0e73bc9b8aeda6766953fbd381fcc05c370f795c
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31
32 #include <common/common.h>
33 #include <common/utils.h>
34 #include <common/compat/poll.h>
35 #include <common/kernel-ctl/kernel-ctl.h>
36 #include <common/sessiond-comm/relayd.h>
37 #include <common/sessiond-comm/sessiond-comm.h>
38 #include <common/kernel-consumer/kernel-consumer.h>
39 #include <common/relayd/relayd.h>
40 #include <common/ust-consumer/ust-consumer.h>
41
42 #include "consumer.h"
43
44 struct lttng_consumer_global_data consumer_data = {
45 .stream_count = 0,
46 .need_update = 1,
47 .type = LTTNG_CONSUMER_UNKNOWN,
48 };
49
50 /*
51 * Flag to inform the polling thread to quit when all fd hung up. Updated by
52 * the consumer_thread_receive_fds when it notices that all fds has hung up.
53 * Also updated by the signal handler (consumer_should_exit()). Read by the
54 * polling threads.
55 */
56 volatile int consumer_quit;
57
58 /*
59 * Global hash table containing respectively metadata and data streams. The
60 * stream element in this ht should only be updated by the metadata poll thread
61 * for the metadata and the data poll thread for the data.
62 */
63 static struct lttng_ht *metadata_ht;
64 static struct lttng_ht *data_ht;
65
66 /*
67 * Notify a thread pipe to poll back again. This usually means that some global
68 * state has changed so we just send back the thread in a poll wait call.
69 */
70 static void notify_thread_pipe(int wpipe)
71 {
72 int ret;
73
74 do {
75 struct lttng_consumer_stream *null_stream = NULL;
76
77 ret = write(wpipe, &null_stream, sizeof(null_stream));
78 } while (ret < 0 && errno == EINTR);
79 }
80
81 /*
82 * Find a stream. The consumer_data.lock must be locked during this
83 * call.
84 */
85 static struct lttng_consumer_stream *consumer_find_stream(int key,
86 struct lttng_ht *ht)
87 {
88 struct lttng_ht_iter iter;
89 struct lttng_ht_node_ulong *node;
90 struct lttng_consumer_stream *stream = NULL;
91
92 assert(ht);
93
94 /* Negative keys are lookup failures */
95 if (key < 0) {
96 return NULL;
97 }
98
99 rcu_read_lock();
100
101 lttng_ht_lookup(ht, (void *)((unsigned long) key), &iter);
102 node = lttng_ht_iter_get_node_ulong(&iter);
103 if (node != NULL) {
104 stream = caa_container_of(node, struct lttng_consumer_stream, node);
105 }
106
107 rcu_read_unlock();
108
109 return stream;
110 }
111
112 void consumer_steal_stream_key(int key, struct lttng_ht *ht)
113 {
114 struct lttng_consumer_stream *stream;
115
116 rcu_read_lock();
117 stream = consumer_find_stream(key, ht);
118 if (stream) {
119 stream->key = -1;
120 /*
121 * We don't want the lookup to match, but we still need
122 * to iterate on this stream when iterating over the hash table. Just
123 * change the node key.
124 */
125 stream->node.key = -1;
126 }
127 rcu_read_unlock();
128 }
129
130 static struct lttng_consumer_channel *consumer_find_channel(int key)
131 {
132 struct lttng_ht_iter iter;
133 struct lttng_ht_node_ulong *node;
134 struct lttng_consumer_channel *channel = NULL;
135
136 /* Negative keys are lookup failures */
137 if (key < 0) {
138 return NULL;
139 }
140
141 rcu_read_lock();
142
143 lttng_ht_lookup(consumer_data.channel_ht, (void *)((unsigned long) key),
144 &iter);
145 node = lttng_ht_iter_get_node_ulong(&iter);
146 if (node != NULL) {
147 channel = caa_container_of(node, struct lttng_consumer_channel, node);
148 }
149
150 rcu_read_unlock();
151
152 return channel;
153 }
154
155 static void consumer_steal_channel_key(int key)
156 {
157 struct lttng_consumer_channel *channel;
158
159 rcu_read_lock();
160 channel = consumer_find_channel(key);
161 if (channel) {
162 channel->key = -1;
163 /*
164 * We don't want the lookup to match, but we still need
165 * to iterate on this channel when iterating over the hash table. Just
166 * change the node key.
167 */
168 channel->node.key = -1;
169 }
170 rcu_read_unlock();
171 }
172
173 static
174 void consumer_free_stream(struct rcu_head *head)
175 {
176 struct lttng_ht_node_ulong *node =
177 caa_container_of(head, struct lttng_ht_node_ulong, head);
178 struct lttng_consumer_stream *stream =
179 caa_container_of(node, struct lttng_consumer_stream, node);
180
181 free(stream);
182 }
183
184 /*
185 * RCU protected relayd socket pair free.
186 */
187 static void consumer_rcu_free_relayd(struct rcu_head *head)
188 {
189 struct lttng_ht_node_ulong *node =
190 caa_container_of(head, struct lttng_ht_node_ulong, head);
191 struct consumer_relayd_sock_pair *relayd =
192 caa_container_of(node, struct consumer_relayd_sock_pair, node);
193
194 /*
195 * Close all sockets. This is done in the call RCU since we don't want the
196 * socket fds to be reassigned thus potentially creating bad state of the
197 * relayd object.
198 *
199 * We do not have to lock the control socket mutex here since at this stage
200 * there is no one referencing to this relayd object.
201 */
202 (void) relayd_close(&relayd->control_sock);
203 (void) relayd_close(&relayd->data_sock);
204
205 free(relayd);
206 }
207
208 /*
209 * Destroy and free relayd socket pair object.
210 *
211 * This function MUST be called with the consumer_data lock acquired.
212 */
213 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
214 {
215 int ret;
216 struct lttng_ht_iter iter;
217
218 if (relayd == NULL) {
219 return;
220 }
221
222 DBG("Consumer destroy and close relayd socket pair");
223
224 iter.iter.node = &relayd->node.node;
225 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
226 if (ret != 0) {
227 /* We assume the relayd is being or is destroyed */
228 return;
229 }
230
231 /* RCU free() call */
232 call_rcu(&relayd->node.head, consumer_rcu_free_relayd);
233 }
234
235 /*
236 * Update the end point status of all streams having the given network sequence
237 * index (relayd index).
238 *
239 * It's atomically set without having the stream mutex locked which is fine
240 * because we handle the write/read race with a pipe wakeup for each thread.
241 */
242 static void update_endpoint_status_by_netidx(int net_seq_idx,
243 enum consumer_endpoint_status status)
244 {
245 struct lttng_ht_iter iter;
246 struct lttng_consumer_stream *stream;
247
248 DBG("Consumer set delete flag on stream by idx %d", net_seq_idx);
249
250 rcu_read_lock();
251
252 /* Let's begin with metadata */
253 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
254 if (stream->net_seq_idx == net_seq_idx) {
255 uatomic_set(&stream->endpoint_status, status);
256 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
257 }
258 }
259
260 /* Follow up by the data streams */
261 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
262 if (stream->net_seq_idx == net_seq_idx) {
263 uatomic_set(&stream->endpoint_status, status);
264 DBG("Delete flag set to data stream %d", stream->wait_fd);
265 }
266 }
267 rcu_read_unlock();
268 }
269
270 /*
271 * Cleanup a relayd object by flagging every associated streams for deletion,
272 * destroying the object meaning removing it from the relayd hash table,
273 * closing the sockets and freeing the memory in a RCU call.
274 *
275 * If a local data context is available, notify the threads that the streams'
276 * state have changed.
277 */
278 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
279 struct lttng_consumer_local_data *ctx)
280 {
281 int netidx;
282
283 assert(relayd);
284
285 DBG("Cleaning up relayd sockets");
286
287 /* Save the net sequence index before destroying the object */
288 netidx = relayd->net_seq_idx;
289
290 /*
291 * Delete the relayd from the relayd hash table, close the sockets and free
292 * the object in a RCU call.
293 */
294 destroy_relayd(relayd);
295
296 /* Set inactive endpoint to all streams */
297 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
298
299 /*
300 * With a local data context, notify the threads that the streams' state
301 * have changed. The write() action on the pipe acts as an "implicit"
302 * memory barrier ordering the updates of the end point status from the
303 * read of this status which happens AFTER receiving this notify.
304 */
305 if (ctx) {
306 notify_thread_pipe(ctx->consumer_data_pipe[1]);
307 notify_thread_pipe(ctx->consumer_metadata_pipe[1]);
308 }
309 }
310
311 /*
312 * Flag a relayd socket pair for destruction. Destroy it if the refcount
313 * reaches zero.
314 *
315 * RCU read side lock MUST be aquired before calling this function.
316 */
317 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
318 {
319 assert(relayd);
320
321 /* Set destroy flag for this object */
322 uatomic_set(&relayd->destroy_flag, 1);
323
324 /* Destroy the relayd if refcount is 0 */
325 if (uatomic_read(&relayd->refcount) == 0) {
326 destroy_relayd(relayd);
327 }
328 }
329
330 /*
331 * Remove a stream from the global list protected by a mutex. This
332 * function is also responsible for freeing its data structures.
333 */
334 void consumer_del_stream(struct lttng_consumer_stream *stream,
335 struct lttng_ht *ht)
336 {
337 int ret;
338 struct lttng_ht_iter iter;
339 struct lttng_consumer_channel *free_chan = NULL;
340 struct consumer_relayd_sock_pair *relayd;
341
342 assert(stream);
343
344 DBG("Consumer del stream %d", stream->wait_fd);
345
346 if (ht == NULL) {
347 /* Means the stream was allocated but not successfully added */
348 goto free_stream;
349 }
350
351 pthread_mutex_lock(&consumer_data.lock);
352 pthread_mutex_lock(&stream->lock);
353
354 switch (consumer_data.type) {
355 case LTTNG_CONSUMER_KERNEL:
356 if (stream->mmap_base != NULL) {
357 ret = munmap(stream->mmap_base, stream->mmap_len);
358 if (ret != 0) {
359 PERROR("munmap");
360 }
361 }
362 break;
363 case LTTNG_CONSUMER32_UST:
364 case LTTNG_CONSUMER64_UST:
365 lttng_ustconsumer_del_stream(stream);
366 break;
367 default:
368 ERR("Unknown consumer_data type");
369 assert(0);
370 goto end;
371 }
372
373 rcu_read_lock();
374 iter.iter.node = &stream->node.node;
375 ret = lttng_ht_del(ht, &iter);
376 assert(!ret);
377
378 /* Remove node session id from the consumer_data stream ht */
379 iter.iter.node = &stream->node_session_id.node;
380 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
381 assert(!ret);
382 rcu_read_unlock();
383
384 assert(consumer_data.stream_count > 0);
385 consumer_data.stream_count--;
386
387 if (stream->out_fd >= 0) {
388 ret = close(stream->out_fd);
389 if (ret) {
390 PERROR("close");
391 }
392 }
393 if (stream->wait_fd >= 0 && !stream->wait_fd_is_copy) {
394 ret = close(stream->wait_fd);
395 if (ret) {
396 PERROR("close");
397 }
398 }
399 if (stream->shm_fd >= 0 && stream->wait_fd != stream->shm_fd) {
400 ret = close(stream->shm_fd);
401 if (ret) {
402 PERROR("close");
403 }
404 }
405
406 /* Check and cleanup relayd */
407 rcu_read_lock();
408 relayd = consumer_find_relayd(stream->net_seq_idx);
409 if (relayd != NULL) {
410 uatomic_dec(&relayd->refcount);
411 assert(uatomic_read(&relayd->refcount) >= 0);
412
413 /* Closing streams requires to lock the control socket. */
414 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
415 ret = relayd_send_close_stream(&relayd->control_sock,
416 stream->relayd_stream_id,
417 stream->next_net_seq_num - 1);
418 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
419 if (ret < 0) {
420 DBG("Unable to close stream on the relayd. Continuing");
421 /*
422 * Continue here. There is nothing we can do for the relayd.
