reads.
2514 if (pollfd
[nb_fd
].revents
& (POLLIN
| POLLPRI
)) {
2515 ssize_t pipe_readlen
;
2517 DBG("consumer_data_pipe wake up");
2518 pipe_readlen
= lttng_pipe_read(ctx
->consumer_data_pipe
,
2519 &new_stream
, sizeof(new_stream
));
2520 if (pipe_readlen
< 0) {
2521 ERR("Consumer data pipe ret %zd", pipe_readlen
);
2522 /* Continue so we can at least handle the current stream(s). */
2527 * If the stream is NULL, just ignore it. It's also possible that
2528 * the sessiond poll thread changed the consumer_quit state and is
2529 * waking us up to test it.
2531 if (new_stream
== NULL
) {
2532 validate_endpoint_status_data_stream();
2536 /* Continue to update the local streams and handle prio ones */
2540 /* Take care of high priority channels first. */
2541 for (i
= 0; i
< nb_fd
; i
++) {
2542 health_code_update();
2544 if (local_stream
[i
] == NULL
) {
2547 if (pollfd
[i
].revents
& POLLPRI
) {
2548 DBG("Urgent read on fd %d", pollfd
[i
].fd
);
2550 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2551 /* it's ok to have an unavailable sub-buffer */
2552 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2553 /* Clean the stream and free it. */
2554 consumer_del_stream(local_stream
[i
], data_ht
);
2555 local_stream
[i
] = NULL
;
2556 } else if (len
> 0) {
2557 local_stream
[i
]->data_read
= 1;
2563 * If we read high prio channel in this loop, try again
2564 * for more high prio data.
2570 /* Take care of low priority channels. */
2571 for (i
= 0; i
< nb_fd
; i
++) {
2572 health_code_update();
2574 if (local_stream
[i
] == NULL
) {
2577 if ((pollfd
[i
].revents
& POLLIN
) ||
2578 local_stream
[i
]->hangup_flush_done
) {
2579 DBG("Normal read on fd %d", pollfd
[i
].fd
);
2580 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2581 /* it's ok to have an unavailable sub-buffer */
2582 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2583 /* Clean the stream and free it. */
2584 consumer_del_stream(local_stream
[i
], data_ht
);
2585 local_stream
[i
] = NULL
;
2586 } else if (len
> 0) {
2587 local_stream
[i
]->data_read
= 1;
2592 /* Handle hangup and errors */
2593 for (i
= 0; i
< nb_fd
; i
++) {
2594 health_code_update();
2596 if (local_stream
[i
] == NULL
) {
2599 if (!local_stream
[i
]->hangup_flush_done
2600 && (pollfd
[i
].revents
& (POLLHUP
| POLLERR
| POLLNVAL
))
2601 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2602 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2603 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2605 lttng_ustconsumer_on_stream_hangup(local_stream
[i
]);
2606 /* Attempt read again, for the data we just flushed. */
2607 local_stream
[i
]->data_read
= 1;
2610 * If the poll flag is HUP/ERR/NVAL and we have
2611 * read no data in this pass, we can remove the
2612 * stream from its hash table.
2614 if ((pollfd
[i
].revents
& POLLHUP
)) {
2615 DBG("Polling fd %d tells it has hung up.", pollfd
[i
].fd
);
2616 if (!local_stream
[i
]->data_read
) {
2617 consumer_del_stream(local_stream
[i
], data_ht
);
2618 local_stream
[i
] = NULL
;
2621 } else if (pollfd
[i
].revents
& POLLERR
) {
2622 ERR("Error returned in polling fd %d.", pollfd
[i
].fd
);
2623 if (!local_stream
[i
]->data_read
) {
2624 consumer_del_stream(local_stream
[i
], data_ht
);
2625 local_stream
[i
] = NULL
;
2628 } else if (pollfd
[i
].revents
& POLLNVAL
) {
2629 ERR("Polling fd %d tells fd is not open.", pollfd
[i
].fd
);
2630 if (!local_stream
[i
]->data_read
) {
2631 consumer_del_stream(local_stream
[i
], data_ht
);
2632 local_stream
[i
] = NULL
;
2636 if (local_stream
[i
] != NULL
) {
2637 local_stream
[i
]->data_read
= 0;
2644 DBG("polling thread exiting");
2649 * Close the write side of the pipe so epoll_wait() in
2650 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2651 * read side of the pipe. If we close them both, epoll_wait strangely does
2652 * not return and could create a endless wait period if the pipe is the
2653 * only tracked fd in the poll set. The thread will take care of closing
2656 (void) lttng_pipe_write_close(ctx
->consumer_metadata_pipe
);
2658 destroy_data_stream_ht(data_ht
);
2662 ERR("Health error occurred in %s", __func__
);
2664 health_unregister(health_consumerd
);
2666 rcu_unregister_thread();
2671 * Close wake-up end of each stream belonging to the channel. This will
2672 * allow the poll() on the stream read-side to detect when the
2673 * write-side (application) finally closes them.
