187c0c30cdf003741f053417e1c9209c64b80713
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/index/index.h>
38 #include <common/kernel-ctl/kernel-ctl.h>
39 #include <common/sessiond-comm/relayd.h>
40 #include <common/sessiond-comm/sessiond-comm.h>
41 #include <common/kernel-consumer/kernel-consumer.h>
42 #include <common/relayd/relayd.h>
43 #include <common/ust-consumer/ust-consumer.h>
44 #include <common/consumer-timer.h>
45
46 #include "consumer.h"
47 #include "consumer-stream.h"
48
49 struct lttng_consumer_global_data consumer_data = {
50 .stream_count = 0,
51 .need_update = 1,
52 .type = LTTNG_CONSUMER_UNKNOWN,
53 };
54
55 enum consumer_channel_action {
56 CONSUMER_CHANNEL_ADD,
57 CONSUMER_CHANNEL_DEL,
58 CONSUMER_CHANNEL_QUIT,
59 };
60
61 struct consumer_channel_msg {
62 enum consumer_channel_action action;
63 struct lttng_consumer_channel *chan; /* add */
64 uint64_t key; /* del */
65 };
66
67 /*
68 * Flag to inform the polling thread to quit when all fd hung up. Updated by
69 * the consumer_thread_receive_fds when it notices that all fds has hung up.
70 * Also updated by the signal handler (consumer_should_exit()). Read by the
71 * polling threads.
72 */
73 volatile int consumer_quit;
74
75 /*
76 * Global hash table containing respectively metadata and data streams. The
77 * stream element in this ht should only be updated by the metadata poll thread
78 * for the metadata and the data poll thread for the data.
79 */
80 static struct lttng_ht *metadata_ht;
81 static struct lttng_ht *data_ht;
82
83 /*
84 * Notify a thread lttng pipe to poll back again. This usually means that some
85 * global state has changed so we just send back the thread in a poll wait
86 * call.
87 */
88 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
89 {
90 struct lttng_consumer_stream *null_stream = NULL;
91
92 assert(pipe);
93
94 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
95 }
96
97 static void notify_health_quit_pipe(int *pipe)
98 {
99 int ret;
100
101 do {
102 ret = write(pipe[1], "4", 1);
103 } while (ret < 0 && errno == EINTR);
104 if (ret < 0 || ret != 1) {
105 PERROR("write consumer health quit");
106 }
107 }
108
109 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
110 struct lttng_consumer_channel *chan,
111 uint64_t key,
112 enum consumer_channel_action action)
113 {
114 struct consumer_channel_msg msg;
115 int ret;
116
117 memset(&msg, 0, sizeof(msg));
118
119 msg.action = action;
120 msg.chan = chan;
121 msg.key = key;
122 do {
123 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
124 } while (ret < 0 && errno == EINTR);
125 }
126
127 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
128 uint64_t key)
129 {
130 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
131 }
132
133 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
134 struct lttng_consumer_channel **chan,
135 uint64_t *key,
136 enum consumer_channel_action *action)
137 {
138 struct consumer_channel_msg msg;
139 int ret;
140
141 do {
142 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
143 } while (ret < 0 && errno == EINTR);
144 if (ret > 0) {
145 *action = msg.action;
146 *chan = msg.chan;
147 *key = msg.key;
148 }
149 return ret;
150 }
151
152 /*
153 * Find a stream. The consumer_data.lock must be locked during this
154 * call.
155 */
156 static struct lttng_consumer_stream *find_stream(uint64_t key,
157 struct lttng_ht *ht)
158 {
159 struct lttng_ht_iter iter;
160 struct lttng_ht_node_u64 *node;
161 struct lttng_consumer_stream *stream = NULL;
162
163 assert(ht);
164
165 /* -1ULL keys are lookup failures */
166 if (key == (uint64_t) -1ULL) {
167 return NULL;
168 }
169
170 rcu_read_lock();
171
172 lttng_ht_lookup(ht, &key, &iter);
173 node = lttng_ht_iter_get_node_u64(&iter);
174 if (node != NULL) {
175 stream = caa_container_of(node, struct lttng_consumer_stream, node);
176 }
177
178 rcu_read_unlock();
179
180 return stream;
181 }
182
183 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
184 {
185 struct lttng_consumer_stream *stream;
186
187 rcu_read_lock();
188 stream = find_stream(key, ht);
189 if (stream) {
190 stream->key = (uint64_t) -1ULL;
191 /*
192 * We don't want the lookup to match, but we still need
193 * to iterate on this stream when iterating over the hash table. Just
194 * change the node key.
195 */
196 stream->node.key = (uint64_t) -1ULL;
197 }
198 rcu_read_unlock();
199 }
200
201 /*
202 * Return a channel object for the given key.
203 *
204 * RCU read side lock MUST be acquired before calling this function and
205 * protects the channel ptr.
206 */
207 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
208 {
209 struct lttng_ht_iter iter;
210 struct lttng_ht_node_u64 *node;
211 struct lttng_consumer_channel *channel = NULL;
212
213 /* -1ULL keys are lookup failures */
214 if (key == (uint64_t) -1ULL) {
215 return NULL;
216 }
217
218 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
219 node = lttng_ht_iter_get_node_u64(&iter);
220 if (node != NULL) {
221 channel = caa_container_of(node, struct lttng_consumer_channel, node);
222 }
223
224 return channel;
225 }
226
227 static void free_stream_rcu(struct rcu_head *head)
228 {
229 struct lttng_ht_node_u64 *node =
230 caa_container_of(head, struct lttng_ht_node_u64, head);
231 struct lttng_consumer_stream *stream =
232 caa_container_of(node, struct lttng_consumer_stream, node);
233
234 free(stream);
235 }
236
237 static void free_channel_rcu(struct rcu_head *head)
238 {
239 struct lttng_ht_node_u64 *node =
240 caa_container_of(head, struct lttng_ht_node_u64, head);
241 struct lttng_consumer_channel *channel =
242 caa_container_of(node, struct lttng_consumer_channel, node);
243
244 free(channel);
245 }
246
247 /*
248 * RCU protected relayd socket pair free.
249 */
250 static void free_relayd_rcu(struct rcu_head *head)
251 {
252 struct lttng_ht_node_u64 *node =
253 caa_container_of(head, struct lttng_ht_node_u64, head);
254 struct consumer_relayd_sock_pair *relayd =
255 caa_container_of(node, struct consumer_relayd_sock_pair, node);
256
257 /*
258 * Close all sockets. This is done in the call RCU since we don't want the
259 * socket fds to be reassigned thus potentially creating bad state of the
260 * relayd object.
261 *
262 * We do not have to lock the control socket mutex here since at this stage
263 * there is no one referencing to this relayd object.
264 */
265 (void) relayd_close(&relayd->control_sock);
266 (void) relayd_close(&relayd->data_sock);
267
268 free(relayd);
269 }
270
271 /*
272 * Destroy and free relayd socket pair object.
273 */
274 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
275 {
276 int ret;
277 struct lttng_ht_iter iter;
278
279 if (relayd == NULL) {
280 return;
281 }
282
283 DBG("Consumer destroy and close relayd socket pair");
284
285 iter.iter.node = &relayd->node.node;
286 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
287 if (ret != 0) {
288 /* We assume the relayd is being or is destroyed */
289 return;
290 }
291
292 /* RCU free() call */
293 call_rcu(&relayd->node.head, free_relayd_rcu);
294 }
295
296 /*
297 * Remove a channel from the global list protected by a mutex. This function is
298 * also responsible for freeing its data structures.
299 */
300 void consumer_del_channel(struct lttng_consumer_channel *channel)
301 {
302 int ret;
303 struct lttng_ht_iter iter;
304 struct lttng_consumer_stream *stream, *stmp;
305
306 DBG("Consumer delete channel key %" PRIu64, channel->key);
307
308 pthread_mutex_lock(&consumer_data.lock);
309 pthread_mutex_lock(&channel->lock);
310
311 /* Delete streams that might have been left in the stream list. */
312 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
313 send_node) {
314 cds_list_del(&stream->send_node);
315 /*
316 * Once a stream is added to this list, the buffers were created so
317 * we have a guarantee that this call will succeed.
318 */
319 consumer_stream_destroy(stream, NULL);
320 }
321
322 if (channel->live_timer_enabled == 1) {
323 consumer_timer_live_stop(channel);
324 }
325
326 switch (consumer_data.type) {
327 case LTTNG_CONSUMER_KERNEL:
328 break;
329 case LTTNG_CONSUMER32_UST:
330 case LTTNG_CONSUMER64_UST:
331 lttng_ustconsumer_del_channel(channel);
332 break;
333 default:
334 ERR("Unknown consumer_data type");
335 assert(0);
336 goto end;
337 }
338
339 rcu_read_lock();
340 iter.iter.node = &channel->node.node;
341 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
342 assert(!ret);
343 rcu_read_unlock();
344
345 call_rcu(&channel->node.head, free_channel_rcu);
346 end:
347 pthread_mutex_unlock(&channel->lock);
348 pthread_mutex_unlock(&consumer_data.lock);
349 }
350
351 /*
352 * Iterate over the relayd hash table and destroy each element. Finally,
353 * destroy the whole hash table.
354 */
355 static void cleanup_relayd_ht(void)
356 {
357 struct lttng_ht_iter iter;
358 struct consumer_relayd_sock_pair *relayd;
359
360 rcu_read_lock();
361
362 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
363 node.node) {
364 consumer_destroy_relayd(relayd);
365 }
366
367 rcu_read_unlock();
368
369 lttng_ht_destroy(consumer_data.relayd_ht);
370 }
371
372 /*
373 * Update the end point status of all streams having the given network sequence
374 * index (relayd index).
375 *
376 * It's atomically set without having the stream mutex locked which is fine
377 * because we handle the write/read race with a pipe wakeup for each thread.
378 */
379 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
380 enum consumer_endpoint_status status)
381 {
382 struct lttng_ht_iter iter;
383 struct lttng_consumer_stream *stream;
384
385 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
386
387 rcu_read_lock();
388
389 /* Let's begin with metadata */
390 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
391 if (stream->net_seq_idx == net_seq_idx) {
392 uatomic_set(&stream->endpoint_status, status);
393 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
394 }
395 }
396
397 /* Follow up by the data streams */
398 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
399 if (stream->net_seq_idx == net_seq_idx) {
400 uatomic_set(&stream->endpoint_status, status);
401 DBG("Delete flag set to data stream %d", stream->wait_fd);
402 }
403 }
404 rcu_read_unlock();
405 }
406
407 /*
408 * Cleanup a relayd object by flagging every associated streams for deletion,
409 * destroying the object meaning removing it from the relayd hash table,
410 * closing the sockets and freeing the memory in a RCU call.
411 *
412 * If a local data context is available, notify the threads that the streams'
413 * state have changed.
414 */
415 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
416 struct lttng_consumer_local_data *ctx)
417 {
418 uint64_t netidx;
419
420 assert(relayd);
421
422 DBG("Cleaning up relayd sockets");
423
424 /* Save the net sequence index before destroying the object */
425 netidx = relayd->net_seq_idx;
426
427 /*
428 * Delete the relayd from the relayd hash table, close the sockets and free
429 * the object in a RCU call.
430 */
431 consumer_destroy_relayd(relayd);
432
433 /* Set inactive endpoint to all streams */
434 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
435
436 /*
437 * With a local data context, notify the threads that the streams' state
438 * have changed. The write() action on the pipe acts as an "implicit"
439 * memory barrier ordering the updates of the end point status from the
440 * read of this status which happens AFTER receiving this notify.
441 */
442 if (ctx) {
443 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
444 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
445 }
446 }
447
448 /*
449 * Flag a relayd socket pair for destruction. Destroy it if the refcount
450 * reaches zero.
451 *
452 * RCU read side lock MUST be aquired before calling this function.
453 */
454 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
455 {
456 assert(relayd);
457
458 /* Set destroy flag for this object */
459 uatomic_set(&relayd->destroy_flag, 1);
460
461 /* Destroy the relayd if refcount is 0 */
462 if (uatomic_read(&relayd->refcount) == 0) {
463 consumer_destroy_relayd(relayd);
464 }
465 }
466
467 /*
468 * Completly destroy stream from every visiable data structure and the given
469 * hash table if one.
470 *
471 * One this call returns, the stream object is not longer usable nor visible.
472 */
473 void consumer_del_stream(struct lttng_consumer_stream *stream,
474 struct lttng_ht *ht)
475 {
476 consumer_stream_destroy(stream, ht);
477 }
478
479 /*
480 * XXX naming of del vs destroy is all mixed up.