423 * Chances are that the relayd has closed the socket so we just
424 * continue cleaning up.
425 */
426 }
427
428 /* Both conditions are met, we destroy the relayd. */
429 if (uatomic_read(&relayd->refcount) == 0 &&
430 uatomic_read(&relayd->destroy_flag)) {
431 destroy_relayd(relayd);
432 }
433 }
434 rcu_read_unlock();
435
436 uatomic_dec(&stream->chan->refcount);
437 if (!uatomic_read(&stream->chan->refcount)
438 && !uatomic_read(&stream->chan->nb_init_streams)) {
439 free_chan = stream->chan;
440 }
441
442 end:
443 consumer_data.need_update = 1;
444 pthread_mutex_unlock(&stream->lock);
445 pthread_mutex_unlock(&consumer_data.lock);
446
447 if (free_chan) {
448 consumer_del_channel(free_chan);
449 }
450
451 free_stream:
452 call_rcu(&stream->node.head, consumer_free_stream);
453 }
454
455 struct lttng_consumer_stream *consumer_allocate_stream(
456 int channel_key, int stream_key,
457 int shm_fd, int wait_fd,
458 enum lttng_consumer_stream_state state,
459 uint64_t mmap_len,
460 enum lttng_event_output output,
461 const char *path_name,
462 uid_t uid,
463 gid_t gid,
464 int net_index,
465 int metadata_flag,
466 uint64_t session_id,
467 int *alloc_ret)
468 {
469 struct lttng_consumer_stream *stream;
470
471 stream = zmalloc(sizeof(*stream));
472 if (stream == NULL) {
473 PERROR("malloc struct lttng_consumer_stream");
474 *alloc_ret = -ENOMEM;
475 goto end;
476 }
477
478 /*
479 * Get stream's channel reference. Needed when adding the stream to the
480 * global hash table.
481 */
482 stream->chan = consumer_find_channel(channel_key);
483 if (!stream->chan) {
484 *alloc_ret = -ENOENT;
485 ERR("Unable to find channel for stream %d", stream_key);
486 goto error;
487 }
488
489 stream->key = stream_key;
490 stream->shm_fd = shm_fd;
491 stream->wait_fd = wait_fd;
492 stream->out_fd = -1;
493 stream->out_fd_offset = 0;
494 stream->state = state;
495 stream->mmap_len = mmap_len;
496 stream->mmap_base = NULL;
497 stream->output = output;
498 stream->uid = uid;
499 stream->gid = gid;
500 stream->net_seq_idx = net_index;
501 stream->metadata_flag = metadata_flag;
502 stream->session_id = session_id;
503 strncpy(stream->path_name, path_name, sizeof(stream->path_name));
504 stream->path_name[sizeof(stream->path_name) - 1] = '\0';
505 pthread_mutex_init(&stream->lock, NULL);
506
507 /*
508 * Index differently the metadata node because the thread is using an
509 * internal hash table to match streams in the metadata_ht to the epoll set
510 * file descriptor.
511 */
512 if (metadata_flag) {
513 lttng_ht_node_init_ulong(&stream->node, stream->wait_fd);
514 } else {
515 lttng_ht_node_init_ulong(&stream->node, stream->key);
516 }
517
518 /* Init session id node with the stream session id */
519 lttng_ht_node_init_ulong(&stream->node_session_id, stream->session_id);
520
521 /*
522 * The cpu number is needed before using any ustctl_* actions. Ignored for
523 * the kernel so the value does not matter.
524 */
525 pthread_mutex_lock(&consumer_data.lock);
526 stream->cpu = stream->chan->cpucount++;
527 pthread_mutex_unlock(&consumer_data.lock);
528
529 DBG3("Allocated stream %s (key %d, shm_fd %d, wait_fd %d, mmap_len %llu,"
530 " out_fd %d, net_seq_idx %d, session_id %" PRIu64,
531 stream->path_name, stream->key, stream->shm_fd, stream->wait_fd,
532 (unsigned long long) stream->mmap_len, stream->out_fd,
533 stream->net_seq_idx, stream->session_id);
534 return stream;
535
536 error:
537 free(stream);
538 end:
539 return NULL;
540 }
541
542 /*
543 * Add a stream to the global list protected by a mutex.
544 */
545 static int consumer_add_stream(struct lttng_consumer_stream *stream,
546 struct lttng_ht *ht)
547 {
548 int ret = 0;
549 struct consumer_relayd_sock_pair *relayd;
550
551 assert(stream);
552 assert(ht);
553
554 DBG3("Adding consumer stream %d", stream->key);
555
556 pthread_mutex_lock(&consumer_data.lock);
557 pthread_mutex_lock(&stream->lock);
558 rcu_read_lock();
559
560 /* Steal stream identifier to avoid having streams with the same key */
561 consumer_steal_stream_key(stream->key, ht);
562
563 lttng_ht_add_unique_ulong(ht, &stream->node);
564
565 /*
566 * Add stream to the stream_list_ht of the consumer data. No need to steal
567 * the key since the HT does not use it and we allow to add redundant keys
568 * into this table.
569 */
570 lttng_ht_add_ulong(consumer_data.stream_list_ht, &stream->node_session_id);
571
572 /* Check and cleanup relayd */
573 relayd = consumer_find_relayd(stream->net_seq_idx);
574 if (relayd != NULL) {
575 uatomic_inc(&relayd->refcount);
576 }
577
578 /* Update channel refcount once added without error(s). */
579 uatomic_inc(&stream->chan->refcount);
580
581 /*
582 * When nb_init_streams reaches 0, we don't need to trigger any action in
583 * terms of destroying the associated channel, because the action that
584 * causes the count to become 0 also causes a stream to be added. The
585 * channel deletion will thus be triggered by the following removal of this
586 * stream.
587 */
588 if (uatomic_read(&stream->chan->nb_init_streams) > 0) {
589 uatomic_dec(&stream->chan->nb_init_streams);
590 }
591
592 /* Update consumer data once the node is inserted. */
593 consumer_data.stream_count++;
594 consumer_data.need_update = 1;
595
596 rcu_read_unlock();
597 pthread_mutex_unlock(&stream->lock);
598 pthread_mutex_unlock(&consumer_data.lock);
599
600 return ret;
601 }
602
603 /*
604 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
605 * be acquired before calling this.
606 */
607 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
608 {
609 int ret = 0;
610 struct lttng_ht_node_ulong *node;
611 struct lttng_ht_iter iter;
612
613 if (relayd == NULL) {
614 ret = -1;
615 goto end;
616 }
617
618 lttng_ht_lookup(consumer_data.relayd_ht,
619 (void *)((unsigned long) relayd->net_seq_idx), &iter);
620 node = lttng_ht_iter_get_node_ulong(&iter);
621 if (node != NULL) {
622 /* Relayd already exist. Ignore the insertion */
623 goto end;
624 }
625 lttng_ht_add_unique_ulong(consumer_data.relayd_ht, &relayd->node);
626
627 end:
628 return ret;
629 }
630
631 /*
632 * Allocate and return a consumer relayd socket.
633 */
634 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
635 int net_seq_idx)
636 {
637 struct consumer_relayd_sock_pair *obj = NULL;
638
639 /* Negative net sequence index is a failure */
640 if (net_seq_idx < 0) {
641 goto error;
642 }
643
644 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
645 if (obj == NULL) {
646 PERROR("zmalloc relayd sock");
647 goto error;
648 }
649
650 obj->net_seq_idx = net_seq_idx;
651 obj->refcount = 0;
652 obj->destroy_flag = 0;
653 lttng_ht_node_init_ulong(&obj->node, obj->net_seq_idx);
654 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
655
656 error:
657 return obj;
658 }
659
660 /*
661 * Find a relayd socket pair in the global consumer data.
662 *
663 * Return the object if found else NULL.
664 * RCU read-side lock must be held across this call and while using the
665 * returned object.
666 */
667 struct consumer_relayd_sock_pair *consumer_find_relayd(int key)
668 {
669 struct lttng_ht_iter iter;
670 struct lttng_ht_node_ulong *node;
671 struct consumer_relayd_sock_pair *relayd = NULL;
672
673 /* Negative keys are lookup failures */
674 if (key < 0) {
675 goto error;
676 }
677
678 lttng_ht_lookup(consumer_data.relayd_ht, (void *)((unsigned long) key),
679 &iter);
680 node = lttng_ht_iter_get_node_ulong(&iter);
681 if (node != NULL) {
682 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
683 }
684
685 error:
686 return relayd;
687 }
688
689 /*
690 * Handle stream for relayd transmission if the stream applies for network
691 * streaming where the net sequence index is set.
692 *
693 * Return destination file descriptor or negative value on error.
694 */
695 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
696 size_t data_size, unsigned long padding,
697 struct consumer_relayd_sock_pair *relayd)
698 {
699 int outfd = -1, ret;
700 struct lttcomm_relayd_data_hdr data_hdr;
701
702 /* Safety net */
703 assert(stream);
704 assert(relayd);
705
706 /* Reset data header */
707 memset(&data_hdr, 0, sizeof(data_hdr));
708
709 if (stream->metadata_flag) {
710 /* Caller MUST acquire the relayd control socket lock */
711 ret = relayd_send_metadata(&relayd->control_sock, data_size);
712 if (ret < 0) {
713 goto error;
714 }
715
716 /* Metadata are always sent on the control socket. */
717 outfd = relayd->control_sock.fd;
718 } else {
719 /* Set header with stream information */
720 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
721 data_hdr.data_size = htobe32(data_size);
722 data_hdr.padding_size = htobe32(padding);
723 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num++);
724 /* Other fields are zeroed previously */
725
726 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
727 sizeof(data_hdr));
728 if (ret < 0) {
729 goto error;
730 }
731
732 /* Set to go on data socket */
733 outfd = relayd->data_sock.fd;
734 }
735
736 error:
737 return outfd;
738 }
739
740 static
741 void consumer_free_channel(struct rcu_head *head)
742 {
743 struct lttng_ht_node_ulong *node =
744 caa_container_of(head, struct lttng_ht_node_ulong, head);
745 struct lttng_consumer_channel *channel =
746 caa_container_of(node, struct lttng_consumer_channel, node);
747
748 free(channel);
749 }
750
751 /*
752 * Remove a channel from the global list protected by a mutex. This
753 * function is also responsible for freeing its data structures.