2676 void consumer_close_channel_streams(struct lttng_consumer_channel
*channel
)
2678 struct lttng_ht
*ht
;
2679 struct lttng_consumer_stream
*stream
;
2680 struct lttng_ht_iter iter
;
2682 ht
= consumer_data
.stream_per_chan_id_ht
;
2685 cds_lfht_for_each_entry_duplicate(ht
->ht
,
2686 ht
->hash_fct(&channel
->key
, lttng_ht_seed
),
2687 ht
->match_fct
, &channel
->key
,
2688 &iter
.iter
, stream
, node_channel_id
.node
) {
2690 * Protect against teardown with mutex.
2692 pthread_mutex_lock(&stream
->lock
);
2693 if (cds_lfht_is_node_deleted(&stream
->node
.node
)) {
2696 switch (consumer_data
.type
) {
2697 case LTTNG_CONSUMER_KERNEL
:
2699 case LTTNG_CONSUMER32_UST
:
2700 case LTTNG_CONSUMER64_UST
:
2702 * Note: a mutex is taken internally within
2703 * liblttng-ust-ctl to protect timer wakeup_fd
2704 * use from concurrent close.
2706 lttng_ustconsumer_close_stream_wakeup(stream
);
2709 ERR("Unknown consumer_data type");
2713 pthread_mutex_unlock(&stream
->lock
);
2718 static void destroy_channel_ht(struct lttng_ht
*ht
)
2720 struct lttng_ht_iter iter
;
2721 struct lttng_consumer_channel
*channel
;
2729 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, channel
, wait_fd_node
.node
) {
2730 ret
= lttng_ht_del(ht
, &iter
);
2735 lttng_ht_destroy(ht
);
2739 * This thread polls the channel fds to detect when they are being
2740 * closed. It closes all related streams if the channel is detected as
2741 * closed. It is currently only used as a shim layer for UST because the
2742 * consumerd needs to keep the per-stream wakeup end of pipes open for
2745 void *consumer_thread_channel_poll(void *data
)
2747 int ret
, i
, pollfd
, err
= -1;
2748 uint32_t revents
, nb_fd
;
2749 struct lttng_consumer_channel
*chan
= NULL
;
2750 struct lttng_ht_iter iter
;
2751 struct lttng_ht_node_u64
*node
;
2752 struct lttng_poll_event events
;
2753 struct lttng_consumer_local_data
*ctx
= data
;
2754 struct lttng_ht
*channel_ht
;
2756 rcu_register_thread();
2758 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_CHANNEL
);
2760 health_code_update();
2762 channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
2764 /* ENOMEM at this point. Better to bail out. */
2768 DBG("Thread channel poll started");
2770 /* Size is set to 1 for the consumer_channel pipe */
2771 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2773 ERR("Poll set creation failed");
2777 ret
= lttng_poll_add(&events
, ctx
->consumer_channel_pipe
[0], LPOLLIN
);
2783 DBG("Channel main loop started");
2786 health_code_update();
2788 /* Only the channel pipe is set */
2789 if (LTTNG_POLL_GETNB(&events
) == 0 && consumer_quit
== 1) {
2790 err
= 0; /* All is OK */
2795 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events
));
2796 health_poll_entry();
2797 ret
= lttng_poll_wait(&events
, -1);
2799 DBG("Channel event catched in thread");
2801 if (errno
== EINTR
) {
2802 ERR("Poll EINTR catched");
2810 /* From here, the event is a channel wait fd */
2811 for (i
= 0; i
< nb_fd
; i
++) {
2812 health_code_update();
2814 revents
= LTTNG_POLL_GETEV(&events
, i
);
2815 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2817 /* Just don't waste time if no returned events for the fd */
2821 if (pollfd
== ctx
->consumer_channel_pipe
[0]) {
2822 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2823 DBG("Channel thread pipe hung up");
2825 * Remove the pipe from the poll set and continue the loop
2826 * since their might be data to consume.
