2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 #include <sys/socket.h>
28 #include <sys/types.h>
32 #include <common/common.h>
33 #include <common/utils.h>
34 #include <common/compat/poll.h>
35 #include <common/kernel-ctl/kernel-ctl.h>
36 #include <common/sessiond-comm/relayd.h>
37 #include <common/sessiond-comm/sessiond-comm.h>
38 #include <common/kernel-consumer/kernel-consumer.h>
39 #include <common/relayd/relayd.h>
40 #include <common/ust-consumer/ust-consumer.h>
44 struct lttng_consumer_global_data consumer_data
= {
47 .type
= LTTNG_CONSUMER_UNKNOWN
,
51 * Flag to inform the polling thread to quit when all fd hung up. Updated by
52 * the consumer_thread_receive_fds when it notices that all fds has hung up.
53 * Also updated by the signal handler (consumer_should_exit()). Read by the
56 volatile int consumer_quit
;
59 * Global hash table containing respectively metadata and data streams. The
60 * stream element in this ht should only be updated by the metadata poll thread
61 * for the metadata and the data poll thread for the data.
63 static struct lttng_ht
*metadata_ht
;
64 static struct lttng_ht
*data_ht
;
67 * Notify a thread pipe to poll back again. This usually means that some global
68 * state has changed so we just send back the thread in a poll wait call.
70 static void notify_thread_pipe(int wpipe
)
75 struct lttng_consumer_stream
*null_stream
= NULL
;
77 ret
= write(wpipe
, &null_stream
, sizeof(null_stream
));
78 } while (ret
< 0 && errno
== EINTR
);
82 * Find a stream. The consumer_data.lock must be locked during this
85 static struct lttng_consumer_stream
*consumer_find_stream(int key
,
88 struct lttng_ht_iter iter
;
89 struct lttng_ht_node_ulong
*node
;
90 struct lttng_consumer_stream
*stream
= NULL
;
94 /* Negative keys are lookup failures */
101 lttng_ht_lookup(ht
, (void *)((unsigned long) key
), &iter
);
102 node
= lttng_ht_iter_get_node_ulong(&iter
);
104 stream
= caa_container_of(node
, struct lttng_consumer_stream
, node
);
112 void consumer_steal_stream_key(int key
, struct lttng_ht
*ht
)
114 struct lttng_consumer_stream
*stream
;
117 stream
= consumer_find_stream(key
, ht
);
121 * We don't want the lookup to match, but we still need
122 * to iterate on this stream when iterating over the hash table. Just
123 * change the node key.
125 stream
->node
.key
= -1;
130 static struct lttng_consumer_channel
*consumer_find_channel(int key
)
132 struct lttng_ht_iter iter
;
133 struct lttng_ht_node_ulong
*node
;
134 struct lttng_consumer_channel
*channel
= NULL
;
136 /* Negative keys are lookup failures */
143 lttng_ht_lookup(consumer_data
.channel_ht
, (void *)((unsigned long) key
),
145 node
= lttng_ht_iter_get_node_ulong(&iter
);
147 channel
= caa_container_of(node
, struct lttng_consumer_channel
, node
);
155 static void consumer_steal_channel_key(int key
)
157 struct lttng_consumer_channel
*channel
;
160 channel
= consumer_find_channel(key
);
164 * We don't want the lookup to match, but we still need
165 * to iterate on this channel when iterating over the hash table. Just
166 * change the node key.
168 channel
->node
.key
= -1;
174 void consumer_free_stream(struct rcu_head
*head
)
176 struct lttng_ht_node_ulong
*node
=
177 caa_container_of(head
, struct lttng_ht_node_ulong
, head
);
178 struct lttng_consumer_stream
*stream
=
179 caa_container_of(node
, struct lttng_consumer_stream
, node
);
185 * RCU protected relayd socket pair free.
187 static void consumer_rcu_free_relayd(struct rcu_head
*head
)
189 struct lttng_ht_node_ulong
*node
=
190 caa_container_of(head
, struct lttng_ht_node_ulong
, head
);
191 struct consumer_relayd_sock_pair
*relayd
=
192 caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
195 * Close all sockets. This is done in the call RCU since we don't want the
196 * socket fds to be reassigned thus potentially creating bad state of the
199 * We do not have to lock the control socket mutex here since at this stage
200 * there is no one referencing to this relayd object.
202 (void) relayd_close(&relayd
->control_sock
);
203 (void) relayd_close(&relayd
->data_sock
);
209 * Destroy and free relayd socket pair object.
211 * This function MUST be called with the consumer_data lock acquired.
213 static void destroy_relayd(struct consumer_relayd_sock_pair
*relayd
)
216 struct lttng_ht_iter iter
;
218 if (relayd
== NULL
) {
222 DBG("Consumer destroy and close relayd socket pair");
224 iter
.iter
.node
= &relayd
->node
.node
;
225 ret
= lttng_ht_del(consumer_data
.relayd_ht
, &iter
);
227 /* We assume the relayd is being or is destroyed */
231 /* RCU free() call */
232 call_rcu(&relayd
->node
.head
, consumer_rcu_free_relayd
);
236 * Update the end point status of all streams having the given network sequence
237 * index (relayd index).
239 * It's atomically set without having the stream mutex locked which is fine
240 * because we handle the write/read race with a pipe wakeup for each thread.
242 static void update_endpoint_status_by_netidx(int net_seq_idx
,
243 enum consumer_endpoint_status status
)
245 struct lttng_ht_iter iter
;
246 struct lttng_consumer_stream
*stream
;
248 DBG("Consumer set delete flag on stream by idx %d", net_seq_idx
);
252 /* Let's begin with metadata */
253 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
254 if (stream
->net_seq_idx
== net_seq_idx
) {
255 uatomic_set(&stream
->endpoint_status
, status
);
256 DBG("Delete flag set to metadata stream %d", stream
->wait_fd
);
260 /* Follow up by the data streams */
261 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
262 if (stream
->net_seq_idx
== net_seq_idx
) {
263 uatomic_set(&stream
->endpoint_status
, status
);
264 DBG("Delete flag set to data stream %d", stream
->wait_fd
);
271 * Cleanup a relayd object by flagging every associated streams for deletion,
272 * destroying the object meaning removing it from the relayd hash table,
273 * closing the sockets and freeing the memory in a RCU call.
275 * If a local data context is available, notify the threads that the streams'
276 * state have changed.
278 static void cleanup_relayd(struct consumer_relayd_sock_pair
*relayd
,
279 struct lttng_consumer_local_data
*ctx
)
285 DBG("Cleaning up relayd sockets");
287 /* Save the net sequence index before destroying the object */
288 netidx
= relayd
->net_seq_idx
;
291 * Delete the relayd from the relayd hash table, close the sockets and free
292 * the object in a RCU call.
294 destroy_relayd(relayd
);
296 /* Set inactive endpoint to all streams */
297 update_endpoint_status_by_netidx(netidx
, CONSUMER_ENDPOINT_INACTIVE
);
300 * With a local data context, notify the threads that the streams' state
301 * have changed. The write() action on the pipe acts as an "implicit"
302 * memory barrier ordering the updates of the end point status from the
303 * read of this status which happens AFTER receiving this notify.
306 notify_thread_pipe(ctx
->consumer_data_pipe
[1]);
307 notify_thread_pipe(ctx
->consumer_metadata_pipe
[1]);
312 * Flag a relayd socket pair for destruction. Destroy it if the refcount
315 * RCU read side lock MUST be aquired before calling this function.
317 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair
*relayd
)
321 /* Set destroy flag for this object */
322 uatomic_set(&relayd
->destroy_flag
, 1);
324 /* Destroy the relayd if refcount is 0 */
325 if (uatomic_read(&relayd
->refcount
) == 0) {
326 destroy_relayd(relayd
);
331 * Remove a stream from the global list protected by a mutex. This
332 * function is also responsible for freeing its data structures.
334 void consumer_del_stream(struct lttng_consumer_stream
*stream
,
338 struct lttng_ht_iter iter
;
339 struct lttng_consumer_channel
*free_chan
= NULL
;
340 struct consumer_relayd_sock_pair
*relayd
;
344 DBG("Consumer del stream %d", stream
->wait_fd
);
347 /* Means the stream was allocated but not successfully added */
351 pthread_mutex_lock(&consumer_data
.lock
);
352 pthread_mutex_lock(&stream
->lock
);
354 switch (consumer_data
.type
) {
355 case LTTNG_CONSUMER_KERNEL
:
356 if (stream
->mmap_base
!= NULL
) {
357 ret
= munmap(stream
->mmap_base
, stream
->mmap_len
);
363 case LTTNG_CONSUMER32_UST
:
364 case LTTNG_CONSUMER64_UST
:
365 lttng_ustconsumer_del_stream(stream
);
368 ERR("Unknown consumer_data type");
374 iter
.iter
.node
= &stream
->node
.node
;
375 ret
= lttng_ht_del(ht
, &iter
);
378 /* Remove node session id from the consumer_data stream ht */
379 iter
.iter
.node
= &stream
->node_session_id
.node
;
380 ret
= lttng_ht_del(consumer_data
.stream_list_ht
, &iter
);
384 assert(consumer_data
.stream_count
> 0);
385 consumer_data
.stream_count
--;
387 if (stream
->out_fd
>= 0) {
388 ret
= close(stream
->out_fd
);
393 if (stream
->wait_fd
>= 0 && !stream
->wait_fd_is_copy
) {
394 ret
= close(stream
->wait_fd
);
399 if (stream
->shm_fd
>= 0 && stream
->wait_fd
!= stream
->shm_fd
) {
400 ret
= close(stream
->shm_fd
);
406 /* Check and cleanup relayd */
408 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
409 if (relayd
!= NULL
) {
410 uatomic_dec(&relayd
->refcount
);
411 assert(uatomic_read(&relayd
->refcount
) >= 0);
413 /* Closing streams requires to lock the control socket. */
414 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
415 ret
= relayd_send_close_stream(&relayd
->control_sock
,
416 stream
->relayd_stream_id
,
417 stream
->next_net_seq_num
- 1);
418 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
420 DBG("Unable to close stream on the relayd. Continuing");
422 * Continue here. There is nothing we can do for the relayd.