481 */
482 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
483 {
484 consumer_stream_destroy(stream, data_ht);
485 }
486
487 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
488 {
489 consumer_stream_destroy(stream, metadata_ht);
490 }
491
492 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
493 uint64_t stream_key,
494 enum lttng_consumer_stream_state state,
495 const char *channel_name,
496 uid_t uid,
497 gid_t gid,
498 uint64_t relayd_id,
499 uint64_t session_id,
500 int cpu,
501 int *alloc_ret,
502 enum consumer_channel_type type,
503 unsigned int monitor)
504 {
505 int ret;
506 struct lttng_consumer_stream *stream;
507
508 stream = zmalloc(sizeof(*stream));
509 if (stream == NULL) {
510 PERROR("malloc struct lttng_consumer_stream");
511 ret = -ENOMEM;
512 goto end;
513 }
514
515 rcu_read_lock();
516
517 stream->key = stream_key;
518 stream->out_fd = -1;
519 stream->out_fd_offset = 0;
520 stream->output_written = 0;
521 stream->state = state;
522 stream->uid = uid;
523 stream->gid = gid;
524 stream->net_seq_idx = relayd_id;
525 stream->session_id = session_id;
526 stream->monitor = monitor;
527 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
528 stream->index_fd = -1;
529 pthread_mutex_init(&stream->lock, NULL);
530
531 /* If channel is the metadata, flag this stream as metadata. */
532 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
533 stream->metadata_flag = 1;
534 /* Metadata is flat out. */
535 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
536 /* Live rendez-vous point. */
537 pthread_cond_init(&stream->metadata_rdv, NULL);
538 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
539 } else {
540 /* Format stream name to <channel_name>_<cpu_number> */
541 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
542 channel_name, cpu);
543 if (ret < 0) {
544 PERROR("snprintf stream name");
545 goto error;
546 }
547 }
548
549 /* Key is always the wait_fd for streams. */
550 lttng_ht_node_init_u64(&stream->node, stream->key);
551
552 /* Init node per channel id key */
553 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
554
555 /* Init session id node with the stream session id */
556 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
557
558 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
559 " relayd_id %" PRIu64 ", session_id %" PRIu64,
560 stream->name, stream->key, channel_key,
561 stream->net_seq_idx, stream->session_id);
562
563 rcu_read_unlock();
564 return stream;
565
566 error:
567 rcu_read_unlock();
568 free(stream);
569 end:
570 if (alloc_ret) {
571 *alloc_ret = ret;
572 }
573 return NULL;
574 }
575
576 /*
577 * Add a stream to the global list protected by a mutex.
578 */
579 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
580 {
581 struct lttng_ht *ht = data_ht;
582 int ret = 0;
583
584 assert(stream);
585 assert(ht);
586
587 DBG3("Adding consumer stream %" PRIu64, stream->key);
588
589 pthread_mutex_lock(&consumer_data.lock);
590 pthread_mutex_lock(&stream->chan->lock);
591 pthread_mutex_lock(&stream->chan->timer_lock);
592 pthread_mutex_lock(&stream->lock);
593 rcu_read_lock();
594
595 /* Steal stream identifier to avoid having streams with the same key */
596 steal_stream_key(stream->key, ht);
597
598 lttng_ht_add_unique_u64(ht, &stream->node);
599
600 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
601 &stream->node_channel_id);
602
603 /*
604 * Add stream to the stream_list_ht of the consumer data. No need to steal
605 * the key since the HT does not use it and we allow to add redundant keys
606 * into this table.
607 */
608 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
609
610 /*
611 * When nb_init_stream_left reaches 0, we don't need to trigger any action
612 * in terms of destroying the associated channel, because the action that
613 * causes the count to become 0 also causes a stream to be added. The
614 * channel deletion will thus be triggered by the following removal of this
615 * stream.
616 */
617 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
618 /* Increment refcount before decrementing nb_init_stream_left */
619 cmm_smp_wmb();
620 uatomic_dec(&stream->chan->nb_init_stream_left);
621 }
622
623 /* Update consumer data once the node is inserted. */
624 consumer_data.stream_count++;
625 consumer_data.need_update = 1;
626
627 rcu_read_unlock();
628 pthread_mutex_unlock(&stream->lock);
629 pthread_mutex_unlock(&stream->chan->timer_lock);
630 pthread_mutex_unlock(&stream->chan->lock);
631 pthread_mutex_unlock(&consumer_data.lock);
632
633 return ret;
634 }
635
636 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
637 {
638 consumer_del_stream(stream, data_ht);
639 }
640
641 /*
642 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
643 * be acquired before calling this.
644 */
645 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
646 {
647 int ret = 0;
648 struct lttng_ht_node_u64 *node;
649 struct lttng_ht_iter iter;
650
651 assert(relayd);
652
653 lttng_ht_lookup(consumer_data.relayd_ht,
654 &relayd->net_seq_idx, &iter);
655 node = lttng_ht_iter_get_node_u64(&iter);
656 if (node != NULL) {
657 goto end;
658 }
659 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
660
661 end:
662 return ret;
663 }
664
665 /*
666 * Allocate and return a consumer relayd socket.
667 */
668 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
669 uint64_t net_seq_idx)
670 {
671 struct consumer_relayd_sock_pair *obj = NULL;
672
673 /* net sequence index of -1 is a failure */
674 if (net_seq_idx == (uint64_t) -1ULL) {
675 goto error;
676 }
677
678 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
679 if (obj == NULL) {
680 PERROR("zmalloc relayd sock");
681 goto error;
682 }
683
684 obj->net_seq_idx = net_seq_idx;
685 obj->refcount = 0;
686 obj->destroy_flag = 0;
687 obj->control_sock.sock.fd = -1;
688 obj->data_sock.sock.fd = -1;
689 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
690 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
691
692 error:
693 return obj;
694 }
695
696 /*
697 * Find a relayd socket pair in the global consumer data.
698 *
699 * Return the object if found else NULL.
700 * RCU read-side lock must be held across this call and while using the
701 * returned object.
702 */
703 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
704 {
705 struct lttng_ht_iter iter;
706 struct lttng_ht_node_u64 *node;
707 struct consumer_relayd_sock_pair *relayd = NULL;
708
709 /* Negative keys are lookup failures */
710 if (key == (uint64_t) -1ULL) {
711 goto error;
712 }
713
714 lttng_ht_lookup(consumer_data.relayd_ht, &key,
715 &iter);
716 node = lttng_ht_iter_get_node_u64(&iter);
717 if (node != NULL) {
718 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
719 }
720
721 error:
722 return relayd;
723 }
724
725 /*
726 * Find a relayd and send the stream
727 *
728 * Returns 0 on success, < 0 on error
729 */
730 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
731 char *path)
732 {
733 int ret = 0;
734 struct consumer_relayd_sock_pair *relayd;
735
736 assert(stream);
737 assert(stream->net_seq_idx != -1ULL);
738 assert(path);
739
740 /* The stream is not metadata. Get relayd reference if exists. */
741 rcu_read_lock();
742 relayd = consumer_find_relayd(stream->net_seq_idx);
743 if (relayd != NULL) {
744 /* Add stream on the relayd */
745 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
746 ret = relayd_add_stream(&relayd->control_sock, stream->name,
747 path, &stream->relayd_stream_id,
748 stream->chan->tracefile_size, stream->chan->tracefile_count);
749 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
750 if (ret < 0) {
751 goto end;
752 }
753
754 uatomic_inc(&relayd->refcount);
755 stream->sent_to_relayd = 1;
756 } else {
757 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
758 stream->key, stream->net_seq_idx);
759 ret = -1;
760 goto end;
761 }
762
763 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
764 stream->name, stream->key, stream->net_seq_idx);
765
766 end:
767 rcu_read_unlock();
768 return ret;
769 }
770
771 /*
772 * Find a relayd and close the stream
773 */
774 void close_relayd_stream(struct lttng_consumer_stream *stream)
775 {
776 struct consumer_relayd_sock_pair *relayd;
777
778 /* The stream is not metadata. Get relayd reference if exists. */
779 rcu_read_lock();
780 relayd = consumer_find_relayd(stream->net_seq_idx);
781 if (relayd) {
782 consumer_stream_relayd_close(stream, relayd);
783 }
784 rcu_read_unlock();
785 }
786
787 /*
788 * Handle stream for relayd transmission if the stream applies for network
789 * streaming where the net sequence index is set.
790 *
791 * Return destination file descriptor or negative value on error.
792 */
793 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
794 size_t data_size, unsigned long padding,
795 struct consumer_relayd_sock_pair *relayd)
796 {
797 int outfd = -1, ret;
798 struct lttcomm_relayd_data_hdr data_hdr;
799
800 /* Safety net */
801 assert(stream);
802 assert(relayd);
803
804 /* Reset data header */
805 memset(&data_hdr, 0, sizeof(data_hdr));
806
807 if (stream->metadata_flag) {
808 /* Caller MUST acquire the relayd control socket lock */
809 ret = relayd_send_metadata(&relayd->control_sock, data_size);
810 if (ret < 0) {
811 goto error;
812 }
813
814 /* Metadata are always sent on the control socket. */
815 outfd = relayd->control_sock.sock.fd;
816 } else {
817 /* Set header with stream information */
818 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
819 data_hdr.data_size = htobe32(data_size);
820 data_hdr.padding_size = htobe32(padding);
821 /*
822 * Note that net_seq_num below is assigned with the *current* value of
823 * next_net_seq_num and only after that the next_net_seq_num will be
824 * increment. This is why when issuing a command on the relayd using
825 * this next value, 1 should always be substracted in order to compare
826 * the last seen sequence number on the relayd side to the last sent.
827 */
828 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
829 /* Other fields are zeroed previously */
830
831 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
832 sizeof(data_hdr));
833 if (ret < 0) {
834 goto error;
835 }
836
837 ++stream->next_net_seq_num;
838
839 /* Set to go on data socket */
840 outfd = relayd->data_sock.sock.fd;
841 }
842
843 error:
844 return outfd;
845 }
846
847 /*
848 * Allocate and return a new lttng_consumer_channel object using the given key
849 * to initialize the hash table node.
850 *
851 * On error, return NULL.
852 */
853 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
854 uint64_t session_id,
855 const char *pathname,
856 const char *name,
857 uid_t uid,
858 gid_t gid,
859 uint64_t relayd_id,
860 enum lttng_event_output output,
861 uint64_t tracefile_size,
862 uint64_t tracefile_count,
863 uint64_t session_id_per_pid,
864 unsigned int monitor,
865 unsigned int live_timer_interval)
866 {
867 struct lttng_consumer_channel *channel;
868
869 channel = zmalloc(sizeof(*channel));
870 if (channel == NULL) {
871 PERROR("malloc struct lttng_consumer_channel");
872 goto end;
873 }
874
875 channel->key = key;
876 channel->refcount = 0;
877 channel->session_id = session_id;
878 channel->session_id_per_pid = session_id_per_pid;
879 channel->uid = uid;
880 channel->gid = gid;
881 channel->relayd_id = relayd_id;
882 channel->output = output;
883 channel->tracefile_size = tracefile_size;
884 channel->tracefile_count = tracefile_count;
885 channel->monitor = monitor;
886 channel->live_timer_interval = live_timer_interval;
887 pthread_mutex_init(&channel->lock, NULL);
888 pthread_mutex_init(&channel->timer_lock, NULL);
889
890 /*
891 * In monitor mode, the streams associated with the channel will be put in
892 * a special list ONLY owned by this channel. So, the refcount is set to 1
893 * here meaning that the channel itself has streams that are referenced.
894 *
895 * On a channel deletion, once the channel is no longer visible, the
896 * refcount is decremented and checked for a zero value to delete it. With
897 * streams in no monitor mode, it will now be safe to destroy the channel.
898 */
899 if (!channel->monitor) {
900 channel->refcount = 1;
901 }
902
903 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
904 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
905
906 strncpy(channel->name, name, sizeof(channel->name));
907 channel->name[sizeof(channel->name) - 1] = '\0';
908
909 lttng_ht_node_init_u64(&channel->node, channel->key);
910
911 channel->wait_fd = -1;
912
913 CDS_INIT_LIST_HEAD(&channel->streams.head);
914
915 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
916
917 end:
918 return channel;
919 }
920
921 /*
922 * Add a channel to the global list protected by a mutex.
923 *
924 * On success 0 is returned else a negative value.
925 */
926 int consumer_add_channel(struct lttng_consumer_channel *channel,
927 struct lttng_consumer_local_data *ctx)
928 {
929 int ret = 0;
930 struct lttng_ht_node_u64 *node;
931 struct lttng_ht_iter iter;
932
933 pthread_mutex_lock(&consumer_data.lock);
934 pthread_mutex_lock(&channel->lock);
935 pthread_mutex_lock(&channel->timer_lock);
936 rcu_read_lock();
937
938 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
939 node = lttng_ht_iter_get_node_u64(&iter);
940 if (node != NULL) {
941 /* Channel already exist. Ignore the insertion */
942 ERR("Consumer add channel key %" PRIu64 " already exists!",
943 channel->key);
944 ret = -EEXIST;
945 goto end;
946 }
947
948 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
949
950 end:
951 rcu_read_unlock();
952 pthread_mutex_unlock(&channel->timer_lock);
953 pthread_mutex_unlock(&channel->lock);
954 pthread_mutex_unlock(&consumer_data.lock);
955
956 if (!ret && channel->wait_fd != -1 &&
957 channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
958 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
959 }
960 return ret;
961 }
962
963 /*
964 * Allocate the pollfd structure and the local view of the out fds to avoid
965 * doing a lookup in the linked list and concurrency issues when writing is
966 * needed. Called with consumer_data.lock held.
967 *
968 * Returns the number of fds in the structures.
969 */
970 static int update_poll_array(struct lttng_consumer_local_data *ctx,
971 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
972 struct lttng_ht *ht)
973 {
974 int i = 0;
975 struct lttng_ht_iter iter;
976 struct lttng_consumer_stream *stream;
977
978 assert(ctx);
979 assert(ht);
980 assert(pollfd);
981 assert(local_stream);
982
983 DBG("Updating poll fd array");
984 rcu_read_lock();
985 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
986 /*
987 * Only active streams with an active end point can be added to the
988 * poll set and local stream storage of the thread.