754 */
755 void consumer_del_channel(struct lttng_consumer_channel *channel)
756 {
757 int ret;
758 struct lttng_ht_iter iter;
759
760 pthread_mutex_lock(&consumer_data.lock);
761
762 switch (consumer_data.type) {
763 case LTTNG_CONSUMER_KERNEL:
764 break;
765 case LTTNG_CONSUMER32_UST:
766 case LTTNG_CONSUMER64_UST:
767 lttng_ustconsumer_del_channel(channel);
768 break;
769 default:
770 ERR("Unknown consumer_data type");
771 assert(0);
772 goto end;
773 }
774
775 rcu_read_lock();
776 iter.iter.node = &channel->node.node;
777 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
778 assert(!ret);
779 rcu_read_unlock();
780
781 if (channel->mmap_base != NULL) {
782 ret = munmap(channel->mmap_base, channel->mmap_len);
783 if (ret != 0) {
784 PERROR("munmap");
785 }
786 }
787 if (channel->wait_fd >= 0 && !channel->wait_fd_is_copy) {
788 ret = close(channel->wait_fd);
789 if (ret) {
790 PERROR("close");
791 }
792 }
793 if (channel->shm_fd >= 0 && channel->wait_fd != channel->shm_fd) {
794 ret = close(channel->shm_fd);
795 if (ret) {
796 PERROR("close");
797 }
798 }
799
800 call_rcu(&channel->node.head, consumer_free_channel);
801 end:
802 pthread_mutex_unlock(&consumer_data.lock);
803 }
804
805 struct lttng_consumer_channel *consumer_allocate_channel(
806 int channel_key,
807 int shm_fd, int wait_fd,
808 uint64_t mmap_len,
809 uint64_t max_sb_size,
810 unsigned int nb_init_streams)
811 {
812 struct lttng_consumer_channel *channel;
813 int ret;
814
815 channel = zmalloc(sizeof(*channel));
816 if (channel == NULL) {
817 PERROR("malloc struct lttng_consumer_channel");
818 goto end;
819 }
820 channel->key = channel_key;
821 channel->shm_fd = shm_fd;
822 channel->wait_fd = wait_fd;
823 channel->mmap_len = mmap_len;
824 channel->max_sb_size = max_sb_size;
825 channel->refcount = 0;
826 channel->nb_init_streams = nb_init_streams;
827 lttng_ht_node_init_ulong(&channel->node, channel->key);
828
829 switch (consumer_data.type) {
830 case LTTNG_CONSUMER_KERNEL:
831 channel->mmap_base = NULL;
832 channel->mmap_len = 0;
833 break;
834 case LTTNG_CONSUMER32_UST:
835 case LTTNG_CONSUMER64_UST:
836 ret = lttng_ustconsumer_allocate_channel(channel);
837 if (ret) {
838 free(channel);
839 return NULL;
840 }
841 break;
842 default:
843 ERR("Unknown consumer_data type");
844 assert(0);
845 goto end;
846 }
847 DBG("Allocated channel (key %d, shm_fd %d, wait_fd %d, mmap_len %llu, max_sb_size %llu)",
848 channel->key, channel->shm_fd, channel->wait_fd,
849 (unsigned long long) channel->mmap_len,
850 (unsigned long long) channel->max_sb_size);
851 end:
852 return channel;
853 }
854
855 /*
856 * Add a channel to the global list protected by a mutex.
857 */
858 int consumer_add_channel(struct lttng_consumer_channel *channel)
859 {
860 struct lttng_ht_node_ulong *node;
861 struct lttng_ht_iter iter;
862
863 pthread_mutex_lock(&consumer_data.lock);
864 /* Steal channel identifier, for UST */
865 consumer_steal_channel_key(channel->key);
866 rcu_read_lock();
867
868 lttng_ht_lookup(consumer_data.channel_ht,
869 (void *)((unsigned long) channel->key), &iter);
870 node = lttng_ht_iter_get_node_ulong(&iter);
871 if (node != NULL) {
872 /* Channel already exist. Ignore the insertion */
873 goto end;
874 }
875
876 lttng_ht_add_unique_ulong(consumer_data.channel_ht, &channel->node);
877
878 end:
879 rcu_read_unlock();
880 pthread_mutex_unlock(&consumer_data.lock);
881
882 return 0;
883 }
884
885 /*
886 * Allocate the pollfd structure and the local view of the out fds to avoid
887 * doing a lookup in the linked list and concurrency issues when writing is
888 * needed. Called with consumer_data.lock held.
889 *
890 * Returns the number of fds in the structures.
891 */
892 static int consumer_update_poll_array(
893 struct lttng_consumer_local_data *ctx, struct pollfd **pollfd,
894 struct lttng_consumer_stream **local_stream, struct lttng_ht *ht)
895 {
896 int i = 0;
897 struct lttng_ht_iter iter;
898 struct lttng_consumer_stream *stream;
899
900 DBG("Updating poll fd array");
901 rcu_read_lock();
902 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
903 /*
904 * Only active streams with an active end point can be added to the
905 * poll set and local stream storage of the thread.
906 *
907 * There is a potential race here for endpoint_status to be updated
908 * just after the check. However, this is OK since the stream(s) will
909 * be deleted once the thread is notified that the end point state has
910 * changed where this function will be called back again.
911 */
912 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
913 stream->endpoint_status) {
914 continue;
915 }
916 DBG("Active FD %d", stream->wait_fd);
917 (*pollfd)[i].fd = stream->wait_fd;
918 (*pollfd)[i].events = POLLIN | POLLPRI;
919 local_stream[i] = stream;
920 i++;
921 }
922 rcu_read_unlock();
923
924 /*
925 * Insert the consumer_data_pipe at the end of the array and don't
926 * increment i so nb_fd is the number of real FD.
927 */
928 (*pollfd)[i].fd = ctx->consumer_data_pipe[0];
929 (*pollfd)[i].events = POLLIN | POLLPRI;
930 return i;
931 }
932
933 /*
934 * Poll on the should_quit pipe and the command socket return -1 on error and
935 * should exit, 0 if data is available on the command socket
936 */
937 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
938 {
939 int num_rdy;
940
941 restart:
942 num_rdy = poll(consumer_sockpoll, 2, -1);
943 if (num_rdy == -1) {
944 /*
945 * Restart interrupted system call.
946 */
947 if (errno == EINTR) {
948 goto restart;
949 }
950 PERROR("Poll error");
951 goto exit;
952 }
953 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
954 DBG("consumer_should_quit wake up");
955 goto exit;
956 }
957 return 0;
958
959 exit:
960 return -1;
961 }
962
963 /*
964 * Set the error socket.
965 */
966 void lttng_consumer_set_error_sock(
967 struct lttng_consumer_local_data *ctx, int sock)
968 {
969 ctx->consumer_error_socket = sock;
970 }
971
972 /*
973 * Set the command socket path.
974 */
975 void lttng_consumer_set_command_sock_path(
976 struct lttng_consumer_local_data *ctx, char *sock)
977 {
978 ctx->consumer_command_sock_path = sock;
979 }
980
981 /*
982 * Send return code to the session daemon.
983 * If the socket is not defined, we return 0, it is not a fatal error
984 */
985 int lttng_consumer_send_error(
986 struct lttng_consumer_local_data *ctx, int cmd)
987 {
988 if (ctx->consumer_error_socket > 0) {
989 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
990 sizeof(enum lttcomm_sessiond_command));
991 }
992
993 return 0;
994 }
995
996 /*
997 * Close all the tracefiles and stream fds, should be called when all instances
998 * are destroyed.
999 */
1000 void lttng_consumer_cleanup(void)
1001 {
1002 struct lttng_ht_iter iter;
1003 struct lttng_ht_node_ulong *node;
1004
1005 rcu_read_lock();
1006
1007 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, node,
1008 node) {
1009 struct lttng_consumer_channel *channel =
1010 caa_container_of(node, struct lttng_consumer_channel, node);
1011 consumer_del_channel(channel);
1012 }
1013
1014 rcu_read_unlock();
1015
1016 lttng_ht_destroy(consumer_data.channel_ht);
1017 }
1018
1019 /*
1020 * Called from signal handler.
1021 */
1022 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1023 {
1024 int ret;
1025 consumer_quit = 1;
1026 do {
1027 ret = write(ctx->consumer_should_quit[1], "4", 1);
1028 } while (ret < 0 && errno == EINTR);
1029 if (ret < 0) {
1030 PERROR("write consumer quit");
1031 }
1032
1033 DBG("Consumer flag that it should quit");
1034 }
1035
1036 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1037 off_t orig_offset)
1038 {
1039 int outfd = stream->out_fd;
1040
1041 /*
1042 * This does a blocking write-and-wait on any page that belongs to the
1043 * subbuffer prior to the one we just wrote.
1044 * Don't care about error values, as these are just hints and ways to
1045 * limit the amount of page cache used.
1046 */
1047 if (orig_offset < stream->chan->max_sb_size) {
1048 return;
1049 }
1050 lttng_sync_file_range(outfd, orig_offset - stream->chan->max_sb_size,
1051 stream->chan->max_sb_size,
1052 SYNC_FILE_RANGE_WAIT_BEFORE
1053 | SYNC_FILE_RANGE_WRITE
1054 | SYNC_FILE_RANGE_WAIT_AFTER);
1055 /*
1056 * Give hints to the kernel about how we access the file:
1057 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1058 * we write it.
1059 *
1060 * We need to call fadvise again after the file grows because the
1061 * kernel does not seem to apply fadvise to non-existing parts of the
1062 * file.
1063 *
1064 * Call fadvise _after_ having waited for the page writeback to
1065 * complete because the dirty page writeback semantic is not well
1066 * defined. So it can be expected to lead to lower throughput in
1067 * streaming.
1068 */
1069 posix_fadvise(outfd, orig_offset - stream->chan->max_sb_size,
1070 stream->chan->max_sb_size, POSIX_FADV_DONTNEED);
1071 }
1072
1073 /*
1074 * Initialise the necessary environnement :
1075 * - create a new context
1076 * - create the poll_pipe
1077 * - create the should_quit pipe (for signal handler)
1078 * - create the thread pipe (for splice)
1079 *
1080 * Takes a function pointer as argument, this function is called when data is
1081 * available on a buffer. This function is responsible to do the
1082 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1083 * buffer configuration and then kernctl_put_next_subbuf at the end.
1084 *
1085 * Returns a pointer to the new context or NULL on error.