423 * Chances are that the relayd has closed the socket so we just
424 * continue cleaning up.
428 /* Both conditions are met, we destroy the relayd. */
429 if (uatomic_read(&relayd
->refcount
) == 0 &&
430 uatomic_read(&relayd
->destroy_flag
)) {
431 destroy_relayd(relayd
);
436 uatomic_dec(&stream
->chan
->refcount
);
437 if (!uatomic_read(&stream
->chan
->refcount
)
438 && !uatomic_read(&stream
->chan
->nb_init_streams
)) {
439 free_chan
= stream
->chan
;
443 consumer_data
.need_update
= 1;
444 pthread_mutex_unlock(&stream
->lock
);
445 pthread_mutex_unlock(&consumer_data
.lock
);
448 consumer_del_channel(free_chan
);
452 call_rcu(&stream
->node
.head
, consumer_free_stream
);
455 struct lttng_consumer_stream
*consumer_allocate_stream(
456 int channel_key
, int stream_key
,
457 int shm_fd
, int wait_fd
,
458 enum lttng_consumer_stream_state state
,
460 enum lttng_event_output output
,
461 const char *path_name
,
469 struct lttng_consumer_stream
*stream
;
471 stream
= zmalloc(sizeof(*stream
));
472 if (stream
== NULL
) {
473 PERROR("malloc struct lttng_consumer_stream");
474 *alloc_ret
= -ENOMEM
;
479 * Get stream's channel reference. Needed when adding the stream to the
482 stream
->chan
= consumer_find_channel(channel_key
);
484 *alloc_ret
= -ENOENT
;
485 ERR("Unable to find channel for stream %d", stream_key
);
489 stream
->key
= stream_key
;
490 stream
->shm_fd
= shm_fd
;
491 stream
->wait_fd
= wait_fd
;
493 stream
->out_fd_offset
= 0;
494 stream
->state
= state
;
495 stream
->mmap_len
= mmap_len
;
496 stream
->mmap_base
= NULL
;
497 stream
->output
= output
;
500 stream
->net_seq_idx
= net_index
;
501 stream
->metadata_flag
= metadata_flag
;
502 stream
->session_id
= session_id
;
503 strncpy(stream
->path_name
, path_name
, sizeof(stream
->path_name
));
504 stream
->path_name
[sizeof(stream
->path_name
) - 1] = '\0';
505 pthread_mutex_init(&stream
->lock
, NULL
);
508 * Index differently the metadata node because the thread is using an
509 * internal hash table to match streams in the metadata_ht to the epoll set
513 lttng_ht_node_init_ulong(&stream
->node
, stream
->wait_fd
);
515 lttng_ht_node_init_ulong(&stream
->node
, stream
->key
);
518 /* Init session id node with the stream session id */
519 lttng_ht_node_init_ulong(&stream
->node_session_id
, stream
->session_id
);
522 * The cpu number is needed before using any ustctl_* actions. Ignored for
523 * the kernel so the value does not matter.
525 pthread_mutex_lock(&consumer_data
.lock
);
526 stream
->cpu
= stream
->chan
->cpucount
++;
527 pthread_mutex_unlock(&consumer_data
.lock
);
529 DBG3("Allocated stream %s (key %d, shm_fd %d, wait_fd %d, mmap_len %llu,"
530 " out_fd %d, net_seq_idx %d, session_id %" PRIu64
,
531 stream
->path_name
, stream
->key
, stream
->shm_fd
, stream
->wait_fd
,
532 (unsigned long long) stream
->mmap_len
, stream
->out_fd
,
533 stream
->net_seq_idx
, stream
->session_id
);
543 * Add a stream to the global list protected by a mutex.
545 static int consumer_add_stream(struct lttng_consumer_stream
*stream
,
549 struct consumer_relayd_sock_pair
*relayd
;
554 DBG3("Adding consumer stream %d", stream
->key
);
556 pthread_mutex_lock(&consumer_data
.lock
);
557 pthread_mutex_lock(&stream
->lock
);
560 /* Steal stream identifier to avoid having streams with the same key */
561 consumer_steal_stream_key(stream
->key
, ht
);
563 lttng_ht_add_unique_ulong(ht
, &stream
->node
);
566 * Add stream to the stream_list_ht of the consumer data. No need to steal
567 * the key since the HT does not use it and we allow to add redundant keys
570 lttng_ht_add_ulong(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
572 /* Check and cleanup relayd */
573 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
574 if (relayd
!= NULL
) {
575 uatomic_inc(&relayd
->refcount
);
578 /* Update channel refcount once added without error(s). */
579 uatomic_inc(&stream
->chan
->refcount
);
582 * When nb_init_streams reaches 0, we don't need to trigger any action in
583 * terms of destroying the associated channel, because the action that
584 * causes the count to become 0 also causes a stream to be added. The
585 * channel deletion will thus be triggered by the following removal of this
588 if (uatomic_read(&stream
->chan
->nb_init_streams
) > 0) {
589 uatomic_dec(&stream
->chan
->nb_init_streams
);
592 /* Update consumer data once the node is inserted. */
593 consumer_data
.stream_count
++;
594 consumer_data
.need_update
= 1;
597 pthread_mutex_unlock(&stream
->lock
);
598 pthread_mutex_unlock(&consumer_data
.lock
);
604 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
605 * be acquired before calling this.
607 static int add_relayd(struct consumer_relayd_sock_pair
*relayd
)
610 struct lttng_ht_node_ulong
*node
;
611 struct lttng_ht_iter iter
;
613 if (relayd
== NULL
) {
618 lttng_ht_lookup(consumer_data
.relayd_ht
,
619 (void *)((unsigned long) relayd
->net_seq_idx
), &iter
);
620 node
= lttng_ht_iter_get_node_ulong(&iter
);
622 /* Relayd already exist. Ignore the insertion */
625 lttng_ht_add_unique_ulong(consumer_data
.relayd_ht
, &relayd
->node
);
632 * Allocate and return a consumer relayd socket.
634 struct consumer_relayd_sock_pair
*consumer_allocate_relayd_sock_pair(
637 struct consumer_relayd_sock_pair
*obj
= NULL
;
639 /* Negative net sequence index is a failure */
640 if (net_seq_idx
< 0) {
644 obj
= zmalloc(sizeof(struct consumer_relayd_sock_pair
));
646 PERROR("zmalloc relayd sock");
650 obj
->net_seq_idx
= net_seq_idx
;
652 obj
->destroy_flag
= 0;
653 lttng_ht_node_init_ulong(&obj
->node
, obj
->net_seq_idx
);
654 pthread_mutex_init(&obj
->ctrl_sock_mutex
, NULL
);
661 * Find a relayd socket pair in the global consumer data.
663 * Return the object if found else NULL.
664 * RCU read-side lock must be held across this call and while using the
667 struct consumer_relayd_sock_pair
*consumer_find_relayd(int key
)
669 struct lttng_ht_iter iter
;
670 struct lttng_ht_node_ulong
*node
;
671 struct consumer_relayd_sock_pair
*relayd
= NULL
;
673 /* Negative keys are lookup failures */
678 lttng_ht_lookup(consumer_data
.relayd_ht
, (void *)((unsigned long) key
),
680 node
= lttng_ht_iter_get_node_ulong(&iter
);
682 relayd
= caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
690 * Handle stream for relayd transmission if the stream applies for network
691 * streaming where the net sequence index is set.
693 * Return destination file descriptor or negative value on error.
695 static int write_relayd_stream_header(struct lttng_consumer_stream
*stream
,
696 size_t data_size
, unsigned long padding
,
697 struct consumer_relayd_sock_pair
*relayd
)
700 struct lttcomm_relayd_data_hdr data_hdr
;
706 /* Reset data header */
707 memset(&data_hdr
, 0, sizeof(data_hdr
));
709 if (stream
->metadata_flag
) {
710 /* Caller MUST acquire the relayd control socket lock */
711 ret
= relayd_send_metadata(&relayd
->control_sock
, data_size
);
716 /* Metadata are always sent on the control socket. */
717 outfd
= relayd
->control_sock
.fd
;
719 /* Set header with stream information */
720 data_hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
721 data_hdr
.data_size
= htobe32(data_size
);
722 data_hdr
.padding_size
= htobe32(padding
);
723 data_hdr
.net_seq_num
= htobe64(stream
->next_net_seq_num
++);
724 /* Other fields are zeroed previously */
726 ret
= relayd_send_data_hdr(&relayd
->data_sock
, &data_hdr
,
732 /* Set to go on data socket */
733 outfd
= relayd
->data_sock
.fd
;
741 void consumer_free_channel(struct rcu_head
*head
)
743 struct lttng_ht_node_ulong
*node
=
744 caa_container_of(head
, struct lttng_ht_node_ulong
, head
);
745 struct lttng_consumer_channel
*channel
=
746 caa_container_of(node
, struct lttng_consumer_channel
, node
);
752 * Remove a channel from the global list protected by a mutex. This
753 * function is also responsible for freeing its data structures.