989 *
990 * There is a potential race here for endpoint_status to be updated
991 * just after the check. However, this is OK since the stream(s) will
992 * be deleted once the thread is notified that the end point state has
993 * changed where this function will be called back again.
994 */
995 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
996 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
997 continue;
998 }
999 /*
1000 * This clobbers way too much the debug output. Uncomment that if you
1001 * need it for debugging purposes.
1002 *
1003 * DBG("Active FD %d", stream->wait_fd);
1004 */
1005 (*pollfd)[i].fd = stream->wait_fd;
1006 (*pollfd)[i].events = POLLIN | POLLPRI;
1007 local_stream[i] = stream;
1008 i++;
1009 }
1010 rcu_read_unlock();
1011
1012 /*
1013 * Insert the consumer_data_pipe at the end of the array and don't
1014 * increment i so nb_fd is the number of real FD.
1015 */
1016 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1017 (*pollfd)[i].events = POLLIN | POLLPRI;
1018 return i;
1019 }
1020
1021 /*
1022 * Poll on the should_quit pipe and the command socket return -1 on error and
1023 * should exit, 0 if data is available on the command socket
1024 */
1025 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1026 {
1027 int num_rdy;
1028
1029 restart:
1030 num_rdy = poll(consumer_sockpoll, 2, -1);
1031 if (num_rdy == -1) {
1032 /*
1033 * Restart interrupted system call.
1034 */
1035 if (errno == EINTR) {
1036 goto restart;
1037 }
1038 PERROR("Poll error");
1039 goto exit;
1040 }
1041 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1042 DBG("consumer_should_quit wake up");
1043 goto exit;
1044 }
1045 return 0;
1046
1047 exit:
1048 return -1;
1049 }
1050
1051 /*
1052 * Set the error socket.
1053 */
1054 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1055 int sock)
1056 {
1057 ctx->consumer_error_socket = sock;
1058 }
1059
1060 /*
1061 * Set the command socket path.
1062 */
1063 void lttng_consumer_set_command_sock_path(
1064 struct lttng_consumer_local_data *ctx, char *sock)
1065 {
1066 ctx->consumer_command_sock_path = sock;
1067 }
1068
1069 /*
1070 * Send return code to the session daemon.
1071 * If the socket is not defined, we return 0, it is not a fatal error
1072 */
1073 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1074 {
1075 if (ctx->consumer_error_socket > 0) {
1076 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1077 sizeof(enum lttcomm_sessiond_command));
1078 }
1079
1080 return 0;
1081 }
1082
1083 /*
1084 * Close all the tracefiles and stream fds and MUST be called when all
1085 * instances are destroyed i.e. when all threads were joined and are ended.
1086 */
1087 void lttng_consumer_cleanup(void)
1088 {
1089 struct lttng_ht_iter iter;
1090 struct lttng_consumer_channel *channel;
1091
1092 rcu_read_lock();
1093
1094 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1095 node.node) {
1096 consumer_del_channel(channel);
1097 }
1098
1099 rcu_read_unlock();
1100
1101 lttng_ht_destroy(consumer_data.channel_ht);
1102
1103 cleanup_relayd_ht();
1104
1105 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1106
1107 /*
1108 * This HT contains streams that are freed by either the metadata thread or
1109 * the data thread so we do *nothing* on the hash table and simply destroy
1110 * it.
1111 */
1112 lttng_ht_destroy(consumer_data.stream_list_ht);
1113 }
1114
1115 /*
1116 * Called from signal handler.
1117 */
1118 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1119 {
1120 int ret;
1121 consumer_quit = 1;
1122 do {
1123 ret = write(ctx->consumer_should_quit[1], "4", 1);
1124 } while (ret < 0 && errno == EINTR);
1125 if (ret < 0 || ret != 1) {
1126 PERROR("write consumer quit");
1127 }
1128
1129 DBG("Consumer flag that it should quit");
1130 }
1131
1132 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1133 off_t orig_offset)
1134 {
1135 int outfd = stream->out_fd;
1136
1137 /*
1138 * This does a blocking write-and-wait on any page that belongs to the
1139 * subbuffer prior to the one we just wrote.
1140 * Don't care about error values, as these are just hints and ways to
1141 * limit the amount of page cache used.
1142 */
1143 if (orig_offset < stream->max_sb_size) {
1144 return;
1145 }
1146 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1147 stream->max_sb_size,
1148 SYNC_FILE_RANGE_WAIT_BEFORE
1149 | SYNC_FILE_RANGE_WRITE
1150 | SYNC_FILE_RANGE_WAIT_AFTER);
1151 /*
1152 * Give hints to the kernel about how we access the file:
1153 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1154 * we write it.
1155 *
1156 * We need to call fadvise again after the file grows because the
1157 * kernel does not seem to apply fadvise to non-existing parts of the
1158 * file.
1159 *
1160 * Call fadvise _after_ having waited for the page writeback to
1161 * complete because the dirty page writeback semantic is not well
1162 * defined. So it can be expected to lead to lower throughput in
1163 * streaming.
1164 */
1165 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1166 stream->max_sb_size, POSIX_FADV_DONTNEED);
1167 }
1168
1169 /*
1170 * Initialise the necessary environnement :
1171 * - create a new context
1172 * - create the poll_pipe
1173 * - create the should_quit pipe (for signal handler)
1174 * - create the thread pipe (for splice)
1175 *
1176 * Takes a function pointer as argument, this function is called when data is
1177 * available on a buffer. This function is responsible to do the
1178 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1179 * buffer configuration and then kernctl_put_next_subbuf at the end.
1180 *
1181 * Returns a pointer to the new context or NULL on error.
1182 */
1183 struct lttng_consumer_local_data *lttng_consumer_create(
1184 enum lttng_consumer_type type,
1185 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1186 struct lttng_consumer_local_data *ctx),
1187 int (*recv_channel)(struct lttng_consumer_channel *channel),
1188 int (*recv_stream)(struct lttng_consumer_stream *stream),
1189 int (*update_stream)(uint64_t stream_key, uint32_t state))
1190 {
1191 int ret;
1192 struct lttng_consumer_local_data *ctx;
1193
1194 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1195 consumer_data.type == type);
1196 consumer_data.type = type;
1197
1198 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1199 if (ctx == NULL) {
1200 PERROR("allocating context");
1201 goto error;
1202 }
1203
1204 ctx->consumer_error_socket = -1;
1205 ctx->consumer_metadata_socket = -1;
1206 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1207 /* assign the callbacks */
1208 ctx->on_buffer_ready = buffer_ready;
1209 ctx->on_recv_channel = recv_channel;
1210 ctx->on_recv_stream = recv_stream;
1211 ctx->on_update_stream = update_stream;
1212
1213 ctx->consumer_data_pipe = lttng_pipe_open(0);
1214 if (!ctx->consumer_data_pipe) {
1215 goto error_poll_pipe;
1216 }
1217
1218 ret = pipe(ctx->consumer_should_quit);
1219 if (ret < 0) {
1220 PERROR("Error creating recv pipe");
1221 goto error_quit_pipe;
1222 }
1223
1224 ret = pipe(ctx->consumer_thread_pipe);
1225 if (ret < 0) {
1226 PERROR("Error creating thread pipe");
1227 goto error_thread_pipe;
1228 }
1229
1230 ret = pipe(ctx->consumer_channel_pipe);
1231 if (ret < 0) {
1232 PERROR("Error creating channel pipe");
1233 goto error_channel_pipe;
1234 }
1235
1236 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1237 if (!ctx->consumer_metadata_pipe) {
1238 goto error_metadata_pipe;
1239 }
1240
1241 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1242 if (ret < 0) {
1243 goto error_splice_pipe;
1244 }
1245
1246 return ctx;
1247
1248 error_splice_pipe:
1249 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1250 error_metadata_pipe:
1251 utils_close_pipe(ctx->consumer_channel_pipe);
1252 error_channel_pipe:
1253 utils_close_pipe(ctx->consumer_thread_pipe);
1254 error_thread_pipe:
1255 utils_close_pipe(ctx->consumer_should_quit);
1256 error_quit_pipe:
1257 lttng_pipe_destroy(ctx->consumer_data_pipe);
1258 error_poll_pipe:
1259 free(ctx);
1260 error:
1261 return NULL;
1262 }
1263
1264 /*
1265 * Close all fds associated with the instance and free the context.
1266 */
1267 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1268 {
1269 int ret;
1270
1271 DBG("Consumer destroying it. Closing everything.");
1272
1273 ret = close(ctx->consumer_error_socket);
1274 if (ret) {
1275 PERROR("close");
1276 }
1277 ret = close(ctx->consumer_metadata_socket);
1278 if (ret) {
1279 PERROR("close");
1280 }
1281 utils_close_pipe(ctx->consumer_thread_pipe);
1282 utils_close_pipe(ctx->consumer_channel_pipe);
1283 lttng_pipe_destroy(ctx->consumer_data_pipe);
1284 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1285 utils_close_pipe(ctx->consumer_should_quit);
1286 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1287
1288 unlink(ctx->consumer_command_sock_path);
1289 free(ctx);
1290 }
1291
1292 /*
1293 * Write the metadata stream id on the specified file descriptor.
1294 */
1295 static int write_relayd_metadata_id(int fd,
1296 struct lttng_consumer_stream *stream,
1297 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1298 {
1299 int ret;
1300 struct lttcomm_relayd_metadata_payload hdr;
1301
1302 hdr.stream_id = htobe64(stream->relayd_stream_id);
1303 hdr.padding_size = htobe32(padding);
1304 do {
1305 ret = write(fd, (void *) &hdr, sizeof(hdr));
1306 } while (ret < 0 && errno == EINTR);
1307 if (ret < 0 || ret != sizeof(hdr)) {
1308 /*
1309 * This error means that the fd's end is closed so ignore the perror
1310 * not to clubber the error output since this can happen in a normal
1311 * code path.
1312 */
1313 if (errno != EPIPE) {
1314 PERROR("write metadata stream id");
1315 }
1316 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1317 /*
1318 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1319 * handle writting the missing part so report that as an error and
1320 * don't lie to the caller.
1321 */
1322 ret = -1;
1323 goto end;
1324 }
1325 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1326 stream->relayd_stream_id, padding);
1327
1328 end:
1329 return ret;
1330 }
1331
1332 /*
1333 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1334 * core function for writing trace buffers to either the local filesystem or
1335 * the network.
1336 *
1337 * It must be called with the stream lock held.
1338 *
1339 * Careful review MUST be put if any changes occur!
1340 *
1341 * Returns the number of bytes written
1342 */
1343 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1344 struct lttng_consumer_local_data *ctx,
1345 struct lttng_consumer_stream *stream, unsigned long len,
1346 unsigned long padding,
1347 struct lttng_packet_index *index)
1348 {
1349 unsigned long mmap_offset;
1350 void *mmap_base;
1351 ssize_t ret = 0, written = 0;
1352 off_t orig_offset = stream->out_fd_offset;
1353 /* Default is on the disk */
1354 int outfd = stream->out_fd;
1355 struct consumer_relayd_sock_pair *relayd = NULL;
1356 unsigned int relayd_hang_up = 0;
1357
1358 /* RCU lock for the relayd pointer */
1359 rcu_read_lock();
1360
1361 /* Flag that the current stream if set for network streaming. */
1362 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1363 relayd = consumer_find_relayd(stream->net_seq_idx);
1364 if (relayd == NULL) {
1365 ret = -EPIPE;
1366 goto end;
1367 }
1368 }
1369
1370 /* get the offset inside the fd to mmap */
1371 switch (consumer_data.type) {
1372 case LTTNG_CONSUMER_KERNEL:
1373 mmap_base = stream->mmap_base;
1374 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1375 if (ret != 0) {
1376 PERROR("tracer ctl get_mmap_read_offset");
1377 written = -errno;
1378 goto end;
1379 }
1380 break;
1381 case LTTNG_CONSUMER32_UST:
1382 case LTTNG_CONSUMER64_UST:
1383 mmap_base = lttng_ustctl_get_mmap_base(stream);
1384 if (!mmap_base) {
1385 ERR("read mmap get mmap base for stream %s", stream->name);
1386 written = -EPERM;
1387 goto end;
1388 }
1389 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1390 if (ret != 0) {
1391 PERROR("tracer ctl get_mmap_read_offset");
1392 written = ret;
1393 goto end;
1394 }
1395 break;
1396 default:
1397 ERR("Unknown consumer_data type");
1398 assert(0);
1399 }
1400
1401 /* Handle stream on the relayd if the output is on the network */
1402 if (relayd) {
1403 unsigned long netlen = len;
1404
1405 /*
1406 * Lock the control socket for the complete duration of the function
1407 * since from this point on we will use the socket.
1408 */
1409 if (stream->metadata_flag) {
1410 /* Metadata requires the control socket. */
1411 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1412 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1413 }
1414
1415 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1416 if (ret >= 0) {
1417 /* Use the returned socket. */
1418 outfd = ret;
1419
1420 /* Write metadata stream id before payload */
1421 if (stream->metadata_flag) {
1422 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1423 if (ret < 0) {
1424 written = ret;
1425 /* Socket operation failed. We consider the relayd dead */
1426 if (ret == -EPIPE || ret == -EINVAL) {
1427 relayd_hang_up = 1;
1428 goto write_error;
1429 }
1430 goto end;
1431 }
1432 }
1433 } else {
1434 /* Socket operation failed. We consider the relayd dead */
1435 if (ret == -EPIPE || ret == -EINVAL) {
1436 relayd_hang_up = 1;
1437 goto write_error;
1438 }
1439 /* Else, use the default set before which is the filesystem. */
1440 }
1441 } else {
1442 /* No streaming, we have to set the len with the full padding */
1443 len += padding;
1444
1445 /*
1446 * Check if we need to change the tracefile before writing the packet.