1086 */
1087 struct lttng_consumer_local_data *lttng_consumer_create(
1088 enum lttng_consumer_type type,
1089 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1090 struct lttng_consumer_local_data *ctx),
1091 int (*recv_channel)(struct lttng_consumer_channel *channel),
1092 int (*recv_stream)(struct lttng_consumer_stream *stream),
1093 int (*update_stream)(int stream_key, uint32_t state))
1094 {
1095 int ret, i;
1096 struct lttng_consumer_local_data *ctx;
1097
1098 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1099 consumer_data.type == type);
1100 consumer_data.type = type;
1101
1102 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1103 if (ctx == NULL) {
1104 PERROR("allocating context");
1105 goto error;
1106 }
1107
1108 ctx->consumer_error_socket = -1;
1109 /* assign the callbacks */
1110 ctx->on_buffer_ready = buffer_ready;
1111 ctx->on_recv_channel = recv_channel;
1112 ctx->on_recv_stream = recv_stream;
1113 ctx->on_update_stream = update_stream;
1114
1115 ret = pipe(ctx->consumer_data_pipe);
1116 if (ret < 0) {
1117 PERROR("Error creating poll pipe");
1118 goto error_poll_pipe;
1119 }
1120
1121 /* set read end of the pipe to non-blocking */
1122 ret = fcntl(ctx->consumer_data_pipe[0], F_SETFL, O_NONBLOCK);
1123 if (ret < 0) {
1124 PERROR("fcntl O_NONBLOCK");
1125 goto error_poll_fcntl;
1126 }
1127
1128 /* set write end of the pipe to non-blocking */
1129 ret = fcntl(ctx->consumer_data_pipe[1], F_SETFL, O_NONBLOCK);
1130 if (ret < 0) {
1131 PERROR("fcntl O_NONBLOCK");
1132 goto error_poll_fcntl;
1133 }
1134
1135 ret = pipe(ctx->consumer_should_quit);
1136 if (ret < 0) {
1137 PERROR("Error creating recv pipe");
1138 goto error_quit_pipe;
1139 }
1140
1141 ret = pipe(ctx->consumer_thread_pipe);
1142 if (ret < 0) {
1143 PERROR("Error creating thread pipe");
1144 goto error_thread_pipe;
1145 }
1146
1147 ret = utils_create_pipe(ctx->consumer_metadata_pipe);
1148 if (ret < 0) {
1149 goto error_metadata_pipe;
1150 }
1151
1152 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1153 if (ret < 0) {
1154 goto error_splice_pipe;
1155 }
1156
1157 return ctx;
1158
1159 error_splice_pipe:
1160 utils_close_pipe(ctx->consumer_metadata_pipe);
1161 error_metadata_pipe:
1162 utils_close_pipe(ctx->consumer_thread_pipe);
1163 error_thread_pipe:
1164 for (i = 0; i < 2; i++) {
1165 int err;
1166
1167 err = close(ctx->consumer_should_quit[i]);
1168 if (err) {
1169 PERROR("close");
1170 }
1171 }
1172 error_poll_fcntl:
1173 error_quit_pipe:
1174 for (i = 0; i < 2; i++) {
1175 int err;
1176
1177 err = close(ctx->consumer_data_pipe[i]);
1178 if (err) {
1179 PERROR("close");
1180 }
1181 }
1182 error_poll_pipe:
1183 free(ctx);
1184 error:
1185 return NULL;
1186 }
1187
1188 /*
1189 * Close all fds associated with the instance and free the context.
1190 */
1191 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1192 {
1193 int ret;
1194
1195 DBG("Consumer destroying it. Closing everything.");
1196
1197 ret = close(ctx->consumer_error_socket);
1198 if (ret) {
1199 PERROR("close");
1200 }
1201 ret = close(ctx->consumer_thread_pipe[0]);
1202 if (ret) {
1203 PERROR("close");
1204 }
1205 ret = close(ctx->consumer_thread_pipe[1]);
1206 if (ret) {
1207 PERROR("close");
1208 }
1209 ret = close(ctx->consumer_data_pipe[0]);
1210 if (ret) {
1211 PERROR("close");
1212 }
1213 ret = close(ctx->consumer_data_pipe[1]);
1214 if (ret) {
1215 PERROR("close");
1216 }
1217 ret = close(ctx->consumer_should_quit[0]);
1218 if (ret) {
1219 PERROR("close");
1220 }
1221 ret = close(ctx->consumer_should_quit[1]);
1222 if (ret) {
1223 PERROR("close");
1224 }
1225 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1226
1227 unlink(ctx->consumer_command_sock_path);
1228 free(ctx);
1229 }
1230
1231 /*
1232 * Write the metadata stream id on the specified file descriptor.
1233 */
1234 static int write_relayd_metadata_id(int fd,
1235 struct lttng_consumer_stream *stream,
1236 struct consumer_relayd_sock_pair *relayd,
1237 unsigned long padding)
1238 {
1239 int ret;
1240 struct lttcomm_relayd_metadata_payload hdr;
1241
1242 hdr.stream_id = htobe64(stream->relayd_stream_id);
1243 hdr.padding_size = htobe32(padding);
1244 do {
1245 ret = write(fd, (void *) &hdr, sizeof(hdr));
1246 } while (ret < 0 && errno == EINTR);
1247 if (ret < 0) {
1248 PERROR("write metadata stream id");
1249 goto end;
1250 }
1251 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1252 stream->relayd_stream_id, padding);
1253
1254 end:
1255 return ret;
1256 }
1257
1258 /*
1259 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1260 * core function for writing trace buffers to either the local filesystem or
1261 * the network.
1262 *
1263 * Careful review MUST be put if any changes occur!
1264 *
1265 * Returns the number of bytes written
1266 */
1267 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1268 struct lttng_consumer_local_data *ctx,
1269 struct lttng_consumer_stream *stream, unsigned long len,
1270 unsigned long padding)
1271 {
1272 unsigned long mmap_offset;
1273 ssize_t ret = 0, written = 0;
1274 off_t orig_offset = stream->out_fd_offset;
1275 /* Default is on the disk */
1276 int outfd = stream->out_fd;
1277 struct consumer_relayd_sock_pair *relayd = NULL;
1278 unsigned int relayd_hang_up = 0;
1279
1280 /* RCU lock for the relayd pointer */
1281 rcu_read_lock();
1282
1283 /* Flag that the current stream if set for network streaming. */
1284 if (stream->net_seq_idx != -1) {
1285 relayd = consumer_find_relayd(stream->net_seq_idx);
1286 if (relayd == NULL) {
1287 goto end;
1288 }
1289 }
1290
1291 /* get the offset inside the fd to mmap */
1292 switch (consumer_data.type) {
1293 case LTTNG_CONSUMER_KERNEL:
1294 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1295 break;
1296 case LTTNG_CONSUMER32_UST:
1297 case LTTNG_CONSUMER64_UST:
1298 ret = lttng_ustctl_get_mmap_read_offset(stream->chan->handle,
1299 stream->buf, &mmap_offset);
1300 break;
1301 default:
1302 ERR("Unknown consumer_data type");
1303 assert(0);
1304 }
1305 if (ret != 0) {
1306 errno = -ret;
1307 PERROR("tracer ctl get_mmap_read_offset");
1308 written = ret;
1309 goto end;
1310 }
1311
1312 /* Handle stream on the relayd if the output is on the network */
1313 if (relayd) {
1314 unsigned long netlen = len;
1315
1316 /*
1317 * Lock the control socket for the complete duration of the function
1318 * since from this point on we will use the socket.
1319 */
1320 if (stream->metadata_flag) {
1321 /* Metadata requires the control socket. */
1322 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1323 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1324 }
1325
1326 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1327 if (ret >= 0) {
1328 /* Use the returned socket. */
1329 outfd = ret;
1330
1331 /* Write metadata stream id before payload */
1332 if (stream->metadata_flag) {
1333 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1334 if (ret < 0) {
1335 written = ret;
1336 /* Socket operation failed. We consider the relayd dead */
1337 if (ret == -EPIPE || ret == -EINVAL) {
1338 relayd_hang_up = 1;
1339 goto write_error;
1340 }
1341 goto end;
1342 }
1343 }
1344 } else {
1345 /* Socket operation failed. We consider the relayd dead */
1346 if (ret == -EPIPE || ret == -EINVAL) {
1347 relayd_hang_up = 1;
1348 goto write_error;
1349 }
1350 /* Else, use the default set before which is the filesystem. */
1351 }
1352 } else {
1353 /* No streaming, we have to set the len with the full padding */
1354 len += padding;
1355 }
1356
1357 while (len > 0) {
1358 do {
1359 ret = write(outfd, stream->mmap_base + mmap_offset, len);
1360 } while (ret < 0 && errno == EINTR);
1361 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1362 if (ret < 0) {
1363 PERROR("Error in file write");
1364 if (written == 0) {
1365 written = ret;
1366 }
1367 /* Socket operation failed. We consider the relayd dead */
1368 if (errno == EPIPE || errno == EINVAL) {
1369 relayd_hang_up = 1;
1370 goto write_error;
1371 }
1372 goto end;
1373 } else if (ret > len) {
1374 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1375 written += ret;
1376 goto end;
1377 } else {
1378 len -= ret;
1379 mmap_offset += ret;
1380 }
1381
1382 /* This call is useless on a socket so better save a syscall. */
1383 if (!relayd) {
1384 /* This won't block, but will start writeout asynchronously */
1385 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1386 SYNC_FILE_RANGE_WRITE);
1387 stream->out_fd_offset += ret;
1388 }
1389 written += ret;
1390 }
1391 lttng_consumer_sync_trace_file(stream, orig_offset);
1392
1393 write_error:
1394 /*
1395 * This is a special case that the relayd has closed its socket. Let's
1396 * cleanup the relayd object and all associated streams.
1397 */
1398 if (relayd && relayd_hang_up) {
1399 cleanup_relayd(relayd, ctx);
1400 }
1401
1402 end:
1403 /* Unlock only if ctrl socket used */
1404 if (relayd && stream->metadata_flag) {
1405 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1406 }
1407
1408 rcu_read_unlock();
1409 return written;
1410 }
1411
1412 /*
1413 * Splice the data from the ring buffer to the tracefile.
1414 *
1415 * Returns the number of bytes spliced.
1416 */
1417 ssize_t lttng_consumer_on_read_subbuffer_splice(
1418 struct lttng_consumer_local_data *ctx,
1419 struct lttng_consumer_stream *stream, unsigned long len,
1420 unsigned long padding)
1421 {
1422 ssize_t ret = 0, written = 0, ret_splice = 0;
1423 loff_t offset = 0;
1424 off_t orig_offset = stream->out_fd_offset;
1425 int fd = stream->wait_fd;
1426 /* Default is on the disk */
1427 int outfd = stream->out_fd;
1428 struct consumer_relayd_sock_pair *relayd = NULL;
1429 int *splice_pipe;
1430 unsigned int relayd_hang_up = 0;
1431
1432 switch (consumer_data.type) {
1433 case LTTNG_CONSUMER_KERNEL:
1434 break;
1435 case LTTNG_CONSUMER32_UST:
1436 case LTTNG_CONSUMER64_UST:
1437 /* Not supported for user space tracing */
1438 return -ENOSYS;
1439 default:
1440 ERR("Unknown consumer_data type");
1441 assert(0);
1442 }
1443
1444 /* RCU lock for the relayd pointer */
1445 rcu_read_lock();
1446
1447 /* Flag that the current stream if set for network streaming. */
1448 if (stream->net_seq_idx != -1) {
1449 relayd = consumer_find_relayd(stream->net_seq_idx);
1450 if (relayd == NULL) {
1451 goto end;
1452 }
1453 }
1454
1455 /*
1456 * Choose right pipe for splice. Metadata and trace data are handled by
1457 * different threads hence the use of two pipes in order not to race or
1458 * corrupt the written data.