2828 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
2830 } else if (revents
& LPOLLIN
) {
2831 enum consumer_channel_action action
;
2834 ret
= read_channel_pipe(ctx
, &chan
, &key
, &action
);
2836 ERR("Error reading channel pipe");
2841 case CONSUMER_CHANNEL_ADD
:
2842 DBG("Adding channel %d to poll set",
2845 lttng_ht_node_init_u64(&chan
->wait_fd_node
,
2848 lttng_ht_add_unique_u64(channel_ht
,
2849 &chan
->wait_fd_node
);
2851 /* Add channel to the global poll events list */
2852 lttng_poll_add(&events
, chan
->wait_fd
,
2853 LPOLLIN
| LPOLLPRI
);
2855 case CONSUMER_CHANNEL_DEL
:
2857 struct lttng_consumer_stream
*stream
, *stmp
;
2860 chan
= consumer_find_channel(key
);
2863 ERR("UST consumer get channel key %" PRIu64
" not found for del channel", key
);
2866 lttng_poll_del(&events
, chan
->wait_fd
);
2867 iter
.iter
.node
= &chan
->wait_fd_node
.node
;
2868 ret
= lttng_ht_del(channel_ht
, &iter
);
2870 consumer_close_channel_streams(chan
);
2872 switch (consumer_data
.type
) {
2873 case LTTNG_CONSUMER_KERNEL
:
2875 case LTTNG_CONSUMER32_UST
:
2876 case LTTNG_CONSUMER64_UST
:
2877 /* Delete streams that might have been left in the stream list. */
2878 cds_list_for_each_entry_safe(stream
, stmp
, &chan
->streams
.head
,
2880 health_code_update();
2882 cds_list_del(&stream
->send_node
);
2883 lttng_ustconsumer_del_stream(stream
);
2884 uatomic_sub(&stream
->chan
->refcount
, 1);
2885 assert(&chan
->refcount
);
2890 ERR("Unknown consumer_data type");
2895 * Release our own refcount. Force channel deletion even if
2896 * streams were not initialized.
2898 if (!uatomic_sub_return(&chan
->refcount
, 1)) {
2899 consumer_del_channel(chan
);
2904 case CONSUMER_CHANNEL_QUIT
:
2906 * Remove the pipe from the poll set and continue the loop
2907 * since their might be data to consume.
2909 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
2912 ERR("Unknown action");
2917 /* Handle other stream */
2923 uint64_t tmp_id
= (uint64_t) pollfd
;
2925 lttng_ht_lookup(channel_ht
, &tmp_id
, &iter
);
2927 node
= lttng_ht_iter_get_node_u64(&iter
);
2930 chan
= caa_container_of(node
, struct lttng_consumer_channel
,
2933 /* Check for error event */
2934 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2935 DBG("Channel fd %d is hup|err.", pollfd
);
2937 lttng_poll_del(&events
, chan
->wait_fd
);
2938 ret
= lttng_ht_del(channel_ht
, &iter
);
2940 consumer_close_channel_streams(chan
);
2942 /* Release our own refcount */
2943 if (!uatomic_sub_return(&chan
->refcount
, 1)
2944 && !uatomic_read(&chan
->nb_init_stream_left
)) {
2945 consumer_del_channel(chan
);
2949 /* Release RCU lock for the channel looked up */
2957 lttng_poll_clean(&events
);
2959 destroy_channel_ht(channel_ht
);
2961 DBG("Channel poll thread exiting");
2964 ERR("Health error occurred in %s", __func__
);
2966 health_unregister(health_consumerd
);
2967 rcu_unregister_thread();
2971 static int set_metadata_socket(struct lttng_consumer_local_data
*ctx
,
2972 struct pollfd
*sockpoll
, int client_socket
)
2979 if (lttng_consumer_poll_socket(sockpoll
) < 0) {
2983 DBG("Metadata connection on client_socket");
2985 /* Blocking call, waiting for transmission */
2986 ctx
->consumer_metadata_socket
= lttcomm_accept_unix_sock(client_socket
);
2987 if (ctx
->consumer_metadata_socket
< 0) {
2988 WARN("On accept metadata");
2999 * This thread listens on the consumerd socket and receives the file
3000 * descriptors from the session daemon.
