2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 #include <sys/socket.h>
28 #include <sys/types.h>
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/kernel-ctl/kernel-ctl.h>
37 #include <common/sessiond-comm/relayd.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/kernel-consumer/kernel-consumer.h>
40 #include <common/relayd/relayd.h>
41 #include <common/ust-consumer/ust-consumer.h>
44 #include "consumer-stream.h"
46 struct lttng_consumer_global_data consumer_data
= {
49 .type
= LTTNG_CONSUMER_UNKNOWN
,
52 enum consumer_channel_action
{
55 CONSUMER_CHANNEL_QUIT
,
58 struct consumer_channel_msg
{
59 enum consumer_channel_action action
;
60 struct lttng_consumer_channel
*chan
; /* add */
61 uint64_t key
; /* del */
65 * Flag to inform the polling thread to quit when all fd hung up. Updated by
66 * the consumer_thread_receive_fds when it notices that all fds has hung up.
67 * Also updated by the signal handler (consumer_should_exit()). Read by the
70 volatile int consumer_quit
;
73 * Global hash table containing respectively metadata and data streams. The
74 * stream element in this ht should only be updated by the metadata poll thread
75 * for the metadata and the data poll thread for the data.
77 static struct lttng_ht
*metadata_ht
;
78 static struct lttng_ht
*data_ht
;
81 * Notify a thread lttng pipe to poll back again. This usually means that some
82 * global state has changed so we just send back the thread in a poll wait
85 static void notify_thread_lttng_pipe(struct lttng_pipe
*pipe
)
87 struct lttng_consumer_stream
*null_stream
= NULL
;
91 (void) lttng_pipe_write(pipe
, &null_stream
, sizeof(null_stream
));
94 static void notify_channel_pipe(struct lttng_consumer_local_data
*ctx
,
95 struct lttng_consumer_channel
*chan
,
97 enum consumer_channel_action action
)
99 struct consumer_channel_msg msg
;
102 memset(&msg
, 0, sizeof(msg
));
108 ret
= write(ctx
->consumer_channel_pipe
[1], &msg
, sizeof(msg
));
109 } while (ret
< 0 && errno
== EINTR
);
112 void notify_thread_del_channel(struct lttng_consumer_local_data
*ctx
,
115 notify_channel_pipe(ctx
, NULL
, key
, CONSUMER_CHANNEL_DEL
);
118 static int read_channel_pipe(struct lttng_consumer_local_data
*ctx
,
119 struct lttng_consumer_channel
**chan
,
121 enum consumer_channel_action
*action
)
123 struct consumer_channel_msg msg
;
127 ret
= read(ctx
->consumer_channel_pipe
[0], &msg
, sizeof(msg
));
128 } while (ret
< 0 && errno
== EINTR
);
130 *action
= msg
.action
;
138 * Find a stream. The consumer_data.lock must be locked during this
141 static struct lttng_consumer_stream
*find_stream(uint64_t key
,
144 struct lttng_ht_iter iter
;
145 struct lttng_ht_node_u64
*node
;
146 struct lttng_consumer_stream
*stream
= NULL
;
150 /* -1ULL keys are lookup failures */
151 if (key
== (uint64_t) -1ULL) {
157 lttng_ht_lookup(ht
, &key
, &iter
);
158 node
= lttng_ht_iter_get_node_u64(&iter
);
160 stream
= caa_container_of(node
, struct lttng_consumer_stream
, node
);
168 static void steal_stream_key(uint64_t key
, struct lttng_ht
*ht
)
170 struct lttng_consumer_stream
*stream
;
173 stream
= find_stream(key
, ht
);
175 stream
->key
= (uint64_t) -1ULL;
177 * We don't want the lookup to match, but we still need
178 * to iterate on this stream when iterating over the hash table. Just
179 * change the node key.
181 stream
->node
.key
= (uint64_t) -1ULL;
187 * Return a channel object for the given key.
189 * RCU read side lock MUST be acquired before calling this function and
190 * protects the channel ptr.