1447 */
1448 if (stream->chan->tracefile_size > 0 &&
1449 (stream->tracefile_size_current + len) >
1450 stream->chan->tracefile_size) {
1451 ret = utils_rotate_stream_file(stream->chan->pathname,
1452 stream->name, stream->chan->tracefile_size,
1453 stream->chan->tracefile_count, stream->uid, stream->gid,
1454 stream->out_fd, &(stream->tracefile_count_current),
1455 &stream->out_fd);
1456 if (ret < 0) {
1457 ERR("Rotating output file");
1458 goto end;
1459 }
1460 outfd = stream->out_fd;
1461
1462 if (stream->index_fd >= 0) {
1463 ret = index_create_file(stream->chan->pathname,
1464 stream->name, stream->uid, stream->gid,
1465 stream->chan->tracefile_size,
1466 stream->tracefile_count_current);
1467 if (ret < 0) {
1468 goto end;
1469 }
1470 stream->index_fd = ret;
1471 }
1472
1473 /* Reset current size because we just perform a rotation. */
1474 stream->tracefile_size_current = 0;
1475 stream->out_fd_offset = 0;
1476 orig_offset = 0;
1477 }
1478 stream->tracefile_size_current += len;
1479 if (index) {
1480 index->offset = htobe64(stream->out_fd_offset);
1481 }
1482 }
1483
1484 while (len > 0) {
1485 do {
1486 ret = write(outfd, mmap_base + mmap_offset, len);
1487 } while (ret < 0 && errno == EINTR);
1488 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1489 if (ret < 0) {
1490 /*
1491 * This is possible if the fd is closed on the other side (outfd)
1492 * or any write problem. It can be verbose a bit for a normal
1493 * execution if for instance the relayd is stopped abruptly. This
1494 * can happen so set this to a DBG statement.
1495 */
1496 DBG("Error in file write mmap");
1497 if (written == 0) {
1498 written = -errno;
1499 }
1500 /* Socket operation failed. We consider the relayd dead */
1501 if (errno == EPIPE || errno == EINVAL) {
1502 relayd_hang_up = 1;
1503 goto write_error;
1504 }
1505 goto end;
1506 } else if (ret > len) {
1507 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1508 written += ret;
1509 goto end;
1510 } else {
1511 len -= ret;
1512 mmap_offset += ret;
1513 }
1514
1515 /* This call is useless on a socket so better save a syscall. */
1516 if (!relayd) {
1517 /* This won't block, but will start writeout asynchronously */
1518 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1519 SYNC_FILE_RANGE_WRITE);
1520 stream->out_fd_offset += ret;
1521 }
1522 stream->output_written += ret;
1523 written += ret;
1524 }
1525 lttng_consumer_sync_trace_file(stream, orig_offset);
1526
1527 write_error:
1528 /*
1529 * This is a special case that the relayd has closed its socket. Let's
1530 * cleanup the relayd object and all associated streams.
1531 */
1532 if (relayd && relayd_hang_up) {
1533 cleanup_relayd(relayd, ctx);
1534 }
1535
1536 end:
1537 /* Unlock only if ctrl socket used */
1538 if (relayd && stream->metadata_flag) {
1539 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1540 }
1541
1542 rcu_read_unlock();
1543 return written;
1544 }
1545
1546 /*
1547 * Splice the data from the ring buffer to the tracefile.
1548 *
1549 * It must be called with the stream lock held.
1550 *
1551 * Returns the number of bytes spliced.
1552 */
1553 ssize_t lttng_consumer_on_read_subbuffer_splice(
1554 struct lttng_consumer_local_data *ctx,
1555 struct lttng_consumer_stream *stream, unsigned long len,
1556 unsigned long padding,
1557 struct lttng_packet_index *index)
1558 {
1559 ssize_t ret = 0, written = 0, ret_splice = 0;
1560 loff_t offset = 0;
1561 off_t orig_offset = stream->out_fd_offset;
1562 int fd = stream->wait_fd;
1563 /* Default is on the disk */
1564 int outfd = stream->out_fd;
1565 struct consumer_relayd_sock_pair *relayd = NULL;
1566 int *splice_pipe;
1567 unsigned int relayd_hang_up = 0;
1568
1569 switch (consumer_data.type) {
1570 case LTTNG_CONSUMER_KERNEL:
1571 break;
1572 case LTTNG_CONSUMER32_UST:
1573 case LTTNG_CONSUMER64_UST:
1574 /* Not supported for user space tracing */
1575 return -ENOSYS;
1576 default:
1577 ERR("Unknown consumer_data type");
1578 assert(0);
1579 }
1580
1581 /* RCU lock for the relayd pointer */
1582 rcu_read_lock();
1583
1584 /* Flag that the current stream if set for network streaming. */
1585 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1586 relayd = consumer_find_relayd(stream->net_seq_idx);
1587 if (relayd == NULL) {
1588 ret = -EPIPE;
1589 goto end;
1590 }
1591 }
1592
1593 /*
1594 * Choose right pipe for splice. Metadata and trace data are handled by
1595 * different threads hence the use of two pipes in order not to race or
1596 * corrupt the written data.
1597 */
1598 if (stream->metadata_flag) {
1599 splice_pipe = ctx->consumer_splice_metadata_pipe;
1600 } else {
1601 splice_pipe = ctx->consumer_thread_pipe;
1602 }
1603
1604 /* Write metadata stream id before payload */
1605 if (relayd) {
1606 int total_len = len;
1607
1608 if (stream->metadata_flag) {
1609 /*
1610 * Lock the control socket for the complete duration of the function
1611 * since from this point on we will use the socket.
1612 */
1613 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1614
1615 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1616 padding);
1617 if (ret < 0) {
1618 written = ret;
1619 /* Socket operation failed. We consider the relayd dead */
1620 if (ret == -EBADF) {
1621 WARN("Remote relayd disconnected. Stopping");
1622 relayd_hang_up = 1;
1623 goto write_error;
1624 }
1625 goto end;
1626 }
1627
1628 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1629 }
1630
1631 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1632 if (ret >= 0) {
1633 /* Use the returned socket. */
1634 outfd = ret;
1635 } else {
1636 /* Socket operation failed. We consider the relayd dead */
1637 if (ret == -EBADF) {
1638 WARN("Remote relayd disconnected. Stopping");
1639 relayd_hang_up = 1;
1640 goto write_error;
1641 }
1642 goto end;
1643 }
1644 } else {
1645 /* No streaming, we have to set the len with the full padding */
1646 len += padding;
1647
1648 /*
1649 * Check if we need to change the tracefile before writing the packet.
1650 */
1651 if (stream->chan->tracefile_size > 0 &&
1652 (stream->tracefile_size_current + len) >
1653 stream->chan->tracefile_size) {
1654 ret = utils_rotate_stream_file(stream->chan->pathname,
1655 stream->name, stream->chan->tracefile_size,
1656 stream->chan->tracefile_count, stream->uid, stream->gid,
1657 stream->out_fd, &(stream->tracefile_count_current),
1658 &stream->out_fd);
1659 if (ret < 0) {
1660 ERR("Rotating output file");
1661 goto end;
1662 }
1663 outfd = stream->out_fd;
1664
1665 if (stream->index_fd >= 0) {
1666 ret = index_create_file(stream->chan->pathname,
1667 stream->name, stream->uid, stream->gid,
1668 stream->chan->tracefile_size,
1669 stream->tracefile_count_current);
1670 if (ret < 0) {
1671 goto end;
1672 }
1673 stream->index_fd = ret;
1674 }
1675
1676 /* Reset current size because we just perform a rotation. */
1677 stream->tracefile_size_current = 0;
1678 stream->out_fd_offset = 0;
1679 orig_offset = 0;
1680 }
1681 stream->tracefile_size_current += len;
1682 index->offset = htobe64(stream->out_fd_offset);
1683 }
1684
1685 while (len > 0) {
1686 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1687 (unsigned long)offset, len, fd, splice_pipe[1]);
1688 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1689 SPLICE_F_MOVE | SPLICE_F_MORE);
1690 DBG("splice chan to pipe, ret %zd", ret_splice);
1691 if (ret_splice < 0) {
1692 PERROR("Error in relay splice");
1693 if (written == 0) {
1694 written = ret_splice;
1695 }
1696 ret = errno;
1697 goto splice_error;
1698 }
1699
1700 /* Handle stream on the relayd if the output is on the network */
1701 if (relayd) {
1702 if (stream->metadata_flag) {
1703 size_t metadata_payload_size =
1704 sizeof(struct lttcomm_relayd_metadata_payload);
1705
1706 /* Update counter to fit the spliced data */
1707 ret_splice += metadata_payload_size;
1708 len += metadata_payload_size;
1709 /*
1710 * We do this so the return value can match the len passed as
1711 * argument to this function.
1712 */
1713 written -= metadata_payload_size;
1714 }
1715 }
1716
1717 /* Splice data out */
1718 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1719 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1720 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1721 if (ret_splice < 0) {
1722 PERROR("Error in file splice");
1723 if (written == 0) {
1724 written = ret_splice;
1725 }
1726 /* Socket operation failed. We consider the relayd dead */
1727 if (errno == EBADF || errno == EPIPE) {
1728 WARN("Remote relayd disconnected. Stopping");
1729 relayd_hang_up = 1;
1730 goto write_error;
1731 }
1732 ret = errno;
1733 goto splice_error;
1734 } else if (ret_splice > len) {
1735 errno = EINVAL;
1736 PERROR("Wrote more data than requested %zd (len: %lu)",
1737 ret_splice, len);
1738 written += ret_splice;
1739 ret = errno;
1740 goto splice_error;
1741 }
1742 len -= ret_splice;
1743
1744 /* This call is useless on a socket so better save a syscall. */
1745 if (!relayd) {
1746 /* This won't block, but will start writeout asynchronously */
1747 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1748 SYNC_FILE_RANGE_WRITE);
1749 stream->out_fd_offset += ret_splice;
1750 }
1751 stream->output_written += ret_splice;
1752 written += ret_splice;
1753 }
1754 lttng_consumer_sync_trace_file(stream, orig_offset);
1755
1756 ret = ret_splice;
1757
1758 goto end;
1759
1760 write_error:
1761 /*
1762 * This is a special case that the relayd has closed its socket. Let's
1763 * cleanup the relayd object and all associated streams.
1764 */
1765 if (relayd && relayd_hang_up) {
1766 cleanup_relayd(relayd, ctx);
1767 /* Skip splice error so the consumer does not fail */
1768 goto end;
1769 }
1770
1771 splice_error:
1772 /* send the appropriate error description to sessiond */
1773 switch (ret) {
1774 case EINVAL:
1775 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1776 break;
1777 case ENOMEM:
1778 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1779 break;
1780 case ESPIPE:
1781 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1782 break;
1783 }
1784
1785 end:
1786 if (relayd && stream->metadata_flag) {
1787 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1788 }
1789
1790 rcu_read_unlock();
1791 return written;
1792 }
1793
1794 /*
1795 * Take a snapshot for a specific fd
1796 *
1797 * Returns 0 on success, < 0 on error
1798 */
1799 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1800 {
1801 switch (consumer_data.type) {
1802 case LTTNG_CONSUMER_KERNEL:
1803 return lttng_kconsumer_take_snapshot(stream);
1804 case LTTNG_CONSUMER32_UST:
1805 case LTTNG_CONSUMER64_UST:
1806 return lttng_ustconsumer_take_snapshot(stream);
1807 default:
1808 ERR("Unknown consumer_data type");
1809 assert(0);
1810 return -ENOSYS;
1811 }
1812 }
1813
1814 /*
1815 * Get the produced position
1816 *
1817 * Returns 0 on success, < 0 on error
1818 */
1819 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1820 unsigned long *pos)
1821 {
1822 switch (consumer_data.type) {
1823 case LTTNG_CONSUMER_KERNEL:
1824 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1825 case LTTNG_CONSUMER32_UST:
1826 case LTTNG_CONSUMER64_UST:
1827 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1828 default:
1829 ERR("Unknown consumer_data type");
1830 assert(0);
1831 return -ENOSYS;
1832 }
1833 }
1834
1835 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1836 int sock, struct pollfd *consumer_sockpoll)
1837 {
1838 switch (consumer_data.type) {
1839 case LTTNG_CONSUMER_KERNEL:
1840 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1841 case LTTNG_CONSUMER32_UST:
1842 case LTTNG_CONSUMER64_UST:
1843 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1844 default:
1845 ERR("Unknown consumer_data type");
1846 assert(0);
1847 return -ENOSYS;
1848 }
1849 }
1850
1851 /*
1852 * Iterate over all streams of the hashtable and free them properly.
1853 *
1854 * WARNING: *MUST* be used with data stream only.
1855 */
1856 static void destroy_data_stream_ht(struct lttng_ht *ht)
1857 {
1858 struct lttng_ht_iter iter;
1859 struct lttng_consumer_stream *stream;
1860
1861 if (ht == NULL) {
1862 return;
1863 }
1864
1865 rcu_read_lock();
1866 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1867 /*
1868 * Ignore return value since we are currently cleaning up so any error
1869 * can't be handled.