755 void consumer_del_channel(struct lttng_consumer_channel
*channel
)
758 struct lttng_ht_iter iter
;
760 pthread_mutex_lock(&consumer_data
.lock
);
762 switch (consumer_data
.type
) {
763 case LTTNG_CONSUMER_KERNEL
:
765 case LTTNG_CONSUMER32_UST
:
766 case LTTNG_CONSUMER64_UST
:
767 lttng_ustconsumer_del_channel(channel
);
770 ERR("Unknown consumer_data type");
776 iter
.iter
.node
= &channel
->node
.node
;
777 ret
= lttng_ht_del(consumer_data
.channel_ht
, &iter
);
781 if (channel
->mmap_base
!= NULL
) {
782 ret
= munmap(channel
->mmap_base
, channel
->mmap_len
);
787 if (channel
->wait_fd
>= 0 && !channel
->wait_fd_is_copy
) {
788 ret
= close(channel
->wait_fd
);
793 if (channel
->shm_fd
>= 0 && channel
->wait_fd
!= channel
->shm_fd
) {
794 ret
= close(channel
->shm_fd
);
800 call_rcu(&channel
->node
.head
, consumer_free_channel
);
802 pthread_mutex_unlock(&consumer_data
.lock
);
805 struct lttng_consumer_channel
*consumer_allocate_channel(
807 int shm_fd
, int wait_fd
,
809 uint64_t max_sb_size
,
810 unsigned int nb_init_streams
)
812 struct lttng_consumer_channel
*channel
;
815 channel
= zmalloc(sizeof(*channel
));
816 if (channel
== NULL
) {
817 PERROR("malloc struct lttng_consumer_channel");
820 channel
->key
= channel_key
;
821 channel
->shm_fd
= shm_fd
;
822 channel
->wait_fd
= wait_fd
;
823 channel
->mmap_len
= mmap_len
;
824 channel
->max_sb_size
= max_sb_size
;
825 channel
->refcount
= 0;
826 channel
->nb_init_streams
= nb_init_streams
;
827 lttng_ht_node_init_ulong(&channel
->node
, channel
->key
);
829 switch (consumer_data
.type
) {
830 case LTTNG_CONSUMER_KERNEL
:
831 channel
->mmap_base
= NULL
;
832 channel
->mmap_len
= 0;
834 case LTTNG_CONSUMER32_UST
:
835 case LTTNG_CONSUMER64_UST
:
836 ret
= lttng_ustconsumer_allocate_channel(channel
);
843 ERR("Unknown consumer_data type");
847 DBG("Allocated channel (key %d, shm_fd %d, wait_fd %d, mmap_len %llu, max_sb_size %llu)",
848 channel
->key
, channel
->shm_fd
, channel
->wait_fd
,
849 (unsigned long long) channel
->mmap_len
,
850 (unsigned long long) channel
->max_sb_size
);
856 * Add a channel to the global list protected by a mutex.
858 int consumer_add_channel(struct lttng_consumer_channel
*channel
)
860 struct lttng_ht_node_ulong
*node
;
861 struct lttng_ht_iter iter
;
863 pthread_mutex_lock(&consumer_data
.lock
);
864 /* Steal channel identifier, for UST */
865 consumer_steal_channel_key(channel
->key
);
868 lttng_ht_lookup(consumer_data
.channel_ht
,
869 (void *)((unsigned long) channel
->key
), &iter
);
870 node
= lttng_ht_iter_get_node_ulong(&iter
);
872 /* Channel already exist. Ignore the insertion */
876 lttng_ht_add_unique_ulong(consumer_data
.channel_ht
, &channel
->node
);
880 pthread_mutex_unlock(&consumer_data
.lock
);
886 * Allocate the pollfd structure and the local view of the out fds to avoid
887 * doing a lookup in the linked list and concurrency issues when writing is
888 * needed. Called with consumer_data.lock held.
890 * Returns the number of fds in the structures.
892 static int consumer_update_poll_array(
893 struct lttng_consumer_local_data
*ctx
, struct pollfd
**pollfd
,
894 struct lttng_consumer_stream
**local_stream
, struct lttng_ht
*ht
)
897 struct lttng_ht_iter iter
;
898 struct lttng_consumer_stream
*stream
;
900 DBG("Updating poll fd array");
902 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
904 * Only active streams with an active end point can be added to the
905 * poll set and local stream storage of the thread.
907 * There is a potential race here for endpoint_status to be updated
908 * just after the check. However, this is OK since the stream(s) will
909 * be deleted once the thread is notified that the end point state has
910 * changed where this function will be called back again.
912 if (stream
->state
!= LTTNG_CONSUMER_ACTIVE_STREAM
||
913 stream
->endpoint_status
) {
916 DBG("Active FD %d", stream
->wait_fd
);
917 (*pollfd
)[i
].fd
= stream
->wait_fd
;
918 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
919 local_stream
[i
] = stream
;
925 * Insert the consumer_data_pipe at the end of the array and don't
926 * increment i so nb_fd is the number of real FD.
928 (*pollfd
)[i
].fd
= ctx
->consumer_data_pipe
[0];
929 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
934 * Poll on the should_quit pipe and the command socket return -1 on error and
935 * should exit, 0 if data is available on the command socket
937 int lttng_consumer_poll_socket(struct pollfd
*consumer_sockpoll
)
942 num_rdy
= poll(consumer_sockpoll
, 2, -1);
945 * Restart interrupted system call.
947 if (errno
== EINTR
) {
950 PERROR("Poll error");
953 if (consumer_sockpoll
[0].revents
& (POLLIN
| POLLPRI
)) {
954 DBG("consumer_should_quit wake up");
964 * Set the error socket.
966 void lttng_consumer_set_error_sock(
967 struct lttng_consumer_local_data
*ctx
, int sock
)
969 ctx
->consumer_error_socket
= sock
;
973 * Set the command socket path.
975 void lttng_consumer_set_command_sock_path(
976 struct lttng_consumer_local_data
*ctx
, char *sock
)
978 ctx
->consumer_command_sock_path
= sock
;
982 * Send return code to the session daemon.
983 * If the socket is not defined, we return 0, it is not a fatal error
985 int lttng_consumer_send_error(
986 struct lttng_consumer_local_data
*ctx
, int cmd
)
988 if (ctx
->consumer_error_socket
> 0) {
989 return lttcomm_send_unix_sock(ctx
->consumer_error_socket
, &cmd
,
990 sizeof(enum lttcomm_sessiond_command
));
997 * Close all the tracefiles and stream fds, should be called when all instances
1000 void lttng_consumer_cleanup(void)
1002 struct lttng_ht_iter iter
;
1003 struct lttng_ht_node_ulong
*node
;
1007 cds_lfht_for_each_entry(consumer_data
.channel_ht
->ht
, &iter
.iter
, node
,
1009 struct lttng_consumer_channel
*channel
=
1010 caa_container_of(node
, struct lttng_consumer_channel
, node
);
1011 consumer_del_channel(channel
);
1016 lttng_ht_destroy(consumer_data
.channel_ht
);
1020 * Called from signal handler.
1022 void lttng_consumer_should_exit(struct lttng_consumer_local_data
*ctx
)
1027 ret
= write(ctx
->consumer_should_quit
[1], "4", 1);
1028 } while (ret
< 0 && errno
== EINTR
);
1030 PERROR("write consumer quit");
1033 DBG("Consumer flag that it should quit");
1036 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream
*stream
,
1039 int outfd
= stream
->out_fd
;
1042 * This does a blocking write-and-wait on any page that belongs to the
1043 * subbuffer prior to the one we just wrote.
1044 * Don't care about error values, as these are just hints and ways to
1045 * limit the amount of page cache used.
1047 if (orig_offset
< stream
->chan
->max_sb_size
) {
1050 lttng_sync_file_range(outfd
, orig_offset
- stream
->chan
->max_sb_size
,
1051 stream
->chan
->max_sb_size
,
1052 SYNC_FILE_RANGE_WAIT_BEFORE
1053 | SYNC_FILE_RANGE_WRITE
1054 | SYNC_FILE_RANGE_WAIT_AFTER
);
1056 * Give hints to the kernel about how we access the file:
1057 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1060 * We need to call fadvise again after the file grows because the
1061 * kernel does not seem to apply fadvise to non-existing parts of the
1064 * Call fadvise _after_ having waited for the page writeback to
1065 * complete because the dirty page writeback semantic is not well
1066 * defined. So it can be expected to lead to lower throughput in
1069 posix_fadvise(outfd
, orig_offset
- stream
->chan
->max_sb_size
,
1070 stream
->chan
->max_sb_size
, POSIX_FADV_DONTNEED
);
1074 * Initialise the necessary environnement :
1075 * - create a new context
1076 * - create the poll_pipe
1077 * - create the should_quit pipe (for signal handler)
1078 * - create the thread pipe (for splice)
1080 * Takes a function pointer as argument, this function is called when data is
1081 * available on a buffer. This function is responsible to do the
1082 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1083 * buffer configuration and then kernctl_put_next_subbuf at the end.