192 struct lttng_consumer_channel
*consumer_find_channel(uint64_t key
)
194 struct lttng_ht_iter iter
;
195 struct lttng_ht_node_u64
*node
;
196 struct lttng_consumer_channel
*channel
= NULL
;
198 /* -1ULL keys are lookup failures */
199 if (key
== (uint64_t) -1ULL) {
203 lttng_ht_lookup(consumer_data
.channel_ht
, &key
, &iter
);
204 node
= lttng_ht_iter_get_node_u64(&iter
);
206 channel
= caa_container_of(node
, struct lttng_consumer_channel
, node
);
212 static void free_stream_rcu(struct rcu_head
*head
)
214 struct lttng_ht_node_u64
*node
=
215 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
216 struct lttng_consumer_stream
*stream
=
217 caa_container_of(node
, struct lttng_consumer_stream
, node
);
222 static void free_channel_rcu(struct rcu_head
*head
)
224 struct lttng_ht_node_u64
*node
=
225 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
226 struct lttng_consumer_channel
*channel
=
227 caa_container_of(node
, struct lttng_consumer_channel
, node
);
233 * RCU protected relayd socket pair free.
235 static void free_relayd_rcu(struct rcu_head
*head
)
237 struct lttng_ht_node_u64
*node
=
238 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
239 struct consumer_relayd_sock_pair
*relayd
=
240 caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
243 * Close all sockets. This is done in the call RCU since we don't want the
244 * socket fds to be reassigned thus potentially creating bad state of the
247 * We do not have to lock the control socket mutex here since at this stage
248 * there is no one referencing to this relayd object.
250 (void) relayd_close(&relayd
->control_sock
);
251 (void) relayd_close(&relayd
->data_sock
);
257 * Destroy and free relayd socket pair object.
259 void consumer_destroy_relayd(struct consumer_relayd_sock_pair
*relayd
)
262 struct lttng_ht_iter iter
;
264 if (relayd
== NULL
) {
268 DBG("Consumer destroy and close relayd socket pair");
270 iter
.iter
.node
= &relayd
->node
.node
;
271 ret
= lttng_ht_del(consumer_data
.relayd_ht
, &iter
);
273 /* We assume the relayd is being or is destroyed */
277 /* RCU free() call */
278 call_rcu(&relayd
->node
.head
, free_relayd_rcu
);
282 * Remove a channel from the global list protected by a mutex. This function is
283 * also responsible for freeing its data structures.
285 void consumer_del_channel(struct lttng_consumer_channel
*channel
)
288 struct lttng_ht_iter iter
;
289 struct lttng_consumer_stream
*stream
, *stmp
;
291 DBG("Consumer delete channel key %" PRIu64
, channel
->key
);
293 pthread_mutex_lock(&consumer_data
.lock
);
295 switch (consumer_data
.type
) {
296 case LTTNG_CONSUMER_KERNEL
:
298 case LTTNG_CONSUMER32_UST
:
299 case LTTNG_CONSUMER64_UST
:
300 /* Delete streams that might have been left in the stream list. */
301 cds_list_for_each_entry_safe(stream
, stmp
, &channel
->streams
.head
,
303 cds_list_del(&stream
->send_node
);
305 * Once a stream is added to this list, the buffers were created so
306 * we have a guarantee that this call will succeed.
308 consumer_stream_destroy(stream
, NULL
);
310 lttng_ustconsumer_del_channel(channel
);
313 ERR("Unknown consumer_data type");
319 iter
.iter
.node
= &channel
->node
.node
;
320 ret
= lttng_ht_del(consumer_data
.channel_ht
, &iter
);
324 call_rcu(&channel
->node
.head
, free_channel_rcu
);
326 pthread_mutex_unlock(&consumer_data
.lock
);
330 * Iterate over the relayd hash table and destroy each element. Finally,
331 * destroy the whole hash table.
333 static void cleanup_relayd_ht(void)
335 struct lttng_ht_iter iter
;
336 struct consumer_relayd_sock_pair
*relayd
;
340 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
342 consumer_destroy_relayd(relayd
);
347 lttng_ht_destroy(consumer_data
.relayd_ht
);
351 * Update the end point status of all streams having the given network sequence
352 * index (relayd index).
354 * It's atomically set without having the stream mutex locked which is fine
355 * because we handle the write/read race with a pipe wakeup for each thread.
357 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx
,
358 enum consumer_endpoint_status status
)
360 struct lttng_ht_iter iter
;
361 struct lttng_consumer_stream
*stream
;
363 DBG("Consumer set delete flag on stream by idx %" PRIu64
, net_seq_idx
);
367 /* Let's begin with metadata */
368 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
369 if (stream
->net_seq_idx
== net_seq_idx
) {
370 uatomic_set(&stream
->endpoint_status
, status
);
371 DBG("Delete flag set to metadata stream %d", stream
->wait_fd
);
375 /* Follow up by the data streams */
376 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
377 if (stream
->net_seq_idx
== net_seq_idx
) {
378 uatomic_set(&stream
->endpoint_status
, status
);
379 DBG("Delete flag set to data stream %d", stream
->wait_fd
);
386 * Cleanup a relayd object by flagging every associated streams for deletion,
387 * destroying the object meaning removing it from the relayd hash table,
388 * closing the sockets and freeing the memory in a RCU call.