1459 */
1460 if (stream->metadata_flag) {
1461 splice_pipe = ctx->consumer_splice_metadata_pipe;
1462 } else {
1463 splice_pipe = ctx->consumer_thread_pipe;
1464 }
1465
1466 /* Write metadata stream id before payload */
1467 if (relayd) {
1468 int total_len = len;
1469
1470 if (stream->metadata_flag) {
1471 /*
1472 * Lock the control socket for the complete duration of the function
1473 * since from this point on we will use the socket.
1474 */
1475 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1476
1477 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1478 padding);
1479 if (ret < 0) {
1480 written = ret;
1481 /* Socket operation failed. We consider the relayd dead */
1482 if (ret == -EBADF) {
1483 WARN("Remote relayd disconnected. Stopping");
1484 relayd_hang_up = 1;
1485 goto write_error;
1486 }
1487 goto end;
1488 }
1489
1490 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1491 }
1492
1493 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1494 if (ret >= 0) {
1495 /* Use the returned socket. */
1496 outfd = ret;
1497 } else {
1498 /* Socket operation failed. We consider the relayd dead */
1499 if (ret == -EBADF) {
1500 WARN("Remote relayd disconnected. Stopping");
1501 relayd_hang_up = 1;
1502 goto write_error;
1503 }
1504 goto end;
1505 }
1506 } else {
1507 /* No streaming, we have to set the len with the full padding */
1508 len += padding;
1509 }
1510
1511 while (len > 0) {
1512 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1513 (unsigned long)offset, len, fd, splice_pipe[1]);
1514 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1515 SPLICE_F_MOVE | SPLICE_F_MORE);
1516 DBG("splice chan to pipe, ret %zd", ret_splice);
1517 if (ret_splice < 0) {
1518 PERROR("Error in relay splice");
1519 if (written == 0) {
1520 written = ret_splice;
1521 }
1522 ret = errno;
1523 goto splice_error;
1524 }
1525
1526 /* Handle stream on the relayd if the output is on the network */
1527 if (relayd) {
1528 if (stream->metadata_flag) {
1529 size_t metadata_payload_size =
1530 sizeof(struct lttcomm_relayd_metadata_payload);
1531
1532 /* Update counter to fit the spliced data */
1533 ret_splice += metadata_payload_size;
1534 len += metadata_payload_size;
1535 /*
1536 * We do this so the return value can match the len passed as
1537 * argument to this function.
1538 */
1539 written -= metadata_payload_size;
1540 }
1541 }
1542
1543 /* Splice data out */
1544 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1545 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1546 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1547 if (ret_splice < 0) {
1548 PERROR("Error in file splice");
1549 if (written == 0) {
1550 written = ret_splice;
1551 }
1552 /* Socket operation failed. We consider the relayd dead */
1553 if (errno == EBADF || errno == EPIPE) {
1554 WARN("Remote relayd disconnected. Stopping");
1555 relayd_hang_up = 1;
1556 goto write_error;
1557 }
1558 ret = errno;
1559 goto splice_error;
1560 } else if (ret_splice > len) {
1561 errno = EINVAL;
1562 PERROR("Wrote more data than requested %zd (len: %lu)",
1563 ret_splice, len);
1564 written += ret_splice;
1565 ret = errno;
1566 goto splice_error;
1567 }
1568 len -= ret_splice;
1569
1570 /* This call is useless on a socket so better save a syscall. */
1571 if (!relayd) {
1572 /* This won't block, but will start writeout asynchronously */
1573 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1574 SYNC_FILE_RANGE_WRITE);
1575 stream->out_fd_offset += ret_splice;
1576 }
1577 written += ret_splice;
1578 }
1579 lttng_consumer_sync_trace_file(stream, orig_offset);
1580
1581 ret = ret_splice;
1582
1583 goto end;
1584
1585 write_error:
1586 /*
1587 * This is a special case that the relayd has closed its socket. Let's
1588 * cleanup the relayd object and all associated streams.
1589 */
1590 if (relayd && relayd_hang_up) {
1591 cleanup_relayd(relayd, ctx);
1592 /* Skip splice error so the consumer does not fail */
1593 goto end;
1594 }
1595
1596 splice_error:
1597 /* send the appropriate error description to sessiond */
1598 switch (ret) {
1599 case EINVAL:
1600 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1601 break;
1602 case ENOMEM:
1603 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1604 break;
1605 case ESPIPE:
1606 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1607 break;
1608 }
1609
1610 end:
1611 if (relayd && stream->metadata_flag) {
1612 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1613 }
1614
1615 rcu_read_unlock();
1616 return written;
1617 }
1618
1619 /*
1620 * Take a snapshot for a specific fd
1621 *
1622 * Returns 0 on success, < 0 on error
1623 */
1624 int lttng_consumer_take_snapshot(struct lttng_consumer_local_data *ctx,
1625 struct lttng_consumer_stream *stream)
1626 {
1627 switch (consumer_data.type) {
1628 case LTTNG_CONSUMER_KERNEL:
1629 return lttng_kconsumer_take_snapshot(ctx, stream);
1630 case LTTNG_CONSUMER32_UST:
1631 case LTTNG_CONSUMER64_UST:
1632 return lttng_ustconsumer_take_snapshot(ctx, stream);
1633 default:
1634 ERR("Unknown consumer_data type");
1635 assert(0);
1636 return -ENOSYS;
1637 }
1638
1639 }
1640
1641 /*
1642 * Get the produced position
1643 *
1644 * Returns 0 on success, < 0 on error
1645 */
1646 int lttng_consumer_get_produced_snapshot(
1647 struct lttng_consumer_local_data *ctx,
1648 struct lttng_consumer_stream *stream,
1649 unsigned long *pos)
1650 {
1651 switch (consumer_data.type) {
1652 case LTTNG_CONSUMER_KERNEL:
1653 return lttng_kconsumer_get_produced_snapshot(ctx, stream, pos);
1654 case LTTNG_CONSUMER32_UST:
1655 case LTTNG_CONSUMER64_UST:
1656 return lttng_ustconsumer_get_produced_snapshot(ctx, stream, pos);
1657 default:
1658 ERR("Unknown consumer_data type");
1659 assert(0);
1660 return -ENOSYS;
1661 }
1662 }
1663
1664 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1665 int sock, struct pollfd *consumer_sockpoll)
1666 {
1667 switch (consumer_data.type) {
1668 case LTTNG_CONSUMER_KERNEL:
1669 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1670 case LTTNG_CONSUMER32_UST:
1671 case LTTNG_CONSUMER64_UST:
1672 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1673 default:
1674 ERR("Unknown consumer_data type");
1675 assert(0);
1676 return -ENOSYS;
1677 }
1678 }
1679
1680 /*
1681 * Iterate over all streams of the hashtable and free them properly.
1682 *
1683 * WARNING: *MUST* be used with data stream only.
1684 */
1685 static void destroy_data_stream_ht(struct lttng_ht *ht)
1686 {
1687 int ret;
1688 struct lttng_ht_iter iter;
1689 struct lttng_consumer_stream *stream;
1690
1691 if (ht == NULL) {
1692 return;
1693 }
1694
1695 rcu_read_lock();
1696 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1697 ret = lttng_ht_del(ht, &iter);
1698 assert(!ret);
1699
1700 call_rcu(&stream->node.head, consumer_free_stream);
1701 }
1702 rcu_read_unlock();
1703
1704 lttng_ht_destroy(ht);
1705 }
1706
1707 /*
1708 * Iterate over all streams of the hashtable and free them properly.
1709 *
1710 * XXX: Should not be only for metadata stream or else use an other name.
1711 */
1712 static void destroy_stream_ht(struct lttng_ht *ht)
1713 {
1714 int ret;
1715 struct lttng_ht_iter iter;
1716 struct lttng_consumer_stream *stream;
1717
1718 if (ht == NULL) {
1719 return;
1720 }
1721
1722 rcu_read_lock();
1723 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1724 ret = lttng_ht_del(ht, &iter);
1725 assert(!ret);
1726
1727 call_rcu(&stream->node.head, consumer_free_stream);
1728 }
1729 rcu_read_unlock();
1730
1731 lttng_ht_destroy(ht);
1732 }
1733
1734 /*
1735 * Clean up a metadata stream and free its memory.
1736 */
1737 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1738 struct lttng_ht *ht)
1739 {
1740 int ret;
1741 struct lttng_ht_iter iter;
1742 struct lttng_consumer_channel *free_chan = NULL;
1743 struct consumer_relayd_sock_pair *relayd;
1744
1745 assert(stream);
1746 /*
1747 * This call should NEVER receive regular stream. It must always be
1748 * metadata stream and this is crucial for data structure synchronization.
1749 */
1750 assert(stream->metadata_flag);
1751
1752 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1753
1754 if (ht == NULL) {
1755 /* Means the stream was allocated but not successfully added */
1756 goto free_stream;
1757 }
1758
1759 pthread_mutex_lock(&consumer_data.lock);
1760 pthread_mutex_lock(&stream->lock);
1761
1762 switch (consumer_data.type) {
1763 case LTTNG_CONSUMER_KERNEL:
1764 if (stream->mmap_base != NULL) {
1765 ret = munmap(stream->mmap_base, stream->mmap_len);
1766 if (ret != 0) {
1767 PERROR("munmap metadata stream");
1768 }
1769 }
1770 break;
1771 case LTTNG_CONSUMER32_UST:
1772 case LTTNG_CONSUMER64_UST:
1773 lttng_ustconsumer_del_stream(stream);
1774 break;
1775 default:
1776 ERR("Unknown consumer_data type");
1777 assert(0);
1778 goto end;
1779 }
1780
1781 rcu_read_lock();
1782 iter.iter.node = &stream->node.node;
1783 ret = lttng_ht_del(ht, &iter);
1784 assert(!ret);
1785
1786 /* Remove node session id from the consumer_data stream ht */
1787 iter.iter.node = &stream->node_session_id.node;
1788 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1789 assert(!ret);
1790 rcu_read_unlock();
1791
1792 if (stream->out_fd >= 0) {
1793 ret = close(stream->out_fd);
1794 if (ret) {
1795 PERROR("close");
1796 }
1797 }
1798
1799 if (stream->wait_fd >= 0 && !stream->wait_fd_is_copy) {
1800 ret = close(stream->wait_fd);
1801 if (ret) {
1802 PERROR("close");
1803 }
1804 }
1805
1806 if (stream->shm_fd >= 0 && stream->wait_fd != stream->shm_fd) {
1807 ret = close(stream->shm_fd);
1808 if (ret) {
1809 PERROR("close");
1810 }
1811 }
1812
1813 /* Check and cleanup relayd */
1814 rcu_read_lock();
1815 relayd = consumer_find_relayd(stream->net_seq_idx);
1816 if (relayd != NULL) {
1817 uatomic_dec(&relayd->refcount);
1818 assert(uatomic_read(&relayd->refcount) >= 0);
1819
1820 /* Closing streams requires to lock the control socket. */
1821 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1822 ret = relayd_send_close_stream(&relayd->control_sock,
1823 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1824 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1825 if (ret < 0) {
1826 DBG("Unable to close stream on the relayd. Continuing");
1827 /*
1828 * Continue here. There is nothing we can do for the relayd.