3002 void *consumer_thread_sessiond_poll(void *data
)
3004 int sock
= -1, client_socket
, ret
, err
= -1;
3006 * structure to poll for incoming data on communication socket avoids
3007 * making blocking sockets.
3009 struct pollfd consumer_sockpoll
[2];
3010 struct lttng_consumer_local_data
*ctx
= data
;
3012 rcu_register_thread();
3014 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_SESSIOND
);
3016 health_code_update();
3018 DBG("Creating command socket %s", ctx
->consumer_command_sock_path
);
3019 unlink(ctx
->consumer_command_sock_path
);
3020 client_socket
= lttcomm_create_unix_sock(ctx
->consumer_command_sock_path
);
3021 if (client_socket
< 0) {
3022 ERR("Cannot create command socket");
3026 ret
= lttcomm_listen_unix_sock(client_socket
);
3031 DBG("Sending ready command to lttng-sessiond");
3032 ret
= lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY
);
3033 /* return < 0 on error, but == 0 is not fatal */
3035 ERR("Error sending ready command to lttng-sessiond");
3039 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3040 consumer_sockpoll
[0].fd
= ctx
->consumer_should_quit
[0];
3041 consumer_sockpoll
[0].events
= POLLIN
| POLLPRI
;
3042 consumer_sockpoll
[1].fd
= client_socket
;
3043 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
3045 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
3048 DBG("Connection on client_socket");
3050 /* Blocking call, waiting for transmission */
3051 sock
= lttcomm_accept_unix_sock(client_socket
);
3058 * Setup metadata socket which is the second socket connection on the
3059 * command unix socket.
3061 ret
= set_metadata_socket(ctx
, consumer_sockpoll
, client_socket
);
3066 /* This socket is not useful anymore. */
3067 ret
= close(client_socket
);
3069 PERROR("close client_socket");
3073 /* update the polling structure to poll on the established socket */
3074 consumer_sockpoll
[1].fd
= sock
;
3075 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
3078 health_code_update();
3080 health_poll_entry();
3081 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3086 DBG("Incoming command on sock");
3087 ret
= lttng_consumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
3088 if (ret
== -ENOENT
) {
3089 DBG("Received STOP command");
3094 * This could simply be a session daemon quitting. Don't output
3097 DBG("Communication interrupted on command socket");
3101 if (consumer_quit
) {
3102 DBG("consumer_thread_receive_fds received quit from signal");
3103 err
= 0; /* All is OK */
3106 DBG("received command on sock");
3112 DBG("Consumer thread sessiond poll exiting");
3115 * Close metadata streams since the producer is the session daemon which
3118 * NOTE: for now, this only applies to the UST tracer.
3120 lttng_consumer_close_metadata();
3123 * when all fds have hung up, the polling thread
3129 * Notify the data poll thread to poll back again and test the
3130 * consumer_quit state that we just set so to quit gracefully.
3132 notify_thread_lttng_pipe(ctx
->consumer_data_pipe
);
3134 notify_channel_pipe(ctx
, NULL
, -1, CONSUMER_CHANNEL_QUIT
);
3136 notify_health_quit_pipe(health_quit_pipe
);
3138 /* Cleaning up possibly open sockets. */
3142 PERROR("close sock sessiond poll");
3145 if (client_socket
>= 0) {
3146 ret
= close(client_socket
);
3148 PERROR("close client_socket sessiond poll");
3154 ERR("Health error occurred in %s", __func__
);
3156 health_unregister(health_consumerd
);
3158 rcu_unregister_thread();
3162 ssize_t
lttng_consumer_read_subbuffer(struct lttng_consumer_stream
*stream
,
3163 struct lttng_consumer_local_data
*ctx
)
3167 pthread_mutex_lock(&stream
->lock
);
3168 if (stream
->metadata_flag
) {
3169 pthread_mutex_lock(&stream
->metadata_rdv_lock
);
3172 switch (consumer_data
.type
) {
3173 case LTTNG_CONSUMER_KERNEL
:
3174 ret
= lttng_kconsumer_read_subbuffer(stream
, ctx
);
3176 case LTTNG_CONSUMER32_UST
:
3177 case LTTNG_CONSUMER64_UST
:
3178 ret
= lttng_ustconsumer_read_subbuffer(stream
, ctx
);
3181 ERR("Unknown consumer_data type");
3187 if (stream
->metadata_flag
) {
3188 pthread_cond_broadcast(&stream
->metadata_rdv
);
3189 pthread_mutex_unlock(&stream
->metadata_rdv_lock
);
3191 pthread_mutex_unlock(&stream
->lock
);
3195 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream
*stream
)
3197 switch (consumer_data
.type
) {
3198 case LTTNG_CONSUMER_KERNEL
:
3199 return lttng_kconsumer_on_recv_stream(stream
);
3200 case LTTNG_CONSUMER32_UST
:
3201 case LTTNG_CONSUMER64_UST
:
3202 return lttng_ustconsumer_on_recv_stream(stream
);
3204 ERR("Unknown consumer_data type");
3211 * Allocate and set consumer data hash tables.