1085 * Returns a pointer to the new context or NULL on error.
1087 struct lttng_consumer_local_data
*lttng_consumer_create(
1088 enum lttng_consumer_type type
,
1089 ssize_t (*buffer_ready
)(struct lttng_consumer_stream
*stream
,
1090 struct lttng_consumer_local_data
*ctx
),
1091 int (*recv_channel
)(struct lttng_consumer_channel
*channel
),
1092 int (*recv_stream
)(struct lttng_consumer_stream
*stream
),
1093 int (*update_stream
)(int stream_key
, uint32_t state
))
1096 struct lttng_consumer_local_data
*ctx
;
1098 assert(consumer_data
.type
== LTTNG_CONSUMER_UNKNOWN
||
1099 consumer_data
.type
== type
);
1100 consumer_data
.type
= type
;
1102 ctx
= zmalloc(sizeof(struct lttng_consumer_local_data
));
1104 PERROR("allocating context");
1108 ctx
->consumer_error_socket
= -1;
1109 /* assign the callbacks */
1110 ctx
->on_buffer_ready
= buffer_ready
;
1111 ctx
->on_recv_channel
= recv_channel
;
1112 ctx
->on_recv_stream
= recv_stream
;
1113 ctx
->on_update_stream
= update_stream
;
1115 ret
= pipe(ctx
->consumer_data_pipe
);
1117 PERROR("Error creating poll pipe");
1118 goto error_poll_pipe
;
1121 /* set read end of the pipe to non-blocking */
1122 ret
= fcntl(ctx
->consumer_data_pipe
[0], F_SETFL
, O_NONBLOCK
);
1124 PERROR("fcntl O_NONBLOCK");
1125 goto error_poll_fcntl
;
1128 /* set write end of the pipe to non-blocking */
1129 ret
= fcntl(ctx
->consumer_data_pipe
[1], F_SETFL
, O_NONBLOCK
);
1131 PERROR("fcntl O_NONBLOCK");
1132 goto error_poll_fcntl
;
1135 ret
= pipe(ctx
->consumer_should_quit
);
1137 PERROR("Error creating recv pipe");
1138 goto error_quit_pipe
;
1141 ret
= pipe(ctx
->consumer_thread_pipe
);
1143 PERROR("Error creating thread pipe");
1144 goto error_thread_pipe
;
1147 ret
= utils_create_pipe(ctx
->consumer_metadata_pipe
);
1149 goto error_metadata_pipe
;
1152 ret
= utils_create_pipe(ctx
->consumer_splice_metadata_pipe
);
1154 goto error_splice_pipe
;
1160 utils_close_pipe(ctx
->consumer_metadata_pipe
);
1161 error_metadata_pipe
:
1162 utils_close_pipe(ctx
->consumer_thread_pipe
);
1164 for (i
= 0; i
< 2; i
++) {
1167 err
= close(ctx
->consumer_should_quit
[i
]);
1174 for (i
= 0; i
< 2; i
++) {
1177 err
= close(ctx
->consumer_data_pipe
[i
]);
1189 * Close all fds associated with the instance and free the context.
1191 void lttng_consumer_destroy(struct lttng_consumer_local_data
*ctx
)
1195 DBG("Consumer destroying it. Closing everything.");
1197 ret
= close(ctx
->consumer_error_socket
);
1201 ret
= close(ctx
->consumer_thread_pipe
[0]);
1205 ret
= close(ctx
->consumer_thread_pipe
[1]);
1209 ret
= close(ctx
->consumer_data_pipe
[0]);
1213 ret
= close(ctx
->consumer_data_pipe
[1]);
1217 ret
= close(ctx
->consumer_should_quit
[0]);
1221 ret
= close(ctx
->consumer_should_quit
[1]);
1225 utils_close_pipe(ctx
->consumer_splice_metadata_pipe
);
1227 unlink(ctx
->consumer_command_sock_path
);
1232 * Write the metadata stream id on the specified file descriptor.
1234 static int write_relayd_metadata_id(int fd
,
1235 struct lttng_consumer_stream
*stream
,
1236 struct consumer_relayd_sock_pair
*relayd
,
1237 unsigned long padding
)
1240 struct lttcomm_relayd_metadata_payload hdr
;
1242 hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
1243 hdr
.padding_size
= htobe32(padding
);
1245 ret
= write(fd
, (void *) &hdr
, sizeof(hdr
));
1246 } while (ret
< 0 && errno
== EINTR
);
1248 PERROR("write metadata stream id");
1251 DBG("Metadata stream id %" PRIu64
" with padding %lu written before data",
1252 stream
->relayd_stream_id
, padding
);
1259 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1260 * core function for writing trace buffers to either the local filesystem or
1263 * Careful review MUST be put if any changes occur!
1265 * Returns the number of bytes written
1267 ssize_t
lttng_consumer_on_read_subbuffer_mmap(
1268 struct lttng_consumer_local_data
*ctx
,
1269 struct lttng_consumer_stream
*stream
, unsigned long len
,
1270 unsigned long padding
)
1272 unsigned long mmap_offset
;
1273 ssize_t ret
= 0, written
= 0;
1274 off_t orig_offset
= stream
->out_fd_offset
;
1275 /* Default is on the disk */
1276 int outfd
= stream
->out_fd
;
1277 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1278 unsigned int relayd_hang_up
= 0;
1280 /* RCU lock for the relayd pointer */
1283 /* Flag that the current stream if set for network streaming. */
1284 if (stream
->net_seq_idx
!= -1) {
1285 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1286 if (relayd
== NULL
) {
1291 /* get the offset inside the fd to mmap */
1292 switch (consumer_data
.type
) {
1293 case LTTNG_CONSUMER_KERNEL
:
1294 ret
= kernctl_get_mmap_read_offset(stream
->wait_fd
, &mmap_offset
);
1296 case LTTNG_CONSUMER32_UST
:
1297 case LTTNG_CONSUMER64_UST
:
1298 ret
= lttng_ustctl_get_mmap_read_offset(stream
->chan
->handle
,
1299 stream
->buf
, &mmap_offset
);
1302 ERR("Unknown consumer_data type");
1307 PERROR("tracer ctl get_mmap_read_offset");
1312 /* Handle stream on the relayd if the output is on the network */
1314 unsigned long netlen
= len
;
1317 * Lock the control socket for the complete duration of the function
1318 * since from this point on we will use the socket.
1320 if (stream
->metadata_flag
) {
1321 /* Metadata requires the control socket. */
1322 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1323 netlen
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1326 ret
= write_relayd_stream_header(stream
, netlen
, padding
, relayd
);
1328 /* Use the returned socket. */
1331 /* Write metadata stream id before payload */
1332 if (stream
->metadata_flag
) {
1333 ret
= write_relayd_metadata_id(outfd
, stream
, relayd
, padding
);
1336 /* Socket operation failed. We consider the relayd dead */
1337 if (ret
== -EPIPE
|| ret
== -EINVAL
) {
1345 /* Socket operation failed. We consider the relayd dead */
1346 if (ret
== -EPIPE
|| ret
== -EINVAL
) {
1350 /* Else, use the default set before which is the filesystem. */
1353 /* No streaming, we have to set the len with the full padding */
1359 ret
= write(outfd
, stream
->mmap_base
+ mmap_offset
, len
);
1360 } while (ret
< 0 && errno
== EINTR
);
1361 DBG("Consumer mmap write() ret %zd (len %lu)", ret
, len
);
1363 PERROR("Error in file write");
1367 /* Socket operation failed. We consider the relayd dead */
1368 if (errno
== EPIPE
|| errno
== EINVAL
) {
1373 } else if (ret
> len
) {
1374 PERROR("Error in file write (ret %zd > len %lu)", ret
, len
);
1382 /* This call is useless on a socket so better save a syscall. */
1384 /* This won't block, but will start writeout asynchronously */
1385 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret
,
1386 SYNC_FILE_RANGE_WRITE
);
1387 stream
->out_fd_offset
+= ret
;
1391 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1395 * This is a special case that the relayd has closed its socket. Let's
1396 * cleanup the relayd object and all associated streams.
1398 if (relayd
&& relayd_hang_up
) {
1399 cleanup_relayd(relayd
, ctx
);
1403 /* Unlock only if ctrl socket used */
1404 if (relayd
&& stream
->metadata_flag
) {
1405 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1413 * Splice the data from the ring buffer to the tracefile.
1415 * Returns the number of bytes spliced.
1417 ssize_t
lttng_consumer_on_read_subbuffer_splice(
1418 struct lttng_consumer_local_data
*ctx
,
1419 struct lttng_consumer_stream
*stream
, unsigned long len
,
1420 unsigned long padding
)
1422 ssize_t ret
= 0, written
= 0, ret_splice
= 0;
1424 off_t orig_offset
= stream
->out_fd_offset
;
1425 int fd
= stream
->wait_fd
;
1426 /* Default is on the disk */
1427 int outfd
= stream
->out_fd
;
1428 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1430 unsigned int relayd_hang_up
= 0;
1432 switch (consumer_data
.type
) {
1433 case LTTNG_CONSUMER_KERNEL
:
1435 case LTTNG_CONSUMER32_UST
:
1436 case LTTNG_CONSUMER64_UST
:
1437 /* Not supported for user space tracing */
1440 ERR("Unknown consumer_data type");
1444 /* RCU lock for the relayd pointer */
1447 /* Flag that the current stream if set for network streaming. */
1448 if (stream
->net_seq_idx
!= -1) {
1449 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1450 if (relayd
== NULL
) {
1456 * Choose right pipe for splice. Metadata and trace data are handled by
1457 * different threads hence the use of two pipes in order not to race or
1458 * corrupt the written data.