390 * If a local data context is available, notify the threads that the streams'
391 * state have changed.
393 static void cleanup_relayd(struct consumer_relayd_sock_pair
*relayd
,
394 struct lttng_consumer_local_data
*ctx
)
400 DBG("Cleaning up relayd sockets");
402 /* Save the net sequence index before destroying the object */
403 netidx
= relayd
->net_seq_idx
;
406 * Delete the relayd from the relayd hash table, close the sockets and free
407 * the object in a RCU call.
409 consumer_destroy_relayd(relayd
);
411 /* Set inactive endpoint to all streams */
412 update_endpoint_status_by_netidx(netidx
, CONSUMER_ENDPOINT_INACTIVE
);
415 * With a local data context, notify the threads that the streams' state
416 * have changed. The write() action on the pipe acts as an "implicit"
417 * memory barrier ordering the updates of the end point status from the
418 * read of this status which happens AFTER receiving this notify.
421 notify_thread_lttng_pipe(ctx
->consumer_data_pipe
);
422 notify_thread_lttng_pipe(ctx
->consumer_metadata_pipe
);
427 * Flag a relayd socket pair for destruction. Destroy it if the refcount
430 * RCU read side lock MUST be aquired before calling this function.
432 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair
*relayd
)
436 /* Set destroy flag for this object */
437 uatomic_set(&relayd
->destroy_flag
, 1);
439 /* Destroy the relayd if refcount is 0 */
440 if (uatomic_read(&relayd
->refcount
) == 0) {
441 consumer_destroy_relayd(relayd
);
446 * Completly destroy stream from every visiable data structure and the given
449 * One this call returns, the stream object is not longer usable nor visible.
451 void consumer_del_stream(struct lttng_consumer_stream
*stream
,
454 consumer_stream_destroy(stream
, ht
);
457 struct lttng_consumer_stream
*consumer_allocate_stream(uint64_t channel_key
,
459 enum lttng_consumer_stream_state state
,
460 const char *channel_name
,
467 enum consumer_channel_type type
)
470 struct lttng_consumer_stream
*stream
;
472 stream
= zmalloc(sizeof(*stream
));
473 if (stream
== NULL
) {
474 PERROR("malloc struct lttng_consumer_stream");
481 stream
->key
= stream_key
;
483 stream
->out_fd_offset
= 0;
484 stream
->state
= state
;
487 stream
->net_seq_idx
= relayd_id
;
488 stream
->session_id
= session_id
;
489 pthread_mutex_init(&stream
->lock
, NULL
);
491 /* If channel is the metadata, flag this stream as metadata. */
492 if (type
== CONSUMER_CHANNEL_TYPE_METADATA
) {
493 stream
->metadata_flag
= 1;
494 /* Metadata is flat out. */
495 strncpy(stream
->name
, DEFAULT_METADATA_NAME
, sizeof(stream
->name
));
497 /* Format stream name to <channel_name>_<cpu_number> */
498 ret
= snprintf(stream
->name
, sizeof(stream
->name
), "%s_%d",
501 PERROR("snprintf stream name");
506 /* Key is always the wait_fd for streams. */
507 lttng_ht_node_init_u64(&stream
->node
, stream
->key
);
509 /* Init node per channel id key */
510 lttng_ht_node_init_u64(&stream
->node_channel_id
, channel_key
);
512 /* Init session id node with the stream session id */
513 lttng_ht_node_init_u64(&stream
->node_session_id
, stream
->session_id
);
515 DBG3("Allocated stream %s (key %" PRIu64
", chan_key %" PRIu64
516 " relayd_id %" PRIu64
", session_id %" PRIu64
,
517 stream
->name
, stream
->key
, channel_key
,
518 stream
->net_seq_idx
, stream
->session_id
);
534 * Add a stream to the global list protected by a mutex.