3213 void lttng_consumer_init(void)
3215 consumer_data
.channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3216 consumer_data
.relayd_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3217 consumer_data
.stream_list_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3218 consumer_data
.stream_per_chan_id_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3222 * Process the ADD_RELAYD command receive by a consumer.
3224 * This will create a relayd socket pair and add it to the relayd hash table.
3225 * The caller MUST acquire a RCU read side lock before calling it.
3227 int consumer_add_relayd_socket(uint64_t net_seq_idx
, int sock_type
,
3228 struct lttng_consumer_local_data
*ctx
, int sock
,
3229 struct pollfd
*consumer_sockpoll
,
3230 struct lttcomm_relayd_sock
*relayd_sock
, uint64_t sessiond_id
,
3231 uint64_t relayd_session_id
)
3233 int fd
= -1, ret
= -1, relayd_created
= 0;
3234 enum lttng_error_code ret_code
= LTTNG_OK
;
3235 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3238 assert(relayd_sock
);
3240 DBG("Consumer adding relayd socket (idx: %" PRIu64
")", net_seq_idx
);
3242 /* Get relayd reference if exists. */
3243 relayd
= consumer_find_relayd(net_seq_idx
);
3244 if (relayd
== NULL
) {
3245 assert(sock_type
== LTTNG_STREAM_CONTROL
);
3246 /* Not found. Allocate one. */
3247 relayd
= consumer_allocate_relayd_sock_pair(net_seq_idx
);
3248 if (relayd
== NULL
) {
3250 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3253 relayd
->sessiond_session_id
= sessiond_id
;
3258 * This code path MUST continue to the consumer send status message to
3259 * we can notify the session daemon and continue our work without
3260 * killing everything.
3264 * relayd key should never be found for control socket.
3266 assert(sock_type
!= LTTNG_STREAM_CONTROL
);
3269 /* First send a status message before receiving the fds. */
3270 ret
= consumer_send_status_msg(sock
, LTTNG_OK
);
3272 /* Somehow, the session daemon is not responding anymore. */
3273 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3274 goto error_nosignal
;
3277 /* Poll on consumer socket. */
3278 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
3279 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
3281 goto error_nosignal
;
3284 /* Get relayd socket from session daemon */
3285 ret
= lttcomm_recv_fds_unix_sock(sock
, &fd
, 1);
3286 if (ret
!= sizeof(fd
)) {
3288 fd
= -1; /* Just in case it gets set with an invalid value. */
3291 * Failing to receive FDs might indicate a major problem such as
3292 * reaching a fd limit during the receive where the kernel returns a
3293 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3294 * don't take any chances and stop everything.
3296 * XXX: Feature request #558 will fix that and avoid this possible
3297 * issue when reaching the fd limit.
3299 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_ERROR_RECV_FD
);
3300 ret_code
= LTTCOMM_CONSUMERD_ERROR_RECV_FD
;
3304 /* Copy socket information and received FD */
3305 switch (sock_type
) {
3306 case LTTNG_STREAM_CONTROL
:
3307 /* Copy received lttcomm socket */
3308 lttcomm_copy_sock(&relayd
->control_sock
.sock
, &relayd_sock
->sock
);
3309 ret
= lttcomm_create_sock(&relayd
->control_sock
.sock
);
3310 /* Handle create_sock error. */
3312 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3316 * Close the socket created internally by
3317 * lttcomm_create_sock, so we can replace it by the one
3318 * received from sessiond.