1460 if (stream
->metadata_flag
) {
1461 splice_pipe
= ctx
->consumer_splice_metadata_pipe
;
1463 splice_pipe
= ctx
->consumer_thread_pipe
;
1466 /* Write metadata stream id before payload */
1468 int total_len
= len
;
1470 if (stream
->metadata_flag
) {
1472 * Lock the control socket for the complete duration of the function
1473 * since from this point on we will use the socket.
1475 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1477 ret
= write_relayd_metadata_id(splice_pipe
[1], stream
, relayd
,
1481 /* Socket operation failed. We consider the relayd dead */
1482 if (ret
== -EBADF
) {
1483 WARN("Remote relayd disconnected. Stopping");
1490 total_len
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1493 ret
= write_relayd_stream_header(stream
, total_len
, padding
, relayd
);
1495 /* Use the returned socket. */
1498 /* Socket operation failed. We consider the relayd dead */
1499 if (ret
== -EBADF
) {
1500 WARN("Remote relayd disconnected. Stopping");
1507 /* No streaming, we have to set the len with the full padding */
1512 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1513 (unsigned long)offset
, len
, fd
, splice_pipe
[1]);
1514 ret_splice
= splice(fd
, &offset
, splice_pipe
[1], NULL
, len
,
1515 SPLICE_F_MOVE
| SPLICE_F_MORE
);
1516 DBG("splice chan to pipe, ret %zd", ret_splice
);
1517 if (ret_splice
< 0) {
1518 PERROR("Error in relay splice");
1520 written
= ret_splice
;
1526 /* Handle stream on the relayd if the output is on the network */
1528 if (stream
->metadata_flag
) {
1529 size_t metadata_payload_size
=
1530 sizeof(struct lttcomm_relayd_metadata_payload
);
1532 /* Update counter to fit the spliced data */
1533 ret_splice
+= metadata_payload_size
;
1534 len
+= metadata_payload_size
;
1536 * We do this so the return value can match the len passed as
1537 * argument to this function.
1539 written
-= metadata_payload_size
;
1543 /* Splice data out */
1544 ret_splice
= splice(splice_pipe
[0], NULL
, outfd
, NULL
,
1545 ret_splice
, SPLICE_F_MOVE
| SPLICE_F_MORE
);
1546 DBG("Consumer splice pipe to file, ret %zd", ret_splice
);
1547 if (ret_splice
< 0) {
1548 PERROR("Error in file splice");
1550 written
= ret_splice
;
1552 /* Socket operation failed. We consider the relayd dead */
1553 if (errno
== EBADF
|| errno
== EPIPE
) {
1554 WARN("Remote relayd disconnected. Stopping");
1560 } else if (ret_splice
> len
) {
1562 PERROR("Wrote more data than requested %zd (len: %lu)",
1564 written
+= ret_splice
;
1570 /* This call is useless on a socket so better save a syscall. */
1572 /* This won't block, but will start writeout asynchronously */
1573 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret_splice
,
1574 SYNC_FILE_RANGE_WRITE
);
1575 stream
->out_fd_offset
+= ret_splice
;
1577 written
+= ret_splice
;
1579 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1587 * This is a special case that the relayd has closed its socket. Let's
1588 * cleanup the relayd object and all associated streams.
1590 if (relayd
&& relayd_hang_up
) {
1591 cleanup_relayd(relayd
, ctx
);
1592 /* Skip splice error so the consumer does not fail */
1597 /* send the appropriate error description to sessiond */
1600 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_EINVAL
);
1603 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ENOMEM
);
1606 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ESPIPE
);
1611 if (relayd
&& stream
->metadata_flag
) {
1612 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1620 * Take a snapshot for a specific fd
1622 * Returns 0 on success, < 0 on error
1624 int lttng_consumer_take_snapshot(struct lttng_consumer_local_data
*ctx
,
1625 struct lttng_consumer_stream
*stream
)
1627 switch (consumer_data
.type
) {
1628 case LTTNG_CONSUMER_KERNEL
:
1629 return lttng_kconsumer_take_snapshot(ctx
, stream
);
1630 case LTTNG_CONSUMER32_UST
:
1631 case LTTNG_CONSUMER64_UST
:
1632 return lttng_ustconsumer_take_snapshot(ctx
, stream
);
1634 ERR("Unknown consumer_data type");
1642 * Get the produced position
1644 * Returns 0 on success, < 0 on error
1646 int lttng_consumer_get_produced_snapshot(
1647 struct lttng_consumer_local_data
*ctx
,
1648 struct lttng_consumer_stream
*stream
,
1651 switch (consumer_data
.type
) {
1652 case LTTNG_CONSUMER_KERNEL
:
1653 return lttng_kconsumer_get_produced_snapshot(ctx
, stream
, pos
);
1654 case LTTNG_CONSUMER32_UST
:
1655 case LTTNG_CONSUMER64_UST
:
1656 return lttng_ustconsumer_get_produced_snapshot(ctx
, stream
, pos
);
1658 ERR("Unknown consumer_data type");
1664 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data
*ctx
,
1665 int sock
, struct pollfd
*consumer_sockpoll
)
1667 switch (consumer_data
.type
) {
1668 case LTTNG_CONSUMER_KERNEL
:
1669 return lttng_kconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1670 case LTTNG_CONSUMER32_UST
:
1671 case LTTNG_CONSUMER64_UST
:
1672 return lttng_ustconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1674 ERR("Unknown consumer_data type");
1681 * Iterate over all streams of the hashtable and free them properly.
1683 * WARNING: *MUST* be used with data stream only.
1685 static void destroy_data_stream_ht(struct lttng_ht
*ht
)
1688 struct lttng_ht_iter iter
;
1689 struct lttng_consumer_stream
*stream
;
1696 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1697 ret
= lttng_ht_del(ht
, &iter
);
1700 call_rcu(&stream
->node
.head
, consumer_free_stream
);
1704 lttng_ht_destroy(ht
);
1708 * Iterate over all streams of the hashtable and free them properly.
1710 * XXX: Should not be only for metadata stream or else use an other name.
1712 static void destroy_stream_ht(struct lttng_ht
*ht
)
1715 struct lttng_ht_iter iter
;
1716 struct lttng_consumer_stream
*stream
;
1723 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1724 ret
= lttng_ht_del(ht
, &iter
);
1727 call_rcu(&stream
->node
.head
, consumer_free_stream
);
1731 lttng_ht_destroy(ht
);
1735 * Clean up a metadata stream and free its memory.
1737 void consumer_del_metadata_stream(struct lttng_consumer_stream
*stream
,
1738 struct lttng_ht
*ht
)
1741 struct lttng_ht_iter iter
;
1742 struct lttng_consumer_channel
*free_chan
= NULL
;
1743 struct consumer_relayd_sock_pair
*relayd
;
1747 * This call should NEVER receive regular stream. It must always be
1748 * metadata stream and this is crucial for data structure synchronization.
1750 assert(stream
->metadata_flag
);
1752 DBG3("Consumer delete metadata stream %d", stream
->wait_fd
);
1755 /* Means the stream was allocated but not successfully added */
1759 pthread_mutex_lock(&consumer_data
.lock
);
1760 pthread_mutex_lock(&stream
->lock
);
1762 switch (consumer_data
.type
) {
1763 case LTTNG_CONSUMER_KERNEL
:
1764 if (stream
->mmap_base
!= NULL
) {
1765 ret
= munmap(stream
->mmap_base
, stream
->mmap_len
);
1767 PERROR("munmap metadata stream");
1771 case LTTNG_CONSUMER32_UST
:
1772 case LTTNG_CONSUMER64_UST
:
1773 lttng_ustconsumer_del_stream(stream
);
1776 ERR("Unknown consumer_data type");
1782 iter
.iter
.node
= &stream
->node
.node
;
1783 ret
= lttng_ht_del(ht
, &iter
);
1786 /* Remove node session id from the consumer_data stream ht */
1787 iter
.iter
.node
= &stream
->node_session_id
.node
;
1788 ret
= lttng_ht_del(consumer_data
.stream_list_ht
, &iter
);
1792 if (stream
->out_fd
>= 0) {
1793 ret
= close(stream
->out_fd
);
1799 if (stream
->wait_fd
>= 0 && !stream
->wait_fd_is_copy
) {
1800 ret
= close(stream
->wait_fd
);
1806 if (stream
->shm_fd
>= 0 && stream
->wait_fd
!= stream
->shm_fd
) {
1807 ret
= close(stream
->shm_fd
);
1813 /* Check and cleanup relayd */
1815 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1816 if (relayd
!= NULL
) {
1817 uatomic_dec(&relayd
->refcount
);
1818 assert(uatomic_read(&relayd
->refcount
) >= 0);
1820 /* Closing streams requires to lock the control socket. */
1821 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1822 ret
= relayd_send_close_stream(&relayd
->control_sock
,
1823 stream
->relayd_stream_id
, stream
->next_net_seq_num
- 1);
1824 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1826 DBG("Unable to close stream on the relayd. Continuing");
1828 * Continue here. There is nothing we can do for the relayd.