1870 */
1871 (void) consumer_del_stream(stream, ht);
1872 }
1873 rcu_read_unlock();
1874
1875 lttng_ht_destroy(ht);
1876 }
1877
1878 /*
1879 * Iterate over all streams of the hashtable and free them properly.
1880 *
1881 * XXX: Should not be only for metadata stream or else use an other name.
1882 */
1883 static void destroy_stream_ht(struct lttng_ht *ht)
1884 {
1885 struct lttng_ht_iter iter;
1886 struct lttng_consumer_stream *stream;
1887
1888 if (ht == NULL) {
1889 return;
1890 }
1891
1892 rcu_read_lock();
1893 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1894 /*
1895 * Ignore return value since we are currently cleaning up so any error
1896 * can't be handled.
1897 */
1898 (void) consumer_del_metadata_stream(stream, ht);
1899 }
1900 rcu_read_unlock();
1901
1902 lttng_ht_destroy(ht);
1903 }
1904
1905 void lttng_consumer_close_metadata(void)
1906 {
1907 switch (consumer_data.type) {
1908 case LTTNG_CONSUMER_KERNEL:
1909 /*
1910 * The Kernel consumer has a different metadata scheme so we don't
1911 * close anything because the stream will be closed by the session
1912 * daemon.
1913 */
1914 break;
1915 case LTTNG_CONSUMER32_UST:
1916 case LTTNG_CONSUMER64_UST:
1917 /*
1918 * Close all metadata streams. The metadata hash table is passed and
1919 * this call iterates over it by closing all wakeup fd. This is safe
1920 * because at this point we are sure that the metadata producer is
1921 * either dead or blocked.
1922 */
1923 lttng_ustconsumer_close_metadata(metadata_ht);
1924 break;
1925 default:
1926 ERR("Unknown consumer_data type");
1927 assert(0);
1928 }
1929 }
1930
1931 /*
1932 * Clean up a metadata stream and free its memory.
1933 */
1934 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1935 struct lttng_ht *ht)
1936 {
1937 int ret;
1938 struct lttng_ht_iter iter;
1939 struct lttng_consumer_channel *free_chan = NULL;
1940 struct consumer_relayd_sock_pair *relayd;
1941
1942 assert(stream);
1943 /*
1944 * This call should NEVER receive regular stream. It must always be
1945 * metadata stream and this is crucial for data structure synchronization.
1946 */
1947 assert(stream->metadata_flag);
1948
1949 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1950
1951 if (ht == NULL) {
1952 /* Means the stream was allocated but not successfully added */
1953 goto free_stream_rcu;
1954 }
1955
1956 pthread_mutex_lock(&consumer_data.lock);
1957 pthread_mutex_lock(&stream->chan->lock);
1958 pthread_mutex_lock(&stream->lock);
1959
1960 switch (consumer_data.type) {
1961 case LTTNG_CONSUMER_KERNEL:
1962 if (stream->mmap_base != NULL) {
1963 ret = munmap(stream->mmap_base, stream->mmap_len);
1964 if (ret != 0) {
1965 PERROR("munmap metadata stream");
1966 }
1967 }
1968 if (stream->wait_fd >= 0) {
1969 ret = close(stream->wait_fd);
1970 if (ret < 0) {
1971 PERROR("close kernel metadata wait_fd");
1972 }
1973 }
1974 break;
1975 case LTTNG_CONSUMER32_UST:
1976 case LTTNG_CONSUMER64_UST:
1977 if (stream->monitor) {
1978 /* close the write-side in close_metadata */
1979 ret = close(stream->ust_metadata_poll_pipe[0]);
1980 if (ret < 0) {
1981 PERROR("Close UST metadata read-side poll pipe");
1982 }
1983 }
1984 lttng_ustconsumer_del_stream(stream);
1985 break;
1986 default:
1987 ERR("Unknown consumer_data type");
1988 assert(0);
1989 goto end;
1990 }
1991
1992 rcu_read_lock();
1993 iter.iter.node = &stream->node.node;
1994 ret = lttng_ht_del(ht, &iter);
1995 assert(!ret);
1996
1997 iter.iter.node = &stream->node_channel_id.node;
1998 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1999 assert(!ret);
2000
2001 iter.iter.node = &stream->node_session_id.node;
2002 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
2003 assert(!ret);
2004 rcu_read_unlock();
2005
2006 if (stream->out_fd >= 0) {
2007 ret = close(stream->out_fd);
2008 if (ret) {
2009 PERROR("close");
2010 }
2011 }
2012
2013 /* Check and cleanup relayd */
2014 rcu_read_lock();
2015 relayd = consumer_find_relayd(stream->net_seq_idx);
2016 if (relayd != NULL) {
2017 uatomic_dec(&relayd->refcount);
2018 assert(uatomic_read(&relayd->refcount) >= 0);
2019
2020 /* Closing streams requires to lock the control socket. */
2021 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
2022 ret = relayd_send_close_stream(&relayd->control_sock,
2023 stream->relayd_stream_id, stream->next_net_seq_num - 1);
2024 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2025 if (ret < 0) {
2026 DBG("Unable to close stream on the relayd. Continuing");
2027 /*
2028 * Continue here. There is nothing we can do for the relayd.
2029 * Chances are that the relayd has closed the socket so we just
2030 * continue cleaning up.
2031 */
2032 }
2033
2034 /* Both conditions are met, we destroy the relayd. */
2035 if (uatomic_read(&relayd->refcount) == 0 &&
2036 uatomic_read(&relayd->destroy_flag)) {
2037 consumer_destroy_relayd(relayd);
2038 }
2039 }
2040 rcu_read_unlock();
2041
2042 /* Atomically decrement channel refcount since other threads can use it. */
2043 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2044 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2045 /* Go for channel deletion! */
2046 free_chan = stream->chan;
2047 }
2048
2049 end:
2050 /*
2051 * Nullify the stream reference so it is not used after deletion. The
2052 * channel lock MUST be acquired before being able to check for
2053 * a NULL pointer value.
2054 */
2055 stream->chan->metadata_stream = NULL;
2056
2057 pthread_mutex_unlock(&stream->lock);
2058 pthread_mutex_unlock(&stream->chan->lock);
2059 pthread_mutex_unlock(&consumer_data.lock);
2060
2061 if (free_chan) {
2062 consumer_del_channel(free_chan);
2063 }
2064
2065 free_stream_rcu:
2066 call_rcu(&stream->node.head, free_stream_rcu);
2067 }
2068
2069 /*
2070 * Action done with the metadata stream when adding it to the consumer internal
2071 * data structures to handle it.
2072 */
2073 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2074 {
2075 struct lttng_ht *ht = metadata_ht;
2076 int ret = 0;
2077 struct lttng_ht_iter iter;
2078 struct lttng_ht_node_u64 *node;
2079
2080 assert(stream);
2081 assert(ht);
2082
2083 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2084
2085 pthread_mutex_lock(&consumer_data.lock);
2086 pthread_mutex_lock(&stream->chan->lock);
2087 pthread_mutex_lock(&stream->chan->timer_lock);
2088 pthread_mutex_lock(&stream->lock);
2089
2090 /*
2091 * From here, refcounts are updated so be _careful_ when returning an error
2092 * after this point.
2093 */
2094
2095 rcu_read_lock();
2096
2097 /*
2098 * Lookup the stream just to make sure it does not exist in our internal
2099 * state. This should NEVER happen.
2100 */
2101 lttng_ht_lookup(ht, &stream->key, &iter);
2102 node = lttng_ht_iter_get_node_u64(&iter);
2103 assert(!node);
2104
2105 /*
2106 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2107 * in terms of destroying the associated channel, because the action that
2108 * causes the count to become 0 also causes a stream to be added. The
2109 * channel deletion will thus be triggered by the following removal of this
2110 * stream.
2111 */
2112 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2113 /* Increment refcount before decrementing nb_init_stream_left */
2114 cmm_smp_wmb();
2115 uatomic_dec(&stream->chan->nb_init_stream_left);
2116 }
2117
2118 lttng_ht_add_unique_u64(ht, &stream->node);
2119
2120 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2121 &stream->node_channel_id);
2122
2123 /*
2124 * Add stream to the stream_list_ht of the consumer data. No need to steal
2125 * the key since the HT does not use it and we allow to add redundant keys
2126 * into this table.
2127 */
2128 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2129
2130 rcu_read_unlock();
2131
2132 pthread_mutex_unlock(&stream->lock);
2133 pthread_mutex_unlock(&stream->chan->lock);
2134 pthread_mutex_unlock(&stream->chan->timer_lock);
2135 pthread_mutex_unlock(&consumer_data.lock);
2136 return ret;
2137 }
2138
2139 /*
2140 * Delete data stream that are flagged for deletion (endpoint_status).
2141 */
2142 static void validate_endpoint_status_data_stream(void)
2143 {
2144 struct lttng_ht_iter iter;
2145 struct lttng_consumer_stream *stream;
2146
2147 DBG("Consumer delete flagged data stream");
2148
2149 rcu_read_lock();
2150 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2151 /* Validate delete flag of the stream */
2152 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2153 continue;
2154 }
2155 /* Delete it right now */
2156 consumer_del_stream(stream, data_ht);
2157 }
2158 rcu_read_unlock();
2159 }
2160
2161 /*
2162 * Delete metadata stream that are flagged for deletion (endpoint_status).
2163 */
2164 static void validate_endpoint_status_metadata_stream(
2165 struct lttng_poll_event *pollset)
2166 {
2167 struct lttng_ht_iter iter;
2168 struct lttng_consumer_stream *stream;
2169
2170 DBG("Consumer delete flagged metadata stream");
2171
2172 assert(pollset);
2173
2174 rcu_read_lock();
2175 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2176 /* Validate delete flag of the stream */
2177 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2178 continue;
2179 }
2180 /*
2181 * Remove from pollset so the metadata thread can continue without
2182 * blocking on a deleted stream.
2183 */
2184 lttng_poll_del(pollset, stream->wait_fd);
2185
2186 /* Delete it right now */
2187 consumer_del_metadata_stream(stream, metadata_ht);
2188 }
2189 rcu_read_unlock();
2190 }
2191
2192 /*
2193 * Thread polls on metadata file descriptor and write them on disk or on the
2194 * network.
2195 */
2196 void *consumer_thread_metadata_poll(void *data)
2197 {
2198 int ret, i, pollfd, err = -1;
2199 uint32_t revents, nb_fd;
2200 struct lttng_consumer_stream *stream = NULL;
2201 struct lttng_ht_iter iter;
2202 struct lttng_ht_node_u64 *node;
2203 struct lttng_poll_event events;
2204 struct lttng_consumer_local_data *ctx = data;
2205 ssize_t len;
2206
2207 rcu_register_thread();
2208
2209 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2210
2211 health_code_update();
2212
2213 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2214 if (!metadata_ht) {
2215 /* ENOMEM at this point. Better to bail out. */
2216 goto end_ht;
2217 }
2218
2219 DBG("Thread metadata poll started");
2220
2221 /* Size is set to 1 for the consumer_metadata pipe */
2222 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2223 if (ret < 0) {
2224 ERR("Poll set creation failed");
2225 goto end_poll;
2226 }
2227
2228 ret = lttng_poll_add(&events,
2229 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2230 if (ret < 0) {
2231 goto end;
2232 }
2233
2234 /* Main loop */
2235 DBG("Metadata main loop started");
2236
2237 while (1) {
2238 health_code_update();
2239
2240 /* Only the metadata pipe is set */
2241 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2242 err = 0; /* All is OK */
2243 goto end;
2244 }
2245
2246 restart:
2247 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2248 health_poll_entry();
2249 ret = lttng_poll_wait(&events, -1);
2250 health_poll_exit();
2251 DBG("Metadata event catched in thread");
2252 if (ret < 0) {
2253 if (errno == EINTR) {
2254 ERR("Poll EINTR catched");
2255 goto restart;
2256 }
2257 goto error;
2258 }
2259
2260 nb_fd = ret;
2261
2262 /* From here, the event is a metadata wait fd */
2263 for (i = 0; i < nb_fd; i++) {
2264 health_code_update();
2265
2266 revents = LTTNG_POLL_GETEV(&events, i);
2267 pollfd = LTTNG_POLL_GETFD(&events, i);
2268
2269 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2270 if (revents & (LPOLLERR | LPOLLHUP )) {
2271 DBG("Metadata thread pipe hung up");
2272 /*
2273 * Remove the pipe from the poll set and continue the loop
2274 * since their might be data to consume.
2275 */
2276 lttng_poll_del(&events,
2277 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2278 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2279 continue;
2280 } else if (revents & LPOLLIN) {
2281 ssize_t pipe_len;
2282
2283 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2284 &stream, sizeof(stream));
2285 if (pipe_len < 0) {
2286 ERR("read metadata stream, ret: %zd", pipe_len);
2287 /*
2288 * Continue here to handle the rest of the streams.