3320 if (close(relayd
->control_sock
.sock
.fd
)) {
3324 /* Assign new file descriptor */
3325 relayd
->control_sock
.sock
.fd
= fd
;
3326 fd
= -1; /* For error path */
3327 /* Assign version values. */
3328 relayd
->control_sock
.major
= relayd_sock
->major
;
3329 relayd
->control_sock
.minor
= relayd_sock
->minor
;
3331 relayd
->relayd_session_id
= relayd_session_id
;
3334 case LTTNG_STREAM_DATA
:
3335 /* Copy received lttcomm socket */
3336 lttcomm_copy_sock(&relayd
->data_sock
.sock
, &relayd_sock
->sock
);
3337 ret
= lttcomm_create_sock(&relayd
->data_sock
.sock
);
3338 /* Handle create_sock error. */
3340 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3344 * Close the socket created internally by
3345 * lttcomm_create_sock, so we can replace it by the one
3346 * received from sessiond.
3348 if (close(relayd
->data_sock
.sock
.fd
)) {
3352 /* Assign new file descriptor */
3353 relayd
->data_sock
.sock
.fd
= fd
;
3354 fd
= -1; /* for eventual error paths */
3355 /* Assign version values. */
3356 relayd
->data_sock
.major
= relayd_sock
->major
;
3357 relayd
->data_sock
.minor
= relayd_sock
->minor
;
3360 ERR("Unknown relayd socket type (%d)", sock_type
);
3362 ret_code
= LTTCOMM_CONSUMERD_FATAL
;
3366 DBG("Consumer %s socket created successfully with net idx %" PRIu64
" (fd: %d)",
3367 sock_type
== LTTNG_STREAM_CONTROL
? "control" : "data",
3368 relayd
->net_seq_idx
, fd
);
3370 /* We successfully added the socket. Send status back. */
3371 ret
= consumer_send_status_msg(sock
, ret_code
);
3373 /* Somehow, the session daemon is not responding anymore. */
3374 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3375 goto error_nosignal
;
3379 * Add relayd socket pair to consumer data hashtable. If object already
3380 * exists or on error, the function gracefully returns.
3388 if (consumer_send_status_msg(sock
, ret_code
) < 0) {
3389 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3393 /* Close received socket if valid. */
3396 PERROR("close received socket");
3400 if (relayd_created
) {
3408 * Try to lock the stream mutex.
3410 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3412 static int stream_try_lock(struct lttng_consumer_stream
*stream
)
3419 * Try to lock the stream mutex. On failure, we know that the stream is
3420 * being used else where hence there is data still being extracted.
3422 ret
= pthread_mutex_trylock(&stream
->lock
);
3424 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3436 * Search for a relayd associated to the session id and return the reference.
3438 * A rcu read side lock MUST be acquire before calling this function and locked
3439 * until the relayd object is no longer necessary.
3441 static struct consumer_relayd_sock_pair
*find_relayd_by_session_id(uint64_t id
)
3443 struct lttng_ht_iter iter
;
3444 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3446 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3447 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
3450 * Check by sessiond id which is unique here where the relayd session
3451 * id might not be when having multiple relayd.
3453 if (relayd
->sessiond_session_id
== id
) {
3454 /* Found the relayd. There can be only one per id. */
3466 * Check if for a given session id there is still data needed to be extract
3469 * Return 1 if data is pending or else 0 meaning ready to be read.