1829 * Chances are that the relayd has closed the socket so we just
1830 * continue cleaning up.
1834 /* Both conditions are met, we destroy the relayd. */
1835 if (uatomic_read(&relayd
->refcount
) == 0 &&
1836 uatomic_read(&relayd
->destroy_flag
)) {
1837 destroy_relayd(relayd
);
1842 /* Atomically decrement channel refcount since other threads can use it. */
1843 uatomic_dec(&stream
->chan
->refcount
);
1844 if (!uatomic_read(&stream
->chan
->refcount
)
1845 && !uatomic_read(&stream
->chan
->nb_init_streams
)) {
1846 /* Go for channel deletion! */
1847 free_chan
= stream
->chan
;
1851 pthread_mutex_unlock(&stream
->lock
);
1852 pthread_mutex_unlock(&consumer_data
.lock
);
1855 consumer_del_channel(free_chan
);
1859 call_rcu(&stream
->node
.head
, consumer_free_stream
);
1863 * Action done with the metadata stream when adding it to the consumer internal
1864 * data structures to handle it.
1866 static int consumer_add_metadata_stream(struct lttng_consumer_stream
*stream
,
1867 struct lttng_ht
*ht
)
1870 struct consumer_relayd_sock_pair
*relayd
;
1871 struct lttng_ht_iter iter
;
1872 struct lttng_ht_node_ulong
*node
;
1877 DBG3("Adding metadata stream %d to hash table", stream
->wait_fd
);
1879 pthread_mutex_lock(&consumer_data
.lock
);
1880 pthread_mutex_lock(&stream
->lock
);
1883 * From here, refcounts are updated so be _careful_ when returning an error
1890 * Lookup the stream just to make sure it does not exist in our internal
1891 * state. This should NEVER happen.
1893 lttng_ht_lookup(ht
, (void *)((unsigned long) stream
->wait_fd
), &iter
);
1894 node
= lttng_ht_iter_get_node_ulong(&iter
);
1897 /* Find relayd and, if one is found, increment refcount. */
1898 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1899 if (relayd
!= NULL
) {
1900 uatomic_inc(&relayd
->refcount
);
1903 /* Update channel refcount once added without error(s). */
1904 uatomic_inc(&stream
->chan
->refcount
);
1907 * When nb_init_streams reaches 0, we don't need to trigger any action in
1908 * terms of destroying the associated channel, because the action that
1909 * causes the count to become 0 also causes a stream to be added. The
1910 * channel deletion will thus be triggered by the following removal of this
1913 if (uatomic_read(&stream
->chan
->nb_init_streams
) > 0) {
1914 uatomic_dec(&stream
->chan
->nb_init_streams
);
1917 lttng_ht_add_unique_ulong(ht
, &stream
->node
);
1920 * Add stream to the stream_list_ht of the consumer data. No need to steal
1921 * the key since the HT does not use it and we allow to add redundant keys
1924 lttng_ht_add_ulong(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
1928 pthread_mutex_unlock(&stream
->lock
);
1929 pthread_mutex_unlock(&consumer_data
.lock
);
1934 * Delete data stream that are flagged for deletion (endpoint_status).
1936 static void validate_endpoint_status_data_stream(void)
1938 struct lttng_ht_iter iter
;
1939 struct lttng_consumer_stream
*stream
;
1941 DBG("Consumer delete flagged data stream");
1944 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1945 /* Validate delete flag of the stream */
1946 if (stream
->endpoint_status
!= CONSUMER_ENDPOINT_INACTIVE
) {
1949 /* Delete it right now */
1950 consumer_del_stream(stream
, data_ht
);
1956 * Delete metadata stream that are flagged for deletion (endpoint_status).
1958 static void validate_endpoint_status_metadata_stream(
1959 struct lttng_poll_event
*pollset
)
1961 struct lttng_ht_iter iter
;
1962 struct lttng_consumer_stream
*stream
;
1964 DBG("Consumer delete flagged metadata stream");
1969 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1970 /* Validate delete flag of the stream */
1971 if (!stream
->endpoint_status
) {
1975 * Remove from pollset so the metadata thread can continue without
1976 * blocking on a deleted stream.
1978 lttng_poll_del(pollset
, stream
->wait_fd
);
1980 /* Delete it right now */
1981 consumer_del_metadata_stream(stream
, metadata_ht
);
1987 * Thread polls on metadata file descriptor and write them on disk or on the
1990 void *consumer_thread_metadata_poll(void *data
)
1993 uint32_t revents
, nb_fd
;
1994 struct lttng_consumer_stream
*stream
= NULL
;
1995 struct lttng_ht_iter iter
;
1996 struct lttng_ht_node_ulong
*node
;
1997 struct lttng_poll_event events
;
1998 struct lttng_consumer_local_data
*ctx
= data
;
2001 rcu_register_thread();
2003 DBG("Thread metadata poll started");
2005 /* Size is set to 1 for the consumer_metadata pipe */
2006 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2008 ERR("Poll set creation failed");
2012 ret
= lttng_poll_add(&events
, ctx
->consumer_metadata_pipe
[0], LPOLLIN
);
2018 DBG("Metadata main loop started");
2021 lttng_poll_reset(&events
);
2023 nb_fd
= LTTNG_POLL_GETNB(&events
);
2025 /* Only the metadata pipe is set */
2026 if (nb_fd
== 0 && consumer_quit
== 1) {
2031 DBG("Metadata poll wait with %d fd(s)", nb_fd
);
2032 ret
= lttng_poll_wait(&events
, -1);
2033 DBG("Metadata event catched in thread");
2035 if (errno
== EINTR
) {
2036 ERR("Poll EINTR catched");
2042 /* From here, the event is a metadata wait fd */
2043 for (i
= 0; i
< nb_fd
; i
++) {
2044 revents
= LTTNG_POLL_GETEV(&events
, i
);
2045 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2047 /* Just don't waste time if no returned events for the fd */
2052 if (pollfd
== ctx
->consumer_metadata_pipe
[0]) {
2053 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2054 DBG("Metadata thread pipe hung up");
2056 * Remove the pipe from the poll set and continue the loop
2057 * since their might be data to consume.
2059 lttng_poll_del(&events
, ctx
->consumer_metadata_pipe
[0]);
2060 ret
= close(ctx
->consumer_metadata_pipe
[0]);
2062 PERROR("close metadata pipe");
2065 } else if (revents
& LPOLLIN
) {
2067 /* Get the stream pointer received */
2068 ret
= read(pollfd
, &stream
, sizeof(stream
));
2069 } while (ret
< 0 && errno
== EINTR
);
2071 ret
< sizeof(struct lttng_consumer_stream
*)) {
2072 PERROR("read metadata stream");
2074 * Let's continue here and hope we can still work
2075 * without stopping the consumer. XXX: Should we?
2080 /* A NULL stream means that the state has changed. */
2081 if (stream
== NULL
) {
2082 /* Check for deleted streams. */
2083 validate_endpoint_status_metadata_stream(&events
);
2087 DBG("Adding metadata stream %d to poll set",
2090 ret
= consumer_add_metadata_stream(stream
, metadata_ht
);
2092 ERR("Unable to add metadata stream");
2093 /* Stream was not setup properly. Continuing. */
2094 consumer_del_metadata_stream(stream
, NULL
);
2098 /* Add metadata stream to the global poll events list */
2099 lttng_poll_add(&events
, stream
->wait_fd
,
2100 LPOLLIN
| LPOLLPRI
);
2103 /* Handle other stream */
2108 lttng_ht_lookup(metadata_ht
, (void *)((unsigned long) pollfd
),
2110 node
= lttng_ht_iter_get_node_ulong(&iter
);
2113 stream
= caa_container_of(node
, struct lttng_consumer_stream
,
2116 /* Check for error event */
2117 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2118 DBG("Metadata fd %d is hup|err.", pollfd
);
2119 if (!stream
->hangup_flush_done
2120 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2121 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2122 DBG("Attempting to flush and consume the UST buffers");
2123 lttng_ustconsumer_on_stream_hangup(stream
);
2125 /* We just flushed the stream now read it. */
2127 len
= ctx
->on_buffer_ready(stream
, ctx
);
2129 * We don't check the return value here since if we get
2130 * a negative len, it means an error occured thus we
2131 * simply remove it from the poll set and free the
2137 lttng_poll_del(&events
, stream
->wait_fd
);
2139 * This call update the channel states, closes file descriptors
2140 * and securely free the stream.
2142 consumer_del_metadata_stream(stream
, metadata_ht
);
2143 } else if (revents
& (LPOLLIN
| LPOLLPRI
)) {
2144 /* Get the data out of the metadata file descriptor */
2145 DBG("Metadata available on fd %d", pollfd
);
2146 assert(stream
->wait_fd
== pollfd
);
2148 len
= ctx
->on_buffer_ready(stream
, ctx
);
2149 /* It's ok to have an unavailable sub-buffer */
2150 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2151 /* Clean up stream from consumer and free it. */
2152 lttng_poll_del(&events
, stream
->wait_fd
);
2153 consumer_del_metadata_stream(stream
, metadata_ht
);
2154 } else if (len
> 0) {
2155 stream
->data_read
= 1;
2159 /* Release RCU lock for the stream looked up */
2166 DBG("Metadata poll thread exiting");
2167 lttng_poll_clean(&events
);
2170 destroy_stream_ht(metadata_ht
);
2173 rcu_unregister_thread();
2178 * This thread polls the fds in the set to consume the data and write
2179 * it to tracefile if necessary.