2289 */
2290 continue;
2291 }
2292
2293 /* A NULL stream means that the state has changed. */
2294 if (stream == NULL) {
2295 /* Check for deleted streams. */
2296 validate_endpoint_status_metadata_stream(&events);
2297 goto restart;
2298 }
2299
2300 DBG("Adding metadata stream %d to poll set",
2301 stream->wait_fd);
2302
2303 /* Add metadata stream to the global poll events list */
2304 lttng_poll_add(&events, stream->wait_fd,
2305 LPOLLIN | LPOLLPRI);
2306 }
2307
2308 /* Handle other stream */
2309 continue;
2310 }
2311
2312 rcu_read_lock();
2313 {
2314 uint64_t tmp_id = (uint64_t) pollfd;
2315
2316 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2317 }
2318 node = lttng_ht_iter_get_node_u64(&iter);
2319 assert(node);
2320
2321 stream = caa_container_of(node, struct lttng_consumer_stream,
2322 node);
2323
2324 /* Check for error event */
2325 if (revents & (LPOLLERR | LPOLLHUP)) {
2326 DBG("Metadata fd %d is hup|err.", pollfd);
2327 if (!stream->hangup_flush_done
2328 && (consumer_data.type == LTTNG_CONSUMER32_UST
2329 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2330 DBG("Attempting to flush and consume the UST buffers");
2331 lttng_ustconsumer_on_stream_hangup(stream);
2332
2333 /* We just flushed the stream now read it. */
2334 do {
2335 health_code_update();
2336
2337 len = ctx->on_buffer_ready(stream, ctx);
2338 /*
2339 * We don't check the return value here since if we get
2340 * a negative len, it means an error occured thus we
2341 * simply remove it from the poll set and free the
2342 * stream.
2343 */
2344 } while (len > 0);
2345 }
2346
2347 lttng_poll_del(&events, stream->wait_fd);
2348 /*
2349 * This call update the channel states, closes file descriptors
2350 * and securely free the stream.
2351 */
2352 consumer_del_metadata_stream(stream, metadata_ht);
2353 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2354 /* Get the data out of the metadata file descriptor */
2355 DBG("Metadata available on fd %d", pollfd);
2356 assert(stream->wait_fd == pollfd);
2357
2358 do {
2359 health_code_update();
2360
2361 len = ctx->on_buffer_ready(stream, ctx);
2362 /*
2363 * We don't check the return value here since if we get
2364 * a negative len, it means an error occured thus we
2365 * simply remove it from the poll set and free the
2366 * stream.
2367 */
2368 } while (len > 0);
2369
2370 /* It's ok to have an unavailable sub-buffer */
2371 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2372 /* Clean up stream from consumer and free it. */
2373 lttng_poll_del(&events, stream->wait_fd);
2374 consumer_del_metadata_stream(stream, metadata_ht);
2375 }
2376 }
2377
2378 /* Release RCU lock for the stream looked up */
2379 rcu_read_unlock();
2380 }
2381 }
2382
2383 /* All is OK */
2384 err = 0;
2385 error:
2386 end:
2387 DBG("Metadata poll thread exiting");
2388
2389 lttng_poll_clean(&events);
2390 end_poll:
2391 destroy_stream_ht(metadata_ht);
2392 end_ht:
2393 if (err) {
2394 health_error();
2395 ERR("Health error occurred in %s", __func__);
2396 }
2397 health_unregister(health_consumerd);
2398 rcu_unregister_thread();
2399 return NULL;
2400 }
2401
2402 /*
2403 * This thread polls the fds in the set to consume the data and write
2404 * it to tracefile if necessary.
2405 */
2406 void *consumer_thread_data_poll(void *data)
2407 {
2408 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2409 struct pollfd *pollfd = NULL;
2410 /* local view of the streams */
2411 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2412 /* local view of consumer_data.fds_count */
2413 int nb_fd = 0;
2414 struct lttng_consumer_local_data *ctx = data;
2415 ssize_t len;
2416
2417 rcu_register_thread();
2418
2419 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2420
2421 health_code_update();
2422
2423 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2424 if (data_ht == NULL) {
2425 /* ENOMEM at this point. Better to bail out. */
2426 goto end;
2427 }
2428
2429 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2430 if (local_stream == NULL) {
2431 PERROR("local_stream malloc");
2432 goto end;
2433 }
2434
2435 while (1) {
2436 health_code_update();
2437
2438 high_prio = 0;
2439 num_hup = 0;
2440
2441 /*
2442 * the fds set has been updated, we need to update our
2443 * local array as well
2444 */
2445 pthread_mutex_lock(&consumer_data.lock);
2446 if (consumer_data.need_update) {
2447 free(pollfd);
2448 pollfd = NULL;
2449
2450 free(local_stream);
2451 local_stream = NULL;
2452
2453 /* allocate for all fds + 1 for the consumer_data_pipe */
2454 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2455 if (pollfd == NULL) {
2456 PERROR("pollfd malloc");
2457 pthread_mutex_unlock(&consumer_data.lock);
2458 goto end;
2459 }
2460
2461 /* allocate for all fds + 1 for the consumer_data_pipe */
2462 local_stream = zmalloc((consumer_data.stream_count + 1) *
2463 sizeof(struct lttng_consumer_stream *));
2464 if (local_stream == NULL) {
2465 PERROR("local_stream malloc");
2466 pthread_mutex_unlock(&consumer_data.lock);
2467 goto end;
2468 }
2469 ret = update_poll_array(ctx, &pollfd, local_stream,
2470 data_ht);
2471 if (ret < 0) {
2472 ERR("Error in allocating pollfd or local_outfds");
2473 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2474 pthread_mutex_unlock(&consumer_data.lock);
2475 goto end;
2476 }
2477 nb_fd = ret;
2478 consumer_data.need_update = 0;
2479 }
2480 pthread_mutex_unlock(&consumer_data.lock);
2481
2482 /* No FDs and consumer_quit, consumer_cleanup the thread */
2483 if (nb_fd == 0 && consumer_quit == 1) {
2484 err = 0; /* All is OK */
2485 goto end;
2486 }
2487 /* poll on the array of fds */
2488 restart:
2489 DBG("polling on %d fd", nb_fd + 1);
2490 health_poll_entry();
2491 num_rdy = poll(pollfd, nb_fd + 1, -1);
2492 health_poll_exit();
2493 DBG("poll num_rdy : %d", num_rdy);
2494 if (num_rdy == -1) {
2495 /*
2496 * Restart interrupted system call.
2497 */
2498 if (errno == EINTR) {
2499 goto restart;
2500 }
2501 PERROR("Poll error");
2502 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2503 goto end;
2504 } else if (num_rdy == 0) {
2505 DBG("Polling thread timed out");
2506 goto end;
2507 }
2508
2509 /*
2510 * If the consumer_data_pipe triggered poll go directly to the
2511 * beginning of the loop to update the array. We want to prioritize
2512 * array update over low-priority reads.
2513 */
2514 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2515 ssize_t pipe_readlen;
2516
2517 DBG("consumer_data_pipe wake up");
2518 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2519 &new_stream, sizeof(new_stream));
2520 if (pipe_readlen < 0) {
2521 ERR("Consumer data pipe ret %zd", pipe_readlen);
2522 /* Continue so we can at least handle the current stream(s). */
2523 continue;
2524 }
2525
2526 /*
2527 * If the stream is NULL, just ignore it. It's also possible that
2528 * the sessiond poll thread changed the consumer_quit state and is
2529 * waking us up to test it.
2530 */
2531 if (new_stream == NULL) {
2532 validate_endpoint_status_data_stream();
2533 continue;
2534 }
2535
2536 /* Continue to update the local streams and handle prio ones */
2537 continue;
2538 }
2539
2540 /* Take care of high priority channels first. */
2541 for (i = 0; i < nb_fd; i++) {
2542 health_code_update();
2543
2544 if (local_stream[i] == NULL) {
2545 continue;
2546 }
2547 if (pollfd[i].revents & POLLPRI) {
2548 DBG("Urgent read on fd %d", pollfd[i].fd);
2549 high_prio = 1;
2550 len = ctx->on_buffer_ready(local_stream[i], ctx);
2551 /* it's ok to have an unavailable sub-buffer */
2552 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2553 /* Clean the stream and free it. */
2554 consumer_del_stream(local_stream[i], data_ht);
2555 local_stream[i] = NULL;
2556 } else if (len > 0) {
2557 local_stream[i]->data_read = 1;
2558 }
2559 }
2560 }
2561
2562 /*
2563 * If we read high prio channel in this loop, try again
2564 * for more high prio data.
2565 */
2566 if (high_prio) {
2567 continue;
2568 }
2569
2570 /* Take care of low priority channels. */
2571 for (i = 0; i < nb_fd; i++) {
2572 health_code_update();
2573
2574 if (local_stream[i] == NULL) {
2575 continue;
2576 }
2577 if ((pollfd[i].revents & POLLIN) ||
2578 local_stream[i]->hangup_flush_done) {
2579 DBG("Normal read on fd %d", pollfd[i].fd);
2580 len = ctx->on_buffer_ready(local_stream[i], ctx);
2581 /* it's ok to have an unavailable sub-buffer */
2582 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2583 /* Clean the stream and free it. */
2584 consumer_del_stream(local_stream[i], data_ht);
2585 local_stream[i] = NULL;
2586 } else if (len > 0) {
2587 local_stream[i]->data_read = 1;
2588 }
2589 }
2590 }
2591
2592 /* Handle hangup and errors */
2593 for (i = 0; i < nb_fd; i++) {
2594 health_code_update();
2595
2596 if (local_stream[i] == NULL) {
2597 continue;
2598 }
2599 if (!local_stream[i]->hangup_flush_done
2600 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2601 && (consumer_data.type == LTTNG_CONSUMER32_UST
2602 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2603 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2604 pollfd[i].fd);
2605 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2606 /* Attempt read again, for the data we just flushed. */
2607 local_stream[i]->data_read = 1;
2608 }
2609 /*
2610 * If the poll flag is HUP/ERR/NVAL and we have
2611 * read no data in this pass, we can remove the
2612 * stream from its hash table.
2613 */
2614 if ((pollfd[i].revents & POLLHUP)) {
2615 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2616 if (!local_stream[i]->data_read) {
2617 consumer_del_stream(local_stream[i], data_ht);
2618 local_stream[i] = NULL;
2619 num_hup++;
2620 }
2621 } else if (pollfd[i].revents & POLLERR) {
2622 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2623 if (!local_stream[i]->data_read) {
2624 consumer_del_stream(local_stream[i], data_ht);
2625 local_stream[i] = NULL;
2626 num_hup++;
2627 }
2628 } else if (pollfd[i].revents & POLLNVAL) {
2629 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2630 if (!local_stream[i]->data_read) {
2631 consumer_del_stream(local_stream[i], data_ht);
2632 local_stream[i] = NULL;
2633 num_hup++;
2634 }
2635 }
2636 if (local_stream[i] != NULL) {
2637 local_stream[i]->data_read = 0;
2638 }
2639 }
2640 }
2641 /* All is OK */
2642 err = 0;
2643 end:
2644 DBG("polling thread exiting");
2645 free(pollfd);
2646 free(local_stream);
2647
2648 /*
2649 * Close the write side of the pipe so epoll_wait() in
2650 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2651 * read side of the pipe. If we close them both, epoll_wait strangely does
2652 * not return and could create a endless wait period if the pipe is the
2653 * only tracked fd in the poll set. The thread will take care of closing
2654 * the read side.
2655 */
2656 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2657
2658 destroy_data_stream_ht(data_ht);
2659
2660 if (err) {
2661 health_error();
2662 ERR("Health error occurred in %s", __func__);
2663 }
2664 health_unregister(health_consumerd);
2665
2666 rcu_unregister_thread();
2667 return NULL;
2668 }
2669
2670 /*
2671 * Close wake-up end of each stream belonging to the channel. This will
2672 * allow the poll() on the stream read-side to detect when the
2673 * write-side (application) finally closes them.
2674 */
2675 static
2676 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2677 {
2678 struct lttng_ht *ht;
2679 struct lttng_consumer_stream *stream;
2680 struct lttng_ht_iter iter;
2681
2682 ht = consumer_data.stream_per_chan_id_ht;
2683
2684 rcu_read_lock();
2685 cds_lfht_for_each_entry_duplicate(ht->ht,
2686 ht->hash_fct(&channel->key, lttng_ht_seed),
2687 ht->match_fct, &channel->key,
2688 &iter.iter, stream, node_channel_id.node) {
2689 /*
2690 * Protect against teardown with mutex.
2691 */
2692 pthread_mutex_lock(&stream->lock);
2693 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2694 goto next;
2695 }
2696 switch (consumer_data.type) {
2697 case LTTNG_CONSUMER_KERNEL:
2698 break;
2699 case LTTNG_CONSUMER32_UST:
2700 case LTTNG_CONSUMER64_UST:
2701 /*
2702 * Note: a mutex is taken internally within
2703 * liblttng-ust-ctl to protect timer wakeup_fd
2704 * use from concurrent close.
2705 */
2706 lttng_ustconsumer_close_stream_wakeup(stream);
2707 break;
2708 default:
2709 ERR("Unknown consumer_data type");
2710 assert(0);
2711 }
2712 next:
2713 pthread_mutex_unlock(&stream->lock);
2714 }
2715 rcu_read_unlock();
2716 }
2717
2718 static void destroy_channel_ht(struct lttng_ht *ht)
2719 {
2720 struct lttng_ht_iter iter;
2721 struct lttng_consumer_channel *channel;
2722 int ret;
2723
2724 if (ht == NULL) {
2725 return;
2726 }
2727
2728 rcu_read_lock();
2729 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2730 ret = lttng_ht_del(ht, &iter);
2731 assert(ret != 0);
2732 }
2733 rcu_read_unlock();
2734
2735 lttng_ht_destroy(ht);
2736 }
2737
2738 /*
2739 * This thread polls the channel fds to detect when they are being
2740 * closed. It closes all related streams if the channel is detected as
2741 * closed. It is currently only used as a shim layer for UST because the
2742 * consumerd needs to keep the per-stream wakeup end of pipes open for
2743 * periodical flush.