3471 int consumer_data_pending(uint64_t id
)
3474 struct lttng_ht_iter iter
;
3475 struct lttng_ht
*ht
;
3476 struct lttng_consumer_stream
*stream
;
3477 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3478 int (*data_pending
)(struct lttng_consumer_stream
*);
3480 DBG("Consumer data pending command on session id %" PRIu64
, id
);
3483 pthread_mutex_lock(&consumer_data
.lock
);
3485 switch (consumer_data
.type
) {
3486 case LTTNG_CONSUMER_KERNEL
:
3487 data_pending
= lttng_kconsumer_data_pending
;
3489 case LTTNG_CONSUMER32_UST
:
3490 case LTTNG_CONSUMER64_UST
:
3491 data_pending
= lttng_ustconsumer_data_pending
;
3494 ERR("Unknown consumer data type");
3498 /* Ease our life a bit */
3499 ht
= consumer_data
.stream_list_ht
;
3501 relayd
= find_relayd_by_session_id(id
);
3503 /* Send init command for data pending. */
3504 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3505 ret
= relayd_begin_data_pending(&relayd
->control_sock
,
3506 relayd
->relayd_session_id
);
3507 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3509 /* Communication error thus the relayd so no data pending. */
3510 goto data_not_pending
;
3514 cds_lfht_for_each_entry_duplicate(ht
->ht
,
3515 ht
->hash_fct(&id
, lttng_ht_seed
),
3517 &iter
.iter
, stream
, node_session_id
.node
) {
3518 /* If this call fails, the stream is being used hence data pending. */
3519 ret
= stream_try_lock(stream
);
3525 * A removed node from the hash table indicates that the stream has
3526 * been deleted thus having a guarantee that the buffers are closed
3527 * on the consumer side. However, data can still be transmitted
3528 * over the network so don't skip the relayd check.
3530 ret
= cds_lfht_is_node_deleted(&stream
->node
.node
);
3533 * An empty output file is not valid. We need at least one packet
3534 * generated per stream, even if it contains no event, so it
3535 * contains at least one packet header.
3537 if (stream
->output_written
== 0) {
3538 pthread_mutex_unlock(&stream
->lock
);
3541 /* Check the stream if there is data in the buffers. */
3542 ret
= data_pending(stream
);
3544 pthread_mutex_unlock(&stream
->lock
);
3551 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3552 if (stream
->metadata_flag
) {
3553 ret
= relayd_quiescent_control(&relayd
->control_sock
,
3554 stream
->relayd_stream_id
);
3556 ret
= relayd_data_pending(&relayd
->control_sock
,
3557 stream
->relayd_stream_id
,
3558 stream
->next_net_seq_num
- 1);
3560 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3562 pthread_mutex_unlock(&stream
->lock
);
3566 pthread_mutex_unlock(&stream
->lock
);
3570 unsigned int is_data_inflight
= 0;
3572 /* Send init command for data pending. */
3573 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3574 ret
= relayd_end_data_pending(&relayd
->control_sock
,
3575 relayd
->relayd_session_id
, &is_data_inflight
);
3576 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3578 goto data_not_pending
;
3580 if (is_data_inflight
) {
3586 * Finding _no_ node in the hash table and no inflight data means that the
3587 * stream(s) have been removed thus data is guaranteed to be available for
3588 * analysis from the trace files.
3592 /* Data is available to be read by a viewer. */
3593 pthread_mutex_unlock(&consumer_data
.lock
);
3598 /* Data is still being extracted from buffers. */
3599 pthread_mutex_unlock(&consumer_data
.lock
);
3605 * Send a ret code status message to the sessiond daemon.
3607 * Return the sendmsg() return value.
3609 int consumer_send_status_msg(int sock
, int ret_code
)
3611 struct lttcomm_consumer_status_msg msg
;
3613 msg
.ret_code
= ret_code
;
3615 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));
3619 * Send a channel status message to the sessiond daemon.
3621 * Return the sendmsg() return value.
3623 int consumer_send_status_channel(int sock
,
3624 struct lttng_consumer_channel
*channel
)
3626 struct lttcomm_consumer_status_channel msg
;
3631 msg
.ret_code
= -LTTNG_ERR_UST_CHAN_FAIL
;
3633 msg
.ret_code
= LTTNG_OK
;
3634 msg
.key
= channel
->key
;
3635 msg
.stream_count
= channel
->streams
.count
;
3638 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));
3642 * Using a maximum stream size with the produced and consumed position of a
3643 * stream, computes the new consumed position to be as close as possible to the
3644 * maximum possible stream size.
3646 * If maximum stream size is lower than the possible buffer size (produced -
3647 * consumed), the consumed_pos given is returned untouched else the new value
3650 unsigned long consumer_get_consumed_maxsize(unsigned long consumed_pos
,
3651 unsigned long produced_pos
, uint64_t max_stream_size
)
3653 if (max_stream_size
&& max_stream_size
< (produced_pos
- consumed_pos
)) {
3654 /* Offset from the produced position to get the latest buffers. */
3655 return produced_pos
- max_stream_size
;
3658 return consumed_pos
;