2181 void *consumer_thread_data_poll(void *data
)
2183 int num_rdy
, num_hup
, high_prio
, ret
, i
;
2184 struct pollfd
*pollfd
= NULL
;
2185 /* local view of the streams */
2186 struct lttng_consumer_stream
**local_stream
= NULL
, *new_stream
= NULL
;
2187 /* local view of consumer_data.fds_count */
2189 struct lttng_consumer_local_data
*ctx
= data
;
2192 rcu_register_thread();
2194 data_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2195 if (data_ht
== NULL
) {
2199 local_stream
= zmalloc(sizeof(struct lttng_consumer_stream
));
2206 * the fds set has been updated, we need to update our
2207 * local array as well
2209 pthread_mutex_lock(&consumer_data
.lock
);
2210 if (consumer_data
.need_update
) {
2211 if (pollfd
!= NULL
) {
2215 if (local_stream
!= NULL
) {
2217 local_stream
= NULL
;
2220 /* allocate for all fds + 1 for the consumer_data_pipe */
2221 pollfd
= zmalloc((consumer_data
.stream_count
+ 1) * sizeof(struct pollfd
));
2222 if (pollfd
== NULL
) {
2223 PERROR("pollfd malloc");
2224 pthread_mutex_unlock(&consumer_data
.lock
);
2228 /* allocate for all fds + 1 for the consumer_data_pipe */
2229 local_stream
= zmalloc((consumer_data
.stream_count
+ 1) *
2230 sizeof(struct lttng_consumer_stream
));
2231 if (local_stream
== NULL
) {
2232 PERROR("local_stream malloc");
2233 pthread_mutex_unlock(&consumer_data
.lock
);
2236 ret
= consumer_update_poll_array(ctx
, &pollfd
, local_stream
,
2239 ERR("Error in allocating pollfd or local_outfds");
2240 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2241 pthread_mutex_unlock(&consumer_data
.lock
);
2245 consumer_data
.need_update
= 0;
2247 pthread_mutex_unlock(&consumer_data
.lock
);
2249 /* No FDs and consumer_quit, consumer_cleanup the thread */
2250 if (nb_fd
== 0 && consumer_quit
== 1) {
2253 /* poll on the array of fds */
2255 DBG("polling on %d fd", nb_fd
+ 1);
2256 num_rdy
= poll(pollfd
, nb_fd
+ 1, -1);
2257 DBG("poll num_rdy : %d", num_rdy
);
2258 if (num_rdy
== -1) {
2260 * Restart interrupted system call.
2262 if (errno
== EINTR
) {
2265 PERROR("Poll error");
2266 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2268 } else if (num_rdy
== 0) {
2269 DBG("Polling thread timed out");
2274 * If the consumer_data_pipe triggered poll go directly to the
2275 * beginning of the loop to update the array. We want to prioritize
2276 * array update over low-priority reads.
2278 if (pollfd
[nb_fd
].revents
& (POLLIN
| POLLPRI
)) {
2279 size_t pipe_readlen
;
2281 DBG("consumer_data_pipe wake up");
2282 /* Consume 1 byte of pipe data */
2284 pipe_readlen
= read(ctx
->consumer_data_pipe
[0], &new_stream
,
2285 sizeof(new_stream
));
2286 } while (pipe_readlen
== -1 && errno
== EINTR
);
2289 * If the stream is NULL, just ignore it. It's also possible that
2290 * the sessiond poll thread changed the consumer_quit state and is
2291 * waking us up to test it.
2293 if (new_stream
== NULL
) {
2294 validate_endpoint_status_data_stream();
2298 ret
= consumer_add_stream(new_stream
, data_ht
);
2300 ERR("Consumer add stream %d failed. Continuing",
2303 * At this point, if the add_stream fails, it is not in the
2304 * hash table thus passing the NULL value here.
2306 consumer_del_stream(new_stream
, NULL
);
2309 /* Continue to update the local streams and handle prio ones */
2313 /* Take care of high priority channels first. */
2314 for (i
= 0; i
< nb_fd
; i
++) {
2315 if (local_stream
[i
] == NULL
) {
2318 if (pollfd
[i
].revents
& POLLPRI
) {
2319 DBG("Urgent read on fd %d", pollfd
[i
].fd
);
2321 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2322 /* it's ok to have an unavailable sub-buffer */
2323 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2324 /* Clean the stream and free it. */
2325 consumer_del_stream(local_stream
[i
], data_ht
);
2326 local_stream
[i
] = NULL
;
2327 } else if (len
> 0) {
2328 local_stream
[i
]->data_read
= 1;
2334 * If we read high prio channel in this loop, try again
2335 * for more high prio data.
2341 /* Take care of low priority channels. */
2342 for (i
= 0; i
< nb_fd
; i
++) {
2343 if (local_stream
[i
] == NULL
) {
2346 if ((pollfd
[i
].revents
& POLLIN
) ||
2347 local_stream
[i
]->hangup_flush_done
) {
2348 DBG("Normal read on fd %d", pollfd
[i
].fd
);
2349 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2350 /* it's ok to have an unavailable sub-buffer */
2351 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2352 /* Clean the stream and free it. */
2353 consumer_del_stream(local_stream
[i
], data_ht
);
2354 local_stream
[i
] = NULL
;
2355 } else if (len
> 0) {
2356 local_stream
[i
]->data_read
= 1;
2361 /* Handle hangup and errors */
2362 for (i
= 0; i
< nb_fd
; i
++) {
2363 if (local_stream
[i
] == NULL
) {
2366 if (!local_stream
[i
]->hangup_flush_done
2367 && (pollfd
[i
].revents
& (POLLHUP
| POLLERR
| POLLNVAL
))
2368 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2369 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2370 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2372 lttng_ustconsumer_on_stream_hangup(local_stream
[i
]);
2373 /* Attempt read again, for the data we just flushed. */
2374 local_stream
[i
]->data_read
= 1;
2377 * If the poll flag is HUP/ERR/NVAL and we have
2378 * read no data in this pass, we can remove the
2379 * stream from its hash table.
2381 if ((pollfd
[i
].revents
& POLLHUP
)) {
2382 DBG("Polling fd %d tells it has hung up.", pollfd
[i
].fd
);
2383 if (!local_stream
[i
]->data_read
) {
2384 consumer_del_stream(local_stream
[i
], data_ht
);
2385 local_stream
[i
] = NULL
;
2388 } else if (pollfd
[i
].revents
& POLLERR
) {
2389 ERR("Error returned in polling fd %d.", pollfd
[i
].fd
);
2390 if (!local_stream
[i
]->data_read
) {
2391 consumer_del_stream(local_stream
[i
], data_ht
);
2392 local_stream
[i
] = NULL
;
2395 } else if (pollfd
[i
].revents
& POLLNVAL
) {
2396 ERR("Polling fd %d tells fd is not open.", pollfd
[i
].fd
);
2397 if (!local_stream
[i
]->data_read
) {
2398 consumer_del_stream(local_stream
[i
], data_ht
);
2399 local_stream
[i
] = NULL
;
2403 if (local_stream
[i
] != NULL
) {
2404 local_stream
[i
]->data_read
= 0;
2409 DBG("polling thread exiting");
2410 if (pollfd
!= NULL
) {
2414 if (local_stream
!= NULL
) {
2416 local_stream
= NULL
;
2420 * Close the write side of the pipe so epoll_wait() in
2421 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2422 * read side of the pipe. If we close them both, epoll_wait strangely does
2423 * not return and could create a endless wait period if the pipe is the
2424 * only tracked fd in the poll set. The thread will take care of closing
2427 ret
= close(ctx
->consumer_metadata_pipe
[1]);
2429 PERROR("close data pipe");
2433 destroy_data_stream_ht(data_ht
);
2436 rcu_unregister_thread();
2441 * This thread listens on the consumerd socket and receives the file
2442 * descriptors from the session daemon.
2444 void *consumer_thread_sessiond_poll(void *data
)
2446 int sock
, client_socket
, ret
;
2448 * structure to poll for incoming data on communication socket avoids
2449 * making blocking sockets.