2744 */
2745 void *consumer_thread_channel_poll(void *data)
2746 {
2747 int ret, i, pollfd, err = -1;
2748 uint32_t revents, nb_fd;
2749 struct lttng_consumer_channel *chan = NULL;
2750 struct lttng_ht_iter iter;
2751 struct lttng_ht_node_u64 *node;
2752 struct lttng_poll_event events;
2753 struct lttng_consumer_local_data *ctx = data;
2754 struct lttng_ht *channel_ht;
2755
2756 rcu_register_thread();
2757
2758 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2759
2760 health_code_update();
2761
2762 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2763 if (!channel_ht) {
2764 /* ENOMEM at this point. Better to bail out. */
2765 goto end_ht;
2766 }
2767
2768 DBG("Thread channel poll started");
2769
2770 /* Size is set to 1 for the consumer_channel pipe */
2771 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2772 if (ret < 0) {
2773 ERR("Poll set creation failed");
2774 goto end_poll;
2775 }
2776
2777 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2778 if (ret < 0) {
2779 goto end;
2780 }
2781
2782 /* Main loop */
2783 DBG("Channel main loop started");
2784
2785 while (1) {
2786 health_code_update();
2787
2788 /* Only the channel pipe is set */
2789 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2790 err = 0; /* All is OK */
2791 goto end;
2792 }
2793
2794 restart:
2795 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2796 health_poll_entry();
2797 ret = lttng_poll_wait(&events, -1);
2798 health_poll_exit();
2799 DBG("Channel event catched in thread");
2800 if (ret < 0) {
2801 if (errno == EINTR) {
2802 ERR("Poll EINTR catched");
2803 goto restart;
2804 }
2805 goto end;
2806 }
2807
2808 nb_fd = ret;
2809
2810 /* From here, the event is a channel wait fd */
2811 for (i = 0; i < nb_fd; i++) {
2812 health_code_update();
2813
2814 revents = LTTNG_POLL_GETEV(&events, i);
2815 pollfd = LTTNG_POLL_GETFD(&events, i);
2816
2817 /* Just don't waste time if no returned events for the fd */
2818 if (!revents) {
2819 continue;
2820 }
2821 if (pollfd == ctx->consumer_channel_pipe[0]) {
2822 if (revents & (LPOLLERR | LPOLLHUP)) {
2823 DBG("Channel thread pipe hung up");
2824 /*
2825 * Remove the pipe from the poll set and continue the loop
2826 * since their might be data to consume.
2827 */
2828 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2829 continue;
2830 } else if (revents & LPOLLIN) {
2831 enum consumer_channel_action action;
2832 uint64_t key;
2833
2834 ret = read_channel_pipe(ctx, &chan, &key, &action);
2835 if (ret <= 0) {
2836 ERR("Error reading channel pipe");
2837 continue;
2838 }
2839
2840 switch (action) {
2841 case CONSUMER_CHANNEL_ADD:
2842 DBG("Adding channel %d to poll set",
2843 chan->wait_fd);
2844
2845 lttng_ht_node_init_u64(&chan->wait_fd_node,
2846 chan->wait_fd);
2847 rcu_read_lock();
2848 lttng_ht_add_unique_u64(channel_ht,
2849 &chan->wait_fd_node);
2850 rcu_read_unlock();
2851 /* Add channel to the global poll events list */
2852 lttng_poll_add(&events, chan->wait_fd,
2853 LPOLLIN | LPOLLPRI);
2854 break;
2855 case CONSUMER_CHANNEL_DEL:
2856 {
2857 struct lttng_consumer_stream *stream, *stmp;
2858
2859 rcu_read_lock();
2860 chan = consumer_find_channel(key);
2861 if (!chan) {
2862 rcu_read_unlock();
2863 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2864 break;
2865 }
2866 lttng_poll_del(&events, chan->wait_fd);
2867 iter.iter.node = &chan->wait_fd_node.node;
2868 ret = lttng_ht_del(channel_ht, &iter);
2869 assert(ret == 0);
2870 consumer_close_channel_streams(chan);
2871
2872 switch (consumer_data.type) {
2873 case LTTNG_CONSUMER_KERNEL:
2874 break;
2875 case LTTNG_CONSUMER32_UST:
2876 case LTTNG_CONSUMER64_UST:
2877 /* Delete streams that might have been left in the stream list. */
2878 cds_list_for_each_entry_safe(stream, stmp, &chan->streams.head,
2879 send_node) {
2880 health_code_update();
2881
2882 cds_list_del(&stream->send_node);
2883 lttng_ustconsumer_del_stream(stream);
2884 uatomic_sub(&stream->chan->refcount, 1);
2885 assert(&chan->refcount);
2886 free(stream);
2887 }
2888 break;
2889 default:
2890 ERR("Unknown consumer_data type");
2891 assert(0);
2892 }
2893
2894 /*
2895 * Release our own refcount. Force channel deletion even if
2896 * streams were not initialized.
2897 */
2898 if (!uatomic_sub_return(&chan->refcount, 1)) {
2899 consumer_del_channel(chan);
2900 }
2901 rcu_read_unlock();
2902 goto restart;
2903 }
2904 case CONSUMER_CHANNEL_QUIT:
2905 /*
2906 * Remove the pipe from the poll set and continue the loop
2907 * since their might be data to consume.
2908 */
2909 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2910 continue;
2911 default:
2912 ERR("Unknown action");
2913 break;
2914 }
2915 }
2916
2917 /* Handle other stream */
2918 continue;
2919 }
2920
2921 rcu_read_lock();
2922 {
2923 uint64_t tmp_id = (uint64_t) pollfd;
2924
2925 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2926 }
2927 node = lttng_ht_iter_get_node_u64(&iter);
2928 assert(node);
2929
2930 chan = caa_container_of(node, struct lttng_consumer_channel,
2931 wait_fd_node);
2932
2933 /* Check for error event */
2934 if (revents & (LPOLLERR | LPOLLHUP)) {
2935 DBG("Channel fd %d is hup|err.", pollfd);
2936
2937 lttng_poll_del(&events, chan->wait_fd);
2938 ret = lttng_ht_del(channel_ht, &iter);
2939 assert(ret == 0);
2940 consumer_close_channel_streams(chan);
2941
2942 /* Release our own refcount */
2943 if (!uatomic_sub_return(&chan->refcount, 1)
2944 && !uatomic_read(&chan->nb_init_stream_left)) {
2945 consumer_del_channel(chan);
2946 }
2947 }
2948
2949 /* Release RCU lock for the channel looked up */
2950 rcu_read_unlock();
2951 }
2952 }
2953
2954 /* All is OK */
2955 err = 0;
2956 end:
2957 lttng_poll_clean(&events);
2958 end_poll:
2959 destroy_channel_ht(channel_ht);
2960 end_ht:
2961 DBG("Channel poll thread exiting");
2962 if (err) {
2963 health_error();
2964 ERR("Health error occurred in %s", __func__);
2965 }
2966 health_unregister(health_consumerd);
2967 rcu_unregister_thread();
2968 return NULL;
2969 }
2970
2971 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2972 struct pollfd *sockpoll, int client_socket)
2973 {
2974 int ret;
2975
2976 assert(ctx);
2977 assert(sockpoll);
2978
2979 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2980 ret = -1;
2981 goto error;
2982 }
2983 DBG("Metadata connection on client_socket");
2984
2985 /* Blocking call, waiting for transmission */
2986 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2987 if (ctx->consumer_metadata_socket < 0) {
2988 WARN("On accept metadata");
2989 ret = -1;
2990 goto error;
2991 }
2992 ret = 0;
2993
2994 error:
2995 return ret;
2996 }
2997
2998 /*
2999 * This thread listens on the consumerd socket and receives the file
3000 * descriptors from the session daemon.
3001 */
3002 void *consumer_thread_sessiond_poll(void *data)
3003 {
3004 int sock = -1, client_socket, ret, err = -1;
3005 /*
3006 * structure to poll for incoming data on communication socket avoids
3007 * making blocking sockets.
3008 */
3009 struct pollfd consumer_sockpoll[2];
3010 struct lttng_consumer_local_data *ctx = data;
3011
3012 rcu_register_thread();
3013
3014 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3015
3016 health_code_update();
3017
3018 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3019 unlink(ctx->consumer_command_sock_path);
3020 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3021 if (client_socket < 0) {
3022 ERR("Cannot create command socket");
3023 goto end;
3024 }
3025
3026 ret = lttcomm_listen_unix_sock(client_socket);
3027 if (ret < 0) {
3028 goto end;
3029 }
3030
3031 DBG("Sending ready command to lttng-sessiond");
3032 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3033 /* return < 0 on error, but == 0 is not fatal */
3034 if (ret < 0) {
3035 ERR("Error sending ready command to lttng-sessiond");
3036 goto end;
3037 }
3038
3039 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3040 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3041 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3042 consumer_sockpoll[1].fd = client_socket;
3043 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3044
3045 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3046 goto end;
3047 }
3048 DBG("Connection on client_socket");
3049
3050 /* Blocking call, waiting for transmission */
3051 sock = lttcomm_accept_unix_sock(client_socket);
3052 if (sock < 0) {
3053 WARN("On accept");
3054 goto end;
3055 }
3056
3057 /*
3058 * Setup metadata socket which is the second socket connection on the
3059 * command unix socket.
3060 */
3061 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3062 if (ret < 0) {
3063 goto end;
3064 }
3065
3066 /* This socket is not useful anymore. */
3067 ret = close(client_socket);
3068 if (ret < 0) {
3069 PERROR("close client_socket");
3070 }
3071 client_socket = -1;
3072
3073 /* update the polling structure to poll on the established socket */
3074 consumer_sockpoll[1].fd = sock;
3075 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3076
3077 while (1) {
3078 health_code_update();
3079
3080 health_poll_entry();
3081 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3082 health_poll_exit();
3083 if (ret < 0) {
3084 goto end;
3085 }
3086 DBG("Incoming command on sock");
3087 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3088 if (ret == -ENOENT) {
3089 DBG("Received STOP command");
3090 goto end;
3091 }
3092 if (ret <= 0) {
3093 /*
3094 * This could simply be a session daemon quitting. Don't output
3095 * ERR() here.
3096 */
3097 DBG("Communication interrupted on command socket");
3098 err = 0;
3099 goto end;
3100 }
3101 if (consumer_quit) {
3102 DBG("consumer_thread_receive_fds received quit from signal");
3103 err = 0; /* All is OK */
3104 goto end;
3105 }
3106 DBG("received command on sock");
3107 }
3108 /* All is OK */
3109 err = 0;
3110
3111 end:
3112 DBG("Consumer thread sessiond poll exiting");
3113
3114 /*
3115 * Close metadata streams since the producer is the session daemon which
3116 * just died.
3117 *
3118 * NOTE: for now, this only applies to the UST tracer.
3119 */
3120 lttng_consumer_close_metadata();
3121
3122 /*
3123 * when all fds have hung up, the polling thread
3124 * can exit cleanly
3125 */
3126 consumer_quit = 1;
3127
3128 /*
3129 * Notify the data poll thread to poll back again and test the
3130 * consumer_quit state that we just set so to quit gracefully.
3131 */
3132 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3133
3134 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3135
3136 notify_health_quit_pipe(health_quit_pipe);
3137
3138 /* Cleaning up possibly open sockets. */
3139 if (sock >= 0) {
3140 ret = close(sock);
3141 if (ret < 0) {
3142 PERROR("close sock sessiond poll");
3143 }
3144 }
3145 if (client_socket >= 0) {
3146 ret = close(client_socket);
3147 if (ret < 0) {
3148 PERROR("close client_socket sessiond poll");
3149 }
3150 }
3151
3152 if (err) {
3153 health_error();
3154 ERR("Health error occurred in %s", __func__);
3155 }
3156 health_unregister(health_consumerd);
3157
3158 rcu_unregister_thread();
3159 return NULL;
3160 }
3161
3162 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3163 struct lttng_consumer_local_data *ctx)
3164 {
3165 ssize_t ret;
3166
3167 pthread_mutex_lock(&stream->lock);
3168 if (stream->metadata_flag) {
3169 pthread_mutex_lock(&stream->metadata_rdv_lock);
3170 }
3171
3172 switch (consumer_data.type) {
3173 case LTTNG_CONSUMER_KERNEL:
3174 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3175 break;
3176 case LTTNG_CONSUMER32_UST:
3177 case LTTNG_CONSUMER64_UST:
3178 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3179 break;
3180 default:
3181 ERR("Unknown consumer_data type");
3182 assert(0);
3183 ret = -ENOSYS;
3184 break;
3185 }
3186
3187 if (stream->metadata_flag) {
3188 pthread_cond_broadcast(&stream->metadata_rdv);
3189 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3190 }
3191 pthread_mutex_unlock(&stream->lock);
3192 return ret;
3193 }
3194
3195 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3196 {
3197 switch (consumer_data.type) {
3198 case LTTNG_CONSUMER_KERNEL:
3199 return lttng_kconsumer_on_recv_stream(stream);
3200 case LTTNG_CONSUMER32_UST:
3201 case LTTNG_CONSUMER64_UST:
3202 return lttng_ustconsumer_on_recv_stream(stream);
3203 default:
3204 ERR("Unknown consumer_data type");
3205 assert(0);
3206 return -ENOSYS;
3207 }
3208 }
3209
3210 /*
3211 * Allocate and set consumer data hash tables.