536 static int add_stream(struct lttng_consumer_stream
*stream
,
540 struct consumer_relayd_sock_pair
*relayd
;
545 DBG3("Adding consumer stream %" PRIu64
, stream
->key
);
547 pthread_mutex_lock(&consumer_data
.lock
);
548 pthread_mutex_lock(&stream
->lock
);
551 /* Steal stream identifier to avoid having streams with the same key */
552 steal_stream_key(stream
->key
, ht
);
554 lttng_ht_add_unique_u64(ht
, &stream
->node
);
556 lttng_ht_add_u64(consumer_data
.stream_per_chan_id_ht
,
557 &stream
->node_channel_id
);
560 * Add stream to the stream_list_ht of the consumer data. No need to steal
561 * the key since the HT does not use it and we allow to add redundant keys
564 lttng_ht_add_u64(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
566 /* Check and cleanup relayd */
567 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
568 if (relayd
!= NULL
) {
569 uatomic_inc(&relayd
->refcount
);
573 * When nb_init_stream_left reaches 0, we don't need to trigger any action
574 * in terms of destroying the associated channel, because the action that
575 * causes the count to become 0 also causes a stream to be added. The
576 * channel deletion will thus be triggered by the following removal of this
579 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
580 /* Increment refcount before decrementing nb_init_stream_left */
582 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
585 /* Update consumer data once the node is inserted. */
586 consumer_data
.stream_count
++;
587 consumer_data
.need_update
= 1;
590 pthread_mutex_unlock(&stream
->lock
);
591 pthread_mutex_unlock(&consumer_data
.lock
);
597 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
598 * be acquired before calling this.
600 static int add_relayd(struct consumer_relayd_sock_pair
*relayd
)
603 struct lttng_ht_node_u64
*node
;
604 struct lttng_ht_iter iter
;
608 lttng_ht_lookup(consumer_data
.relayd_ht
,
609 &relayd
->net_seq_idx
, &iter
);
610 node
= lttng_ht_iter_get_node_u64(&iter
);
614 lttng_ht_add_unique_u64(consumer_data
.relayd_ht
, &relayd
->node
);
621 * Allocate and return a consumer relayd socket.
623 struct consumer_relayd_sock_pair
*consumer_allocate_relayd_sock_pair(
624 uint64_t net_seq_idx
)
626 struct consumer_relayd_sock_pair
*obj
= NULL
;
628 /* net sequence index of -1 is a failure */
629 if (net_seq_idx
== (uint64_t) -1ULL) {
633 obj
= zmalloc(sizeof(struct consumer_relayd_sock_pair
));
635 PERROR("zmalloc relayd sock");
639 obj
->net_seq_idx
= net_seq_idx
;
641 obj
->destroy_flag
= 0;
642 obj
->control_sock
.sock
.fd
= -1;
643 obj
->data_sock
.sock
.fd
= -1;
644 lttng_ht_node_init_u64(&obj
->node
, obj
->net_seq_idx
);
645 pthread_mutex_init(&obj
->ctrl_sock_mutex
, NULL
);
652 * Find a relayd socket pair in the global consumer data.
654 * Return the object if found else NULL.
655 * RCU read-side lock must be held across this call and while using the
658 struct consumer_relayd_sock_pair
*consumer_find_relayd(uint64_t key
)
660 struct lttng_ht_iter iter
;
661 struct lttng_ht_node_u64
*node
;
662 struct consumer_relayd_sock_pair
*relayd
= NULL
;
664 /* Negative keys are lookup failures */
665 if (key
== (uint64_t) -1ULL) {
669 lttng_ht_lookup(consumer_data
.relayd_ht
, &key
,
671 node
= lttng_ht_iter_get_node_u64(&iter
);
673 relayd
= caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
681 * Find a relayd and send the stream
683 * Returns 0 on success, < 0 on error
685 int consumer_send_relayd_stream(struct lttng_consumer_stream
*stream
,
689 struct consumer_relayd_sock_pair
*relayd
;
692 assert(stream
->net_seq_idx
!= -1ULL);
695 /* The stream is not metadata. Get relayd reference if exists. */
697 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
698 if (relayd
!= NULL
) {
699 /* Add stream on the relayd */
700 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
701 ret
= relayd_add_stream(&relayd
->control_sock
, stream
->name
,
702 path
, &stream
->relayd_stream_id
,
703 stream
->chan
->tracefile_size
, stream
->chan
->tracefile_count
);
704 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
708 uatomic_inc(&relayd
->refcount
);
710 ERR("Stream %" PRIu64
" relayd ID %" PRIu64
" unknown. Can't send it.",
711 stream
->key
, stream
->net_seq_idx
);
716 DBG("Stream %s with key %" PRIu64
" sent to relayd id %" PRIu64
,
717 stream
->name
, stream
->key
, stream
->net_seq_idx
);
725 * Find a relayd and close the stream
727 void close_relayd_stream(struct lttng_consumer_stream
*stream
)
729 struct consumer_relayd_sock_pair
*relayd
;
731 /* The stream is not metadata. Get relayd reference if exists. */
733 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
735 consumer_stream_relayd_close(stream
, relayd
);
741 * Handle stream for relayd transmission if the stream applies for network
742 * streaming where the net sequence index is set.