2451 struct pollfd consumer_sockpoll
[2];
2452 struct lttng_consumer_local_data
*ctx
= data
;
2454 rcu_register_thread();
2456 DBG("Creating command socket %s", ctx
->consumer_command_sock_path
);
2457 unlink(ctx
->consumer_command_sock_path
);
2458 client_socket
= lttcomm_create_unix_sock(ctx
->consumer_command_sock_path
);
2459 if (client_socket
< 0) {
2460 ERR("Cannot create command socket");
2464 ret
= lttcomm_listen_unix_sock(client_socket
);
2469 DBG("Sending ready command to lttng-sessiond");
2470 ret
= lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY
);
2471 /* return < 0 on error, but == 0 is not fatal */
2473 ERR("Error sending ready command to lttng-sessiond");
2477 ret
= fcntl(client_socket
, F_SETFL
, O_NONBLOCK
);
2479 PERROR("fcntl O_NONBLOCK");
2483 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2484 consumer_sockpoll
[0].fd
= ctx
->consumer_should_quit
[0];
2485 consumer_sockpoll
[0].events
= POLLIN
| POLLPRI
;
2486 consumer_sockpoll
[1].fd
= client_socket
;
2487 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
2489 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2492 DBG("Connection on client_socket");
2494 /* Blocking call, waiting for transmission */
2495 sock
= lttcomm_accept_unix_sock(client_socket
);
2500 ret
= fcntl(sock
, F_SETFL
, O_NONBLOCK
);
2502 PERROR("fcntl O_NONBLOCK");
2506 /* update the polling structure to poll on the established socket */
2507 consumer_sockpoll
[1].fd
= sock
;
2508 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
2511 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2514 DBG("Incoming command on sock");
2515 ret
= lttng_consumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
2516 if (ret
== -ENOENT
) {
2517 DBG("Received STOP command");
2522 * This could simply be a session daemon quitting. Don't output
2525 DBG("Communication interrupted on command socket");
2528 if (consumer_quit
) {
2529 DBG("consumer_thread_receive_fds received quit from signal");
2532 DBG("received fds on sock");
2535 DBG("consumer_thread_receive_fds exiting");
2538 * when all fds have hung up, the polling thread
2544 * Notify the data poll thread to poll back again and test the
2545 * consumer_quit state that we just set so to quit gracefully.
2547 notify_thread_pipe(ctx
->consumer_data_pipe
[1]);
2549 rcu_unregister_thread();
2553 ssize_t
lttng_consumer_read_subbuffer(struct lttng_consumer_stream
*stream
,
2554 struct lttng_consumer_local_data
*ctx
)
2558 pthread_mutex_lock(&stream
->lock
);
2560 switch (consumer_data
.type
) {
2561 case LTTNG_CONSUMER_KERNEL
:
2562 ret
= lttng_kconsumer_read_subbuffer(stream
, ctx
);
2564 case LTTNG_CONSUMER32_UST
:
2565 case LTTNG_CONSUMER64_UST
:
2566 ret
= lttng_ustconsumer_read_subbuffer(stream
, ctx
);
2569 ERR("Unknown consumer_data type");
2575 pthread_mutex_unlock(&stream
->lock
);
2579 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream
*stream
)
2581 switch (consumer_data
.type
) {
2582 case LTTNG_CONSUMER_KERNEL
:
2583 return lttng_kconsumer_on_recv_stream(stream
);
2584 case LTTNG_CONSUMER32_UST
:
2585 case LTTNG_CONSUMER64_UST
:
2586 return lttng_ustconsumer_on_recv_stream(stream
);
2588 ERR("Unknown consumer_data type");
2595 * Allocate and set consumer data hash tables.
2597 void lttng_consumer_init(void)
2599 consumer_data
.channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2600 consumer_data
.relayd_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2601 consumer_data
.stream_list_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2603 metadata_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2604 assert(metadata_ht
);
2605 data_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2610 * Process the ADD_RELAYD command receive by a consumer.
2612 * This will create a relayd socket pair and add it to the relayd hash table.
2613 * The caller MUST acquire a RCU read side lock before calling it.
2615 int consumer_add_relayd_socket(int net_seq_idx
, int sock_type
,
2616 struct lttng_consumer_local_data
*ctx
, int sock
,
2617 struct pollfd
*consumer_sockpoll
, struct lttcomm_sock
*relayd_sock
)
2620 struct consumer_relayd_sock_pair
*relayd
;
2622 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx
);
2624 /* Get relayd reference if exists. */
2625 relayd
= consumer_find_relayd(net_seq_idx
);
2626 if (relayd
== NULL
) {
2627 /* Not found. Allocate one. */
2628 relayd
= consumer_allocate_relayd_sock_pair(net_seq_idx
);
2629 if (relayd
== NULL
) {
2630 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_OUTFD_ERROR
);
2635 /* Poll on consumer socket. */
2636 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2641 /* Get relayd socket from session daemon */
2642 ret
= lttcomm_recv_fds_unix_sock(sock
, &fd
, 1);
2643 if (ret
!= sizeof(fd
)) {
2644 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_ERROR_RECV_FD
);
2649 /* Copy socket information and received FD */
2650 switch (sock_type
) {
2651 case LTTNG_STREAM_CONTROL
:
2652 /* Copy received lttcomm socket */
2653 lttcomm_copy_sock(&relayd
->control_sock
, relayd_sock
);
2654 ret
= lttcomm_create_sock(&relayd
->control_sock
);
2659 /* Close the created socket fd which is useless */
2660 ret
= close(relayd
->control_sock
.fd
);
2662 PERROR("close relayd control socket");
2665 /* Assign new file descriptor */
2666 relayd
->control_sock
.fd
= fd
;
2668 case LTTNG_STREAM_DATA
:
2669 /* Copy received lttcomm socket */
2670 lttcomm_copy_sock(&relayd
->data_sock
, relayd_sock
);
2671 ret
= lttcomm_create_sock(&relayd
->data_sock
);
2676 /* Close the created socket fd which is useless */
2677 ret
= close(relayd
->data_sock
.fd
);
2679 PERROR("close relayd control socket");
2682 /* Assign new file descriptor */
2683 relayd
->data_sock
.fd
= fd
;
2686 ERR("Unknown relayd socket type (%d)", sock_type
);
2690 DBG("Consumer %s socket created successfully with net idx %d (fd: %d)",
2691 sock_type
== LTTNG_STREAM_CONTROL
? "control" : "data",
2692 relayd
->net_seq_idx
, fd
);
2695 * Add relayd socket pair to consumer data hashtable. If object already
2696 * exists or on error, the function gracefully returns.
2708 * Try to lock the stream mutex.
2710 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
2712 static int stream_try_lock(struct lttng_consumer_stream
*stream
)
2719 * Try to lock the stream mutex. On failure, we know that the stream is
2720 * being used else where hence there is data still being extracted.
2722 ret
= pthread_mutex_trylock(&stream
->lock
);
2724 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
2736 * Check if for a given session id there is still data needed to be extract
2739 * Return 1 if data is pending or else 0 meaning ready to be read.
2741 int consumer_data_pending(uint64_t id
)
2744 struct lttng_ht_iter iter
;
2745 struct lttng_ht
*ht
;
2746 struct lttng_consumer_stream
*stream
;
2747 struct consumer_relayd_sock_pair
*relayd
;
2748 int (*data_pending
)(struct lttng_consumer_stream
*);
2750 DBG("Consumer data pending command on session id %" PRIu64
, id
);
2753 pthread_mutex_lock(&consumer_data
.lock
);
2755 switch (consumer_data
.type
) {
2756 case LTTNG_CONSUMER_KERNEL
:
2757 data_pending
= lttng_kconsumer_data_pending
;
2759 case LTTNG_CONSUMER32_UST
:
2760 case LTTNG_CONSUMER64_UST
:
2761 data_pending
= lttng_ustconsumer_data_pending
;
2764 ERR("Unknown consumer data type");
2768 /* Ease our life a bit */
2769 ht
= consumer_data
.stream_list_ht
;
2771 cds_lfht_for_each_entry_duplicate(ht
->ht
,
2772 ht
->hash_fct((void *)((unsigned long) id
), lttng_ht_seed
),
2773 ht
->match_fct
, (void *)((unsigned long) id
),
2774 &iter
.iter
, stream
, node_session_id
.node
) {
2775 /* If this call fails, the stream is being used hence data pending. */
2776 ret
= stream_try_lock(stream
);
2778 goto data_not_pending
;
2782 * A removed node from the hash table indicates that the stream has
2783 * been deleted thus having a guarantee that the buffers are closed
2784 * on the consumer side. However, data can still be transmitted
2785 * over the network so don't skip the relayd check.
2787 ret
= cds_lfht_is_node_deleted(&stream
->node
.node
);
2789 /* Check the stream if there is data in the buffers. */
2790 ret
= data_pending(stream
);
2792 pthread_mutex_unlock(&stream
->lock
);
2793 goto data_not_pending
;
2798 if (stream
->net_seq_idx
!= -1) {
2799 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
2802 * At this point, if the relayd object is not available for the
2803 * given stream, it is because the relayd is being cleaned up
2804 * so every stream associated with it (for a session id value)
2805 * are or will be marked for deletion hence no data pending.
2807 pthread_mutex_unlock(&stream
->lock
);
2808 goto data_not_pending
;
2811 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
2812 if (stream
->metadata_flag
) {
2813 ret
= relayd_quiescent_control(&relayd
->control_sock
);
2815 ret
= relayd_data_pending(&relayd
->control_sock
,
2816 stream
->relayd_stream_id
, stream
->next_net_seq_num
);
2818 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
2820 pthread_mutex_unlock(&stream
->lock
);
2821 goto data_not_pending
;
2824 pthread_mutex_unlock(&stream
->lock
);
2828 * Finding _no_ node in the hash table means that the stream(s) have been
2829 * removed thus data is guaranteed to be available for analysis from the
2830 * trace files. This is *only* true for local consumer and not network
2834 /* Data is available to be read by a viewer. */
2835 pthread_mutex_unlock(&consumer_data
.lock
);
2840 /* Data is still being extracted from buffers. */
2841 pthread_mutex_unlock(&consumer_data
.lock
);