1829 * Chances are that the relayd has closed the socket so we just
1830 * continue cleaning up.
1831 */
1832 }
1833
1834 /* Both conditions are met, we destroy the relayd. */
1835 if (uatomic_read(&relayd->refcount) == 0 &&
1836 uatomic_read(&relayd->destroy_flag)) {
1837 destroy_relayd(relayd);
1838 }
1839 }
1840 rcu_read_unlock();
1841
1842 /* Atomically decrement channel refcount since other threads can use it. */
1843 uatomic_dec(&stream->chan->refcount);
1844 if (!uatomic_read(&stream->chan->refcount)
1845 && !uatomic_read(&stream->chan->nb_init_streams)) {
1846 /* Go for channel deletion! */
1847 free_chan = stream->chan;
1848 }
1849
1850 end:
1851 pthread_mutex_unlock(&stream->lock);
1852 pthread_mutex_unlock(&consumer_data.lock);
1853
1854 if (free_chan) {
1855 consumer_del_channel(free_chan);
1856 }
1857
1858 free_stream:
1859 call_rcu(&stream->node.head, consumer_free_stream);
1860 }
1861
1862 /*
1863 * Action done with the metadata stream when adding it to the consumer internal
1864 * data structures to handle it.
1865 */
1866 static int consumer_add_metadata_stream(struct lttng_consumer_stream *stream,
1867 struct lttng_ht *ht)
1868 {
1869 int ret = 0;
1870 struct consumer_relayd_sock_pair *relayd;
1871 struct lttng_ht_iter iter;
1872 struct lttng_ht_node_ulong *node;
1873
1874 assert(stream);
1875 assert(ht);
1876
1877 DBG3("Adding metadata stream %d to hash table", stream->wait_fd);
1878
1879 pthread_mutex_lock(&consumer_data.lock);
1880 pthread_mutex_lock(&stream->lock);
1881
1882 /*
1883 * From here, refcounts are updated so be _careful_ when returning an error
1884 * after this point.
1885 */
1886
1887 rcu_read_lock();
1888
1889 /*
1890 * Lookup the stream just to make sure it does not exist in our internal
1891 * state. This should NEVER happen.
1892 */
1893 lttng_ht_lookup(ht, (void *)((unsigned long) stream->wait_fd), &iter);
1894 node = lttng_ht_iter_get_node_ulong(&iter);
1895 assert(!node);
1896
1897 /* Find relayd and, if one is found, increment refcount. */
1898 relayd = consumer_find_relayd(stream->net_seq_idx);
1899 if (relayd != NULL) {
1900 uatomic_inc(&relayd->refcount);
1901 }
1902
1903 /* Update channel refcount once added without error(s). */
1904 uatomic_inc(&stream->chan->refcount);
1905
1906 /*
1907 * When nb_init_streams reaches 0, we don't need to trigger any action in
1908 * terms of destroying the associated channel, because the action that
1909 * causes the count to become 0 also causes a stream to be added. The
1910 * channel deletion will thus be triggered by the following removal of this
1911 * stream.
1912 */
1913 if (uatomic_read(&stream->chan->nb_init_streams) > 0) {
1914 uatomic_dec(&stream->chan->nb_init_streams);
1915 }
1916
1917 lttng_ht_add_unique_ulong(ht, &stream->node);
1918
1919 /*
1920 * Add stream to the stream_list_ht of the consumer data. No need to steal
1921 * the key since the HT does not use it and we allow to add redundant keys
1922 * into this table.
1923 */
1924 lttng_ht_add_ulong(consumer_data.stream_list_ht, &stream->node_session_id);
1925
1926 rcu_read_unlock();
1927
1928 pthread_mutex_unlock(&stream->lock);
1929 pthread_mutex_unlock(&consumer_data.lock);
1930 return ret;
1931 }
1932
1933 /*
1934 * Delete data stream that are flagged for deletion (endpoint_status).
1935 */
1936 static void validate_endpoint_status_data_stream(void)
1937 {
1938 struct lttng_ht_iter iter;
1939 struct lttng_consumer_stream *stream;
1940
1941 DBG("Consumer delete flagged data stream");
1942
1943 rcu_read_lock();
1944 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
1945 /* Validate delete flag of the stream */
1946 if (stream->endpoint_status != CONSUMER_ENDPOINT_INACTIVE) {
1947 continue;
1948 }
1949 /* Delete it right now */
1950 consumer_del_stream(stream, data_ht);
1951 }
1952 rcu_read_unlock();
1953 }
1954
1955 /*
1956 * Delete metadata stream that are flagged for deletion (endpoint_status).
1957 */
1958 static void validate_endpoint_status_metadata_stream(
1959 struct lttng_poll_event *pollset)
1960 {
1961 struct lttng_ht_iter iter;
1962 struct lttng_consumer_stream *stream;
1963
1964 DBG("Consumer delete flagged metadata stream");
1965
1966 assert(pollset);
1967
1968 rcu_read_lock();
1969 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
1970 /* Validate delete flag of the stream */
1971 if (!stream->endpoint_status) {
1972 continue;
1973 }
1974 /*
1975 * Remove from pollset so the metadata thread can continue without
1976 * blocking on a deleted stream.
1977 */
1978 lttng_poll_del(pollset, stream->wait_fd);
1979
1980 /* Delete it right now */
1981 consumer_del_metadata_stream(stream, metadata_ht);
1982 }
1983 rcu_read_unlock();
1984 }
1985
1986 /*
1987 * Thread polls on metadata file descriptor and write them on disk or on the
1988 * network.
1989 */
1990 void *consumer_thread_metadata_poll(void *data)
1991 {
1992 int ret, i, pollfd;
1993 uint32_t revents, nb_fd;
1994 struct lttng_consumer_stream *stream = NULL;
1995 struct lttng_ht_iter iter;
1996 struct lttng_ht_node_ulong *node;
1997 struct lttng_poll_event events;
1998 struct lttng_consumer_local_data *ctx = data;
1999 ssize_t len;
2000
2001 rcu_register_thread();
2002
2003 DBG("Thread metadata poll started");
2004
2005 /* Size is set to 1 for the consumer_metadata pipe */
2006 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2007 if (ret < 0) {
2008 ERR("Poll set creation failed");
2009 goto end;
2010 }
2011
2012 ret = lttng_poll_add(&events, ctx->consumer_metadata_pipe[0], LPOLLIN);
2013 if (ret < 0) {
2014 goto end;
2015 }
2016
2017 /* Main loop */
2018 DBG("Metadata main loop started");
2019
2020 while (1) {
2021 lttng_poll_reset(&events);
2022
2023 nb_fd = LTTNG_POLL_GETNB(&events);
2024
2025 /* Only the metadata pipe is set */
2026 if (nb_fd == 0 && consumer_quit == 1) {
2027 goto end;
2028 }
2029
2030 restart:
2031 DBG("Metadata poll wait with %d fd(s)", nb_fd);
2032 ret = lttng_poll_wait(&events, -1);
2033 DBG("Metadata event catched in thread");
2034 if (ret < 0) {
2035 if (errno == EINTR) {
2036 ERR("Poll EINTR catched");
2037 goto restart;
2038 }
2039 goto error;
2040 }
2041
2042 /* From here, the event is a metadata wait fd */
2043 for (i = 0; i < nb_fd; i++) {
2044 revents = LTTNG_POLL_GETEV(&events, i);
2045 pollfd = LTTNG_POLL_GETFD(&events, i);
2046
2047 /* Just don't waste time if no returned events for the fd */
2048 if (!revents) {
2049 continue;
2050 }
2051
2052 if (pollfd == ctx->consumer_metadata_pipe[0]) {
2053 if (revents & (LPOLLERR | LPOLLHUP )) {
2054 DBG("Metadata thread pipe hung up");
2055 /*
2056 * Remove the pipe from the poll set and continue the loop
2057 * since their might be data to consume.
2058 */
2059 lttng_poll_del(&events, ctx->consumer_metadata_pipe[0]);
2060 ret = close(ctx->consumer_metadata_pipe[0]);
2061 if (ret < 0) {
2062 PERROR("close metadata pipe");
2063 }
2064 continue;
2065 } else if (revents & LPOLLIN) {
2066 do {
2067 /* Get the stream pointer received */
2068 ret = read(pollfd, &stream, sizeof(stream));
2069 } while (ret < 0 && errno == EINTR);
2070 if (ret < 0 ||
2071 ret < sizeof(struct lttng_consumer_stream *)) {
2072 PERROR("read metadata stream");
2073 /*
2074 * Let's continue here and hope we can still work
2075 * without stopping the consumer. XXX: Should we?
2076 */
2077 continue;
2078 }
2079
2080 /* A NULL stream means that the state has changed. */
2081 if (stream == NULL) {
2082 /* Check for deleted streams. */
2083 validate_endpoint_status_metadata_stream(&events);
2084 continue;
2085 }
2086
2087 DBG("Adding metadata stream %d to poll set",
2088 stream->wait_fd);
2089
2090 ret = consumer_add_metadata_stream(stream, metadata_ht);
2091 if (ret) {
2092 ERR("Unable to add metadata stream");
2093 /* Stream was not setup properly. Continuing. */
2094 consumer_del_metadata_stream(stream, NULL);
2095 continue;
2096 }
2097
2098 /* Add metadata stream to the global poll events list */
2099 lttng_poll_add(&events, stream->wait_fd,
2100 LPOLLIN | LPOLLPRI);
2101 }
2102
2103 /* Handle other stream */
2104 continue;
2105 }
2106
2107 rcu_read_lock();
2108 lttng_ht_lookup(metadata_ht, (void *)((unsigned long) pollfd),
2109 &iter);
2110 node = lttng_ht_iter_get_node_ulong(&iter);
2111 assert(node);
2112
2113 stream = caa_container_of(node, struct lttng_consumer_stream,
2114 node);
2115
2116 /* Check for error event */
2117 if (revents & (LPOLLERR | LPOLLHUP)) {
2118 DBG("Metadata fd %d is hup|err.", pollfd);
2119 if (!stream->hangup_flush_done
2120 && (consumer_data.type == LTTNG_CONSUMER32_UST
2121 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2122 DBG("Attempting to flush and consume the UST buffers");
2123 lttng_ustconsumer_on_stream_hangup(stream);
2124
2125 /* We just flushed the stream now read it. */
2126 do {
2127 len = ctx->on_buffer_ready(stream, ctx);
2128 /*
2129 * We don't check the return value here since if we get
2130 * a negative len, it means an error occured thus we
2131 * simply remove it from the poll set and free the
2132 * stream.
2133 */
2134 } while (len > 0);
2135 }
2136
2137 lttng_poll_del(&events, stream->wait_fd);
2138 /*
2139 * This call update the channel states, closes file descriptors
2140 * and securely free the stream.