3212 */
3213 void lttng_consumer_init(void)
3214 {
3215 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3216 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3217 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3218 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3219 }
3220
3221 /*
3222 * Process the ADD_RELAYD command receive by a consumer.
3223 *
3224 * This will create a relayd socket pair and add it to the relayd hash table.
3225 * The caller MUST acquire a RCU read side lock before calling it.
3226 */
3227 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3228 struct lttng_consumer_local_data *ctx, int sock,
3229 struct pollfd *consumer_sockpoll,
3230 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3231 uint64_t relayd_session_id)
3232 {
3233 int fd = -1, ret = -1, relayd_created = 0;
3234 enum lttng_error_code ret_code = LTTNG_OK;
3235 struct consumer_relayd_sock_pair *relayd = NULL;
3236
3237 assert(ctx);
3238 assert(relayd_sock);
3239
3240 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3241
3242 /* Get relayd reference if exists. */
3243 relayd = consumer_find_relayd(net_seq_idx);
3244 if (relayd == NULL) {
3245 assert(sock_type == LTTNG_STREAM_CONTROL);
3246 /* Not found. Allocate one. */
3247 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3248 if (relayd == NULL) {
3249 ret = -ENOMEM;
3250 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3251 goto error;
3252 } else {
3253 relayd->sessiond_session_id = sessiond_id;
3254 relayd_created = 1;
3255 }
3256
3257 /*
3258 * This code path MUST continue to the consumer send status message to
3259 * we can notify the session daemon and continue our work without
3260 * killing everything.
3261 */
3262 } else {
3263 /*
3264 * relayd key should never be found for control socket.
3265 */
3266 assert(sock_type != LTTNG_STREAM_CONTROL);
3267 }
3268
3269 /* First send a status message before receiving the fds. */
3270 ret = consumer_send_status_msg(sock, LTTNG_OK);
3271 if (ret < 0) {
3272 /* Somehow, the session daemon is not responding anymore. */
3273 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3274 goto error_nosignal;
3275 }
3276
3277 /* Poll on consumer socket. */
3278 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3279 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3280 ret = -EINTR;
3281 goto error_nosignal;
3282 }
3283
3284 /* Get relayd socket from session daemon */
3285 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3286 if (ret != sizeof(fd)) {
3287 ret = -1;
3288 fd = -1; /* Just in case it gets set with an invalid value. */
3289
3290 /*
3291 * Failing to receive FDs might indicate a major problem such as
3292 * reaching a fd limit during the receive where the kernel returns a
3293 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3294 * don't take any chances and stop everything.
3295 *
3296 * XXX: Feature request #558 will fix that and avoid this possible
3297 * issue when reaching the fd limit.
3298 */
3299 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3300 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3301 goto error;
3302 }
3303
3304 /* Copy socket information and received FD */
3305 switch (sock_type) {
3306 case LTTNG_STREAM_CONTROL:
3307 /* Copy received lttcomm socket */
3308 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3309 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3310 /* Handle create_sock error. */
3311 if (ret < 0) {
3312 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3313 goto error;
3314 }
3315 /*
3316 * Close the socket created internally by
3317 * lttcomm_create_sock, so we can replace it by the one
3318 * received from sessiond.
3319 */
3320 if (close(relayd->control_sock.sock.fd)) {
3321 PERROR("close");
3322 }
3323
3324 /* Assign new file descriptor */
3325 relayd->control_sock.sock.fd = fd;
3326 fd = -1; /* For error path */
3327 /* Assign version values. */
3328 relayd->control_sock.major = relayd_sock->major;
3329 relayd->control_sock.minor = relayd_sock->minor;
3330
3331 relayd->relayd_session_id = relayd_session_id;
3332
3333 break;
3334 case LTTNG_STREAM_DATA:
3335 /* Copy received lttcomm socket */
3336 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3337 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3338 /* Handle create_sock error. */
3339 if (ret < 0) {
3340 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3341 goto error;
3342 }
3343 /*
3344 * Close the socket created internally by
3345 * lttcomm_create_sock, so we can replace it by the one
3346 * received from sessiond.
3347 */
3348 if (close(relayd->data_sock.sock.fd)) {
3349 PERROR("close");
3350 }
3351
3352 /* Assign new file descriptor */
3353 relayd->data_sock.sock.fd = fd;
3354 fd = -1; /* for eventual error paths */
3355 /* Assign version values. */
3356 relayd->data_sock.major = relayd_sock->major;
3357 relayd->data_sock.minor = relayd_sock->minor;
3358 break;
3359 default:
3360 ERR("Unknown relayd socket type (%d)", sock_type);
3361 ret = -1;
3362 ret_code = LTTCOMM_CONSUMERD_FATAL;
3363 goto error;
3364 }
3365
3366 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3367 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3368 relayd->net_seq_idx, fd);
3369
3370 /* We successfully added the socket. Send status back. */
3371 ret = consumer_send_status_msg(sock, ret_code);
3372 if (ret < 0) {
3373 /* Somehow, the session daemon is not responding anymore. */
3374 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3375 goto error_nosignal;
3376 }
3377
3378 /*
3379 * Add relayd socket pair to consumer data hashtable. If object already
3380 * exists or on error, the function gracefully returns.
3381 */
3382 add_relayd(relayd);
3383
3384 /* All good! */
3385 return 0;
3386
3387 error:
3388 if (consumer_send_status_msg(sock, ret_code) < 0) {
3389 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3390 }
3391
3392 error_nosignal:
3393 /* Close received socket if valid. */
3394 if (fd >= 0) {
3395 if (close(fd)) {
3396 PERROR("close received socket");
3397 }
3398 }
3399
3400 if (relayd_created) {
3401 free(relayd);
3402 }
3403
3404 return ret;
3405 }
3406
3407 /*
3408 * Try to lock the stream mutex.
3409 *
3410 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3411 */
3412 static int stream_try_lock(struct lttng_consumer_stream *stream)
3413 {
3414 int ret;
3415
3416 assert(stream);
3417
3418 /*
3419 * Try to lock the stream mutex. On failure, we know that the stream is
3420 * being used else where hence there is data still being extracted.
3421 */
3422 ret = pthread_mutex_trylock(&stream->lock);
3423 if (ret) {
3424 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3425 ret = 0;
3426 goto end;
3427 }
3428
3429 ret = 1;
3430
3431 end:
3432 return ret;
3433 }
3434
3435 /*
3436 * Search for a relayd associated to the session id and return the reference.
3437 *
3438 * A rcu read side lock MUST be acquire before calling this function and locked
3439 * until the relayd object is no longer necessary.
3440 */
3441 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3442 {
3443 struct lttng_ht_iter iter;
3444 struct consumer_relayd_sock_pair *relayd = NULL;
3445
3446 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3447 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3448 node.node) {
3449 /*
3450 * Check by sessiond id which is unique here where the relayd session
3451 * id might not be when having multiple relayd.
3452 */
3453 if (relayd->sessiond_session_id == id) {
3454 /* Found the relayd. There can be only one per id. */
3455 goto found;
3456 }
3457 }
3458
3459 return NULL;
3460
3461 found:
3462 return relayd;
3463 }
3464
3465 /*
3466 * Check if for a given session id there is still data needed to be extract
3467 * from the buffers.
3468 *
3469 * Return 1 if data is pending or else 0 meaning ready to be read.
3470 */
3471 int consumer_data_pending(uint64_t id)
3472 {
3473 int ret;
3474 struct lttng_ht_iter iter;
3475 struct lttng_ht *ht;
3476 struct lttng_consumer_stream *stream;
3477 struct consumer_relayd_sock_pair *relayd = NULL;
3478 int (*data_pending)(struct lttng_consumer_stream *);
3479
3480 DBG("Consumer data pending command on session id %" PRIu64, id);
3481
3482 rcu_read_lock();
3483 pthread_mutex_lock(&consumer_data.lock);
3484
3485 switch (consumer_data.type) {
3486 case LTTNG_CONSUMER_KERNEL:
3487 data_pending = lttng_kconsumer_data_pending;
3488 break;
3489 case LTTNG_CONSUMER32_UST:
3490 case LTTNG_CONSUMER64_UST:
3491 data_pending = lttng_ustconsumer_data_pending;
3492 break;
3493 default:
3494 ERR("Unknown consumer data type");
3495 assert(0);
3496 }
3497
3498 /* Ease our life a bit */
3499 ht = consumer_data.stream_list_ht;
3500
3501 relayd = find_relayd_by_session_id(id);
3502 if (relayd) {
3503 /* Send init command for data pending. */
3504 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3505 ret = relayd_begin_data_pending(&relayd->control_sock,
3506 relayd->relayd_session_id);
3507 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3508 if (ret < 0) {
3509 /* Communication error thus the relayd so no data pending. */
3510 goto data_not_pending;
3511 }
3512 }
3513
3514 cds_lfht_for_each_entry_duplicate(ht->ht,
3515 ht->hash_fct(&id, lttng_ht_seed),
3516 ht->match_fct, &id,
3517 &iter.iter, stream, node_session_id.node) {
3518 /* If this call fails, the stream is being used hence data pending. */
3519 ret = stream_try_lock(stream);
3520 if (!ret) {
3521 goto data_pending;
3522 }
3523
3524 /*
3525 * A removed node from the hash table indicates that the stream has
3526 * been deleted thus having a guarantee that the buffers are closed
3527 * on the consumer side. However, data can still be transmitted
3528 * over the network so don't skip the relayd check.
3529 */
3530 ret = cds_lfht_is_node_deleted(&stream->node.node);
3531 if (!ret) {
3532 /*
3533 * An empty output file is not valid. We need at least one packet
3534 * generated per stream, even if it contains no event, so it
3535 * contains at least one packet header.
3536 */
3537 if (stream->output_written == 0) {
3538 pthread_mutex_unlock(&stream->lock);
3539 goto data_pending;
3540 }
3541 /* Check the stream if there is data in the buffers. */
3542 ret = data_pending(stream);
3543 if (ret == 1) {
3544 pthread_mutex_unlock(&stream->lock);
3545 goto data_pending;
3546 }
3547 }
3548
3549 /* Relayd check */
3550 if (relayd) {
3551 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3552 if (stream->metadata_flag) {
3553 ret = relayd_quiescent_control(&relayd->control_sock,
3554 stream->relayd_stream_id);
3555 } else {
3556 ret = relayd_data_pending(&relayd->control_sock,
3557 stream->relayd_stream_id,
3558 stream->next_net_seq_num - 1);
3559 }
3560 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3561 if (ret == 1) {
3562 pthread_mutex_unlock(&stream->lock);
3563 goto data_pending;
3564 }
3565 }
3566 pthread_mutex_unlock(&stream->lock);
3567 }
3568
3569 if (relayd) {
3570 unsigned int is_data_inflight = 0;
3571
3572 /* Send init command for data pending. */
3573 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3574 ret = relayd_end_data_pending(&relayd->control_sock,
3575 relayd->relayd_session_id, &is_data_inflight);
3576 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3577 if (ret < 0) {
3578 goto data_not_pending;
3579 }
3580 if (is_data_inflight) {
3581 goto data_pending;
3582 }
3583 }
3584
3585 /*
3586 * Finding _no_ node in the hash table and no inflight data means that the
3587 * stream(s) have been removed thus data is guaranteed to be available for
3588 * analysis from the trace files.
3589 */
3590
3591 data_not_pending:
3592 /* Data is available to be read by a viewer. */
3593 pthread_mutex_unlock(&consumer_data.lock);
3594 rcu_read_unlock();
3595 return 0;
3596
3597 data_pending:
3598 /* Data is still being extracted from buffers. */
3599 pthread_mutex_unlock(&consumer_data.lock);
3600 rcu_read_unlock();
3601 return 1;
3602 }
3603
3604 /*
3605 * Send a ret code status message to the sessiond daemon.
3606 *
3607 * Return the sendmsg() return value.
3608 */
3609 int consumer_send_status_msg(int sock, int ret_code)
3610 {
3611 struct lttcomm_consumer_status_msg msg;
3612
3613 msg.ret_code = ret_code;
3614
3615 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3616 }
3617
3618 /*
3619 * Send a channel status message to the sessiond daemon.
3620 *
3621 * Return the sendmsg() return value.
3622 */
3623 int consumer_send_status_channel(int sock,
3624 struct lttng_consumer_channel *channel)
3625 {
3626 struct lttcomm_consumer_status_channel msg;
3627
3628 assert(sock >= 0);
3629
3630 if (!channel) {
3631 msg.ret_code = -LTTNG_ERR_UST_CHAN_FAIL;
3632 } else {
3633 msg.ret_code = LTTNG_OK;
3634 msg.key = channel->key;
3635 msg.stream_count = channel->streams.count;
3636 }
3637
3638 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3639 }
3640
3641 /*
3642 * Using a maximum stream size with the produced and consumed position of a
3643 * stream, computes the new consumed position to be as close as possible to the
3644 * maximum possible stream size.
3645 *
3646 * If maximum stream size is lower than the possible buffer size (produced -
3647 * consumed), the consumed_pos given is returned untouched else the new value
3648 * is returned.
3649 */
3650 unsigned long consumer_get_consumed_maxsize(unsigned long consumed_pos,
3651 unsigned long produced_pos, uint64_t max_stream_size)
3652 {
3653 if (max_stream_size && max_stream_size < (produced_pos - consumed_pos)) {
3654 /* Offset from the produced position to get the latest buffers. */
3655 return produced_pos - max_stream_size;
3656 }
3657
3658 return consumed_pos;
3659 }
This page took 0.207982 seconds and 4 git commands to generate.