2141 */
2142 consumer_del_metadata_stream(stream, metadata_ht);
2143 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2144 /* Get the data out of the metadata file descriptor */
2145 DBG("Metadata available on fd %d", pollfd);
2146 assert(stream->wait_fd == pollfd);
2147
2148 len = ctx->on_buffer_ready(stream, ctx);
2149 /* It's ok to have an unavailable sub-buffer */
2150 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2151 /* Clean up stream from consumer and free it. */
2152 lttng_poll_del(&events, stream->wait_fd);
2153 consumer_del_metadata_stream(stream, metadata_ht);
2154 } else if (len > 0) {
2155 stream->data_read = 1;
2156 }
2157 }
2158
2159 /* Release RCU lock for the stream looked up */
2160 rcu_read_unlock();
2161 }
2162 }
2163
2164 error:
2165 end:
2166 DBG("Metadata poll thread exiting");
2167 lttng_poll_clean(&events);
2168
2169 if (metadata_ht) {
2170 destroy_stream_ht(metadata_ht);
2171 }
2172
2173 rcu_unregister_thread();
2174 return NULL;
2175 }
2176
2177 /*
2178 * This thread polls the fds in the set to consume the data and write
2179 * it to tracefile if necessary.
2180 */
2181 void *consumer_thread_data_poll(void *data)
2182 {
2183 int num_rdy, num_hup, high_prio, ret, i;
2184 struct pollfd *pollfd = NULL;
2185 /* local view of the streams */
2186 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2187 /* local view of consumer_data.fds_count */
2188 int nb_fd = 0;
2189 struct lttng_consumer_local_data *ctx = data;
2190 ssize_t len;
2191
2192 rcu_register_thread();
2193
2194 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2195 if (data_ht == NULL) {
2196 goto end;
2197 }
2198
2199 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
2200
2201 while (1) {
2202 high_prio = 0;
2203 num_hup = 0;
2204
2205 /*
2206 * the fds set has been updated, we need to update our
2207 * local array as well
2208 */
2209 pthread_mutex_lock(&consumer_data.lock);
2210 if (consumer_data.need_update) {
2211 if (pollfd != NULL) {
2212 free(pollfd);
2213 pollfd = NULL;
2214 }
2215 if (local_stream != NULL) {
2216 free(local_stream);
2217 local_stream = NULL;
2218 }
2219
2220 /* allocate for all fds + 1 for the consumer_data_pipe */
2221 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2222 if (pollfd == NULL) {
2223 PERROR("pollfd malloc");
2224 pthread_mutex_unlock(&consumer_data.lock);
2225 goto end;
2226 }
2227
2228 /* allocate for all fds + 1 for the consumer_data_pipe */
2229 local_stream = zmalloc((consumer_data.stream_count + 1) *
2230 sizeof(struct lttng_consumer_stream));
2231 if (local_stream == NULL) {
2232 PERROR("local_stream malloc");
2233 pthread_mutex_unlock(&consumer_data.lock);
2234 goto end;
2235 }
2236 ret = consumer_update_poll_array(ctx, &pollfd, local_stream,
2237 data_ht);
2238 if (ret < 0) {
2239 ERR("Error in allocating pollfd or local_outfds");
2240 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2241 pthread_mutex_unlock(&consumer_data.lock);
2242 goto end;
2243 }
2244 nb_fd = ret;
2245 consumer_data.need_update = 0;
2246 }
2247 pthread_mutex_unlock(&consumer_data.lock);
2248
2249 /* No FDs and consumer_quit, consumer_cleanup the thread */
2250 if (nb_fd == 0 && consumer_quit == 1) {
2251 goto end;
2252 }
2253 /* poll on the array of fds */
2254 restart:
2255 DBG("polling on %d fd", nb_fd + 1);
2256 num_rdy = poll(pollfd, nb_fd + 1, -1);
2257 DBG("poll num_rdy : %d", num_rdy);
2258 if (num_rdy == -1) {
2259 /*
2260 * Restart interrupted system call.
2261 */
2262 if (errno == EINTR) {
2263 goto restart;
2264 }
2265 PERROR("Poll error");
2266 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2267 goto end;
2268 } else if (num_rdy == 0) {
2269 DBG("Polling thread timed out");
2270 goto end;
2271 }
2272
2273 /*
2274 * If the consumer_data_pipe triggered poll go directly to the
2275 * beginning of the loop to update the array. We want to prioritize
2276 * array update over low-priority reads.
2277 */
2278 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2279 size_t pipe_readlen;
2280
2281 DBG("consumer_data_pipe wake up");
2282 /* Consume 1 byte of pipe data */
2283 do {
2284 pipe_readlen = read(ctx->consumer_data_pipe[0], &new_stream,
2285 sizeof(new_stream));
2286 } while (pipe_readlen == -1 && errno == EINTR);
2287
2288 /*
2289 * If the stream is NULL, just ignore it. It's also possible that
2290 * the sessiond poll thread changed the consumer_quit state and is
2291 * waking us up to test it.
2292 */
2293 if (new_stream == NULL) {
2294 validate_endpoint_status_data_stream();
2295 continue;
2296 }
2297
2298 ret = consumer_add_stream(new_stream, data_ht);
2299 if (ret) {
2300 ERR("Consumer add stream %d failed. Continuing",
2301 new_stream->key);
2302 /*
2303 * At this point, if the add_stream fails, it is not in the
2304 * hash table thus passing the NULL value here.
2305 */
2306 consumer_del_stream(new_stream, NULL);
2307 }
2308
2309 /* Continue to update the local streams and handle prio ones */
2310 continue;
2311 }
2312
2313 /* Take care of high priority channels first. */
2314 for (i = 0; i < nb_fd; i++) {
2315 if (local_stream[i] == NULL) {
2316 continue;
2317 }
2318 if (pollfd[i].revents & POLLPRI) {
2319 DBG("Urgent read on fd %d", pollfd[i].fd);
2320 high_prio = 1;
2321 len = ctx->on_buffer_ready(local_stream[i], ctx);
2322 /* it's ok to have an unavailable sub-buffer */
2323 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2324 /* Clean the stream and free it. */
2325 consumer_del_stream(local_stream[i], data_ht);
2326 local_stream[i] = NULL;
2327 } else if (len > 0) {
2328 local_stream[i]->data_read = 1;
2329 }
2330 }
2331 }
2332
2333 /*
2334 * If we read high prio channel in this loop, try again
2335 * for more high prio data.
2336 */
2337 if (high_prio) {
2338 continue;
2339 }
2340
2341 /* Take care of low priority channels. */
2342 for (i = 0; i < nb_fd; i++) {
2343 if (local_stream[i] == NULL) {
2344 continue;
2345 }
2346 if ((pollfd[i].revents & POLLIN) ||
2347 local_stream[i]->hangup_flush_done) {
2348 DBG("Normal read on fd %d", pollfd[i].fd);
2349 len = ctx->on_buffer_ready(local_stream[i], ctx);
2350 /* it's ok to have an unavailable sub-buffer */
2351 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2352 /* Clean the stream and free it. */
2353 consumer_del_stream(local_stream[i], data_ht);
2354 local_stream[i] = NULL;
2355 } else if (len > 0) {
2356 local_stream[i]->data_read = 1;
2357 }
2358 }
2359 }
2360
2361 /* Handle hangup and errors */
2362 for (i = 0; i < nb_fd; i++) {
2363 if (local_stream[i] == NULL) {
2364 continue;
2365 }
2366 if (!local_stream[i]->hangup_flush_done
2367 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2368 && (consumer_data.type == LTTNG_CONSUMER32_UST
2369 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2370 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2371 pollfd[i].fd);
2372 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2373 /* Attempt read again, for the data we just flushed. */
2374 local_stream[i]->data_read = 1;
2375 }
2376 /*
2377 * If the poll flag is HUP/ERR/NVAL and we have
2378 * read no data in this pass, we can remove the
2379 * stream from its hash table.
2380 */
2381 if ((pollfd[i].revents & POLLHUP)) {
2382 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2383 if (!local_stream[i]->data_read) {
2384 consumer_del_stream(local_stream[i], data_ht);
2385 local_stream[i] = NULL;
2386 num_hup++;
2387 }
2388 } else if (pollfd[i].revents & POLLERR) {
2389 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2390 if (!local_stream[i]->data_read) {
2391 consumer_del_stream(local_stream[i], data_ht);
2392 local_stream[i] = NULL;
2393 num_hup++;
2394 }
2395 } else if (pollfd[i].revents & POLLNVAL) {
2396 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2397 if (!local_stream[i]->data_read) {
2398 consumer_del_stream(local_stream[i], data_ht);
2399 local_stream[i] = NULL;
2400 num_hup++;
2401 }
2402 }
2403 if (local_stream[i] != NULL) {
2404 local_stream[i]->data_read = 0;
2405 }
2406 }
2407 }
2408 end:
2409 DBG("polling thread exiting");
2410 if (pollfd != NULL) {
2411 free(pollfd);
2412 pollfd = NULL;
2413 }
2414 if (local_stream != NULL) {
2415 free(local_stream);
2416 local_stream = NULL;
2417 }
2418
2419 /*
2420 * Close the write side of the pipe so epoll_wait() in
2421 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2422 * read side of the pipe. If we close them both, epoll_wait strangely does
2423 * not return and could create a endless wait period if the pipe is the
2424 * only tracked fd in the poll set. The thread will take care of closing
2425 * the read side.
2426 */
2427 ret = close(ctx->consumer_metadata_pipe[1]);
2428 if (ret < 0) {
2429 PERROR("close data pipe");
2430 }
2431
2432 if (data_ht) {
2433 destroy_data_stream_ht(data_ht);
2434 }
2435
2436 rcu_unregister_thread();
2437 return NULL;
2438 }
2439
2440 /*
2441 * This thread listens on the consumerd socket and receives the file
2442 * descriptors from the session daemon.
2443 */
2444 void *consumer_thread_sessiond_poll(void *data)
2445 {
2446 int sock, client_socket, ret;
2447 /*
2448 * structure to poll for incoming data on communication socket avoids
2449 * making blocking sockets.
2450 */
2451 struct pollfd consumer_sockpoll[2];
2452 struct lttng_consumer_local_data *ctx = data;
2453
2454 rcu_register_thread();
2455
2456 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2457 unlink(ctx->consumer_command_sock_path);
2458 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2459 if (client_socket < 0) {
2460 ERR("Cannot create command socket");
2461 goto end;
2462 }
2463
2464 ret = lttcomm_listen_unix_sock(client_socket);
2465 if (ret < 0) {
2466 goto end;
2467 }
2468
2469 DBG("Sending ready command to lttng-sessiond");
2470 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2471 /* return < 0 on error, but == 0 is not fatal */
2472 if (ret < 0) {
2473 ERR("Error sending ready command to lttng-sessiond");
2474 goto end;
2475 }
2476
2477 ret = fcntl(client_socket, F_SETFL, O_NONBLOCK);
2478 if (ret < 0) {
2479 PERROR("fcntl O_NONBLOCK");
2480 goto end;
2481 }
2482
2483 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2484 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2485 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2486 consumer_sockpoll[1].fd = client_socket;
2487 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2488
2489 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2490 goto end;
2491 }
2492 DBG("Connection on client_socket");
2493
2494 /* Blocking call, waiting for transmission */
2495 sock = lttcomm_accept_unix_sock(client_socket);
2496 if (sock <= 0) {
2497 WARN("On accept");
2498 goto end;
2499 }
2500 ret = fcntl(sock, F_SETFL, O_NONBLOCK);
2501 if (ret < 0) {
2502 PERROR("fcntl O_NONBLOCK");
2503 goto end;
2504 }
2505
2506 /* update the polling structure to poll on the established socket */
2507 consumer_sockpoll[1].fd = sock;
2508 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2509
2510 while (1) {
2511 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2512 goto end;
2513 }
2514 DBG("Incoming command on sock");
2515 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2516 if (ret == -ENOENT) {
2517 DBG("Received STOP command");
2518 goto end;
2519 }
2520 if (ret <= 0) {
2521 /*
2522 * This could simply be a session daemon quitting. Don't output
2523 * ERR() here.
2524 */
2525 DBG("Communication interrupted on command socket");
2526 goto end;
2527 }
2528 if (consumer_quit) {
2529 DBG("consumer_thread_receive_fds received quit from signal");
2530 goto end;
2531 }
2532 DBG("received fds on sock");
2533 }
2534 end:
2535 DBG("consumer_thread_receive_fds exiting");
2536
2537 /*
2538 * when all fds have hung up, the polling thread
2539 * can exit cleanly
2540 */
2541 consumer_quit = 1;
2542
2543 /*
2544 * Notify the data poll thread to poll back again and test the
2545 * consumer_quit state that we just set so to quit gracefully.
2546 */
2547 notify_thread_pipe(ctx->consumer_data_pipe[1]);
2548
2549 rcu_unregister_thread();
2550 return NULL;
2551 }
2552
2553 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
2554 struct lttng_consumer_local_data *ctx)
2555 {
2556 ssize_t ret;
2557
2558 pthread_mutex_lock(&stream->lock);
2559
2560 switch (consumer_data.type) {
2561 case LTTNG_CONSUMER_KERNEL:
2562 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
2563 break;
2564 case LTTNG_CONSUMER32_UST:
2565 case LTTNG_CONSUMER64_UST:
2566 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
2567 break;
2568 default:
2569 ERR("Unknown consumer_data type");
2570 assert(0);
2571 ret = -ENOSYS;
2572 break;
2573 }
2574
2575 pthread_mutex_unlock(&stream->lock);
2576 return ret;
2577 }
2578
2579 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
2580 {
2581 switch (consumer_data.type) {
2582 case LTTNG_CONSUMER_KERNEL:
2583 return lttng_kconsumer_on_recv_stream(stream);
2584 case LTTNG_CONSUMER32_UST:
2585 case LTTNG_CONSUMER64_UST:
2586 return lttng_ustconsumer_on_recv_stream(stream);
2587 default:
2588 ERR("Unknown consumer_data type");
2589 assert(0);
2590 return -ENOSYS;
2591 }
2592 }
2593
2594 /*
2595 * Allocate and set consumer data hash tables.
2596 */
2597 void lttng_consumer_init(void)
2598 {
2599 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2600 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2601 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2602
2603 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2604 assert(metadata_ht);
2605 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2606 assert(data_ht);
2607 }
2608
2609 /*
2610 * Process the ADD_RELAYD command receive by a consumer.
2611 *
2612 * This will create a relayd socket pair and add it to the relayd hash table.
2613 * The caller MUST acquire a RCU read side lock before calling it.
2614 */
2615 int consumer_add_relayd_socket(int net_seq_idx, int sock_type,
2616 struct lttng_consumer_local_data *ctx, int sock,
2617 struct pollfd *consumer_sockpoll, struct lttcomm_sock *relayd_sock)
2618 {
2619 int fd, ret = -1;
2620 struct consumer_relayd_sock_pair *relayd;
2621
2622 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx);
2623
2624 /* Get relayd reference if exists. */
2625 relayd = consumer_find_relayd(net_seq_idx);
2626 if (relayd == NULL) {
2627 /* Not found. Allocate one. */
2628 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
2629 if (relayd == NULL) {
2630 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
2631 goto error;
2632 }
2633 }
2634
2635 /* Poll on consumer socket. */
2636 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2637 ret = -EINTR;
2638 goto error;
2639 }
2640
2641 /* Get relayd socket from session daemon */
2642 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
2643 if (ret != sizeof(fd)) {
2644 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
2645 ret = -1;
2646 goto error;
2647 }
2648
2649 /* Copy socket information and received FD */
2650 switch (sock_type) {
2651 case LTTNG_STREAM_CONTROL:
2652 /* Copy received lttcomm socket */
2653 lttcomm_copy_sock(&relayd->control_sock, relayd_sock);
2654 ret = lttcomm_create_sock(&relayd->control_sock);
2655 if (ret < 0) {
2656 goto error;
2657 }
2658
2659 /* Close the created socket fd which is useless */
2660 ret = close(relayd->control_sock.fd);
2661 if (ret < 0) {
2662 PERROR("close relayd control socket");
2663 }
2664
2665 /* Assign new file descriptor */
2666 relayd->control_sock.fd = fd;
2667 break;
2668 case LTTNG_STREAM_DATA:
2669 /* Copy received lttcomm socket */
2670 lttcomm_copy_sock(&relayd->data_sock, relayd_sock);
2671 ret = lttcomm_create_sock(&relayd->data_sock);
2672 if (ret < 0) {
2673 goto error;
2674 }
2675
2676 /* Close the created socket fd which is useless */
2677 ret = close(relayd->data_sock.fd);
2678 if (ret < 0) {
2679 PERROR("close relayd control socket");
2680 }
2681
2682 /* Assign new file descriptor */
2683 relayd->data_sock.fd = fd;
2684 break;
2685 default:
2686 ERR("Unknown relayd socket type (%d)", sock_type);
2687 goto error;
2688 }
2689
2690 DBG("Consumer %s socket created successfully with net idx %d (fd: %d)",
2691 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
2692 relayd->net_seq_idx, fd);
2693
2694 /*
2695 * Add relayd socket pair to consumer data hashtable. If object already
2696 * exists or on error, the function gracefully returns.
2697 */
2698 add_relayd(relayd);
2699
2700 /* All good! */
2701 ret = 0;
2702
2703 error:
2704 return ret;
2705 }
2706
2707 /*
2708 * Try to lock the stream mutex.
2709 *
2710 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
2711 */
2712 static int stream_try_lock(struct lttng_consumer_stream *stream)
2713 {
2714 int ret;
2715
2716 assert(stream);
2717
2718 /*
2719 * Try to lock the stream mutex. On failure, we know that the stream is
2720 * being used else where hence there is data still being extracted.
2721 */
2722 ret = pthread_mutex_trylock(&stream->lock);
2723 if (ret) {
2724 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
2725 ret = 0;
2726 goto end;
2727 }
2728
2729 ret = 1;
2730
2731 end:
2732 return ret;
2733 }
2734
2735 /*
2736 * Check if for a given session id there is still data needed to be extract
2737 * from the buffers.
2738 *
2739 * Return 1 if data is pending or else 0 meaning ready to be read.
2740 */
2741 int consumer_data_pending(uint64_t id)
2742 {
2743 int ret;
2744 struct lttng_ht_iter iter;
2745 struct lttng_ht *ht;
2746 struct lttng_consumer_stream *stream;
2747 struct consumer_relayd_sock_pair *relayd;
2748 int (*data_pending)(struct lttng_consumer_stream *);
2749
2750 DBG("Consumer data pending command on session id %" PRIu64, id);
2751
2752 rcu_read_lock();
2753 pthread_mutex_lock(&consumer_data.lock);
2754
2755 switch (consumer_data.type) {
2756 case LTTNG_CONSUMER_KERNEL:
2757 data_pending = lttng_kconsumer_data_pending;
2758 break;
2759 case LTTNG_CONSUMER32_UST:
2760 case LTTNG_CONSUMER64_UST:
2761 data_pending = lttng_ustconsumer_data_pending;
2762 break;
2763 default:
2764 ERR("Unknown consumer data type");
2765 assert(0);
2766 }
2767
2768 /* Ease our life a bit */
2769 ht = consumer_data.stream_list_ht;
2770
2771 cds_lfht_for_each_entry_duplicate(ht->ht,
2772 ht->hash_fct((void *)((unsigned long) id), lttng_ht_seed),
2773 ht->match_fct, (void *)((unsigned long) id),
2774 &iter.iter, stream, node_session_id.node) {
2775 /* If this call fails, the stream is being used hence data pending. */
2776 ret = stream_try_lock(stream);
2777 if (!ret) {
2778 goto data_not_pending;
2779 }
2780
2781 /*
2782 * A removed node from the hash table indicates that the stream has
2783 * been deleted thus having a guarantee that the buffers are closed
2784 * on the consumer side. However, data can still be transmitted
2785 * over the network so don't skip the relayd check.
2786 */
2787 ret = cds_lfht_is_node_deleted(&stream->node.node);
2788 if (!ret) {
2789 /* Check the stream if there is data in the buffers. */
2790 ret = data_pending(stream);
2791 if (ret == 1) {
2792 pthread_mutex_unlock(&stream->lock);
2793 goto data_not_pending;
2794 }
2795 }
2796
2797 /* Relayd check */
2798 if (stream->net_seq_idx != -1) {
2799 relayd = consumer_find_relayd(stream->net_seq_idx);
2800 if (!relayd) {
2801 /*
2802 * At this point, if the relayd object is not available for the
2803 * given stream, it is because the relayd is being cleaned up
2804 * so every stream associated with it (for a session id value)
2805 * are or will be marked for deletion hence no data pending.
2806 */
2807 pthread_mutex_unlock(&stream->lock);
2808 goto data_not_pending;
2809 }
2810
2811 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
2812 if (stream->metadata_flag) {
2813 ret = relayd_quiescent_control(&relayd->control_sock);
2814 } else {
2815 ret = relayd_data_pending(&relayd->control_sock,
2816 stream->relayd_stream_id, stream->next_net_seq_num);
2817 }
2818 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2819 if (ret == 1) {
2820 pthread_mutex_unlock(&stream->lock);
2821 goto data_not_pending;
2822 }
2823 }
2824 pthread_mutex_unlock(&stream->lock);
2825 }
2826
2827 /*
2828 * Finding _no_ node in the hash table means that the stream(s) have been
2829 * removed thus data is guaranteed to be available for analysis from the
2830 * trace files. This is *only* true for local consumer and not network
2831 * streaming.
2832 */
2833
2834 /* Data is available to be read by a viewer. */
2835 pthread_mutex_unlock(&consumer_data.lock);
2836 rcu_read_unlock();
2837 return 0;
2838
2839 data_not_pending:
2840 /* Data is still being extracted from buffers. */
2841 pthread_mutex_unlock(&consumer_data.lock);
2842 rcu_read_unlock();
2843 return 1;
2844 }
This page took 0.159369 seconds and 4 git commands to generate.