744 * Return destination file descriptor or negative value on error.
746 static int write_relayd_stream_header(struct lttng_consumer_stream
*stream
,
747 size_t data_size
, unsigned long padding
,
748 struct consumer_relayd_sock_pair
*relayd
)
751 struct lttcomm_relayd_data_hdr data_hdr
;
757 /* Reset data header */
758 memset(&data_hdr
, 0, sizeof(data_hdr
));
760 if (stream
->metadata_flag
) {
761 /* Caller MUST acquire the relayd control socket lock */
762 ret
= relayd_send_metadata(&relayd
->control_sock
, data_size
);
767 /* Metadata are always sent on the control socket. */
768 outfd
= relayd
->control_sock
.sock
.fd
;
770 /* Set header with stream information */
771 data_hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
772 data_hdr
.data_size
= htobe32(data_size
);
773 data_hdr
.padding_size
= htobe32(padding
);
775 * Note that net_seq_num below is assigned with the *current* value of
776 * next_net_seq_num and only after that the next_net_seq_num will be
777 * increment. This is why when issuing a command on the relayd using
778 * this next value, 1 should always be substracted in order to compare
779 * the last seen sequence number on the relayd side to the last sent.
781 data_hdr
.net_seq_num
= htobe64(stream
->next_net_seq_num
);
782 /* Other fields are zeroed previously */
784 ret
= relayd_send_data_hdr(&relayd
->data_sock
, &data_hdr
,
790 ++stream
->next_net_seq_num
;
792 /* Set to go on data socket */
793 outfd
= relayd
->data_sock
.sock
.fd
;
801 * Allocate and return a new lttng_consumer_channel object using the given key
802 * to initialize the hash table node.
804 * On error, return NULL.
806 struct lttng_consumer_channel
*consumer_allocate_channel(uint64_t key
,
808 const char *pathname
,
813 enum lttng_event_output output
,
814 uint64_t tracefile_size
,
815 uint64_t tracefile_count
,
816 uint64_t session_id_per_pid
,
817 unsigned int monitor
)
819 struct lttng_consumer_channel
*channel
;
821 channel
= zmalloc(sizeof(*channel
));
822 if (channel
== NULL
) {
823 PERROR("malloc struct lttng_consumer_channel");
828 channel
->refcount
= 0;
829 channel
->session_id
= session_id
;
830 channel
->session_id_per_pid
= session_id_per_pid
;
833 channel
->relayd_id
= relayd_id
;
834 channel
->output
= output
;
835 channel
->tracefile_size
= tracefile_size
;
836 channel
->tracefile_count
= tracefile_count
;
837 channel
->monitor
= monitor
;
840 * In monitor mode, the streams associated with the channel will be put in
841 * a special list ONLY owned by this channel. So, the refcount is set to 1
842 * here meaning that the channel itself has streams that are referenced.
844 * On a channel deletion, once the channel is no longer visible, the
845 * refcount is decremented and checked for a zero value to delete it. With
846 * streams in no monitor mode, it will now be safe to destroy the channel.
848 if (!channel
->monitor
) {
849 channel
->refcount
= 1;
852 strncpy(channel
->pathname
, pathname
, sizeof(channel
->pathname
));
853 channel
->pathname
[sizeof(channel
->pathname
) - 1] = '\0';
855 strncpy(channel
->name
, name
, sizeof(channel
->name
));
856 channel
->name
[sizeof(channel
->name
) - 1] = '\0';
858 lttng_ht_node_init_u64(&channel
->node
, channel
->key
);
860 channel
->wait_fd
= -1;
862 CDS_INIT_LIST_HEAD(&channel
->streams
.head
);
864 DBG("Allocated channel (key %" PRIu64
")", channel
->key
)
871 * Add a channel to the global list protected by a mutex.
873 * On success 0 is returned else a negative value.
875 int consumer_add_channel(struct lttng_consumer_channel
*channel
,
876 struct lttng_consumer_local_data
*ctx
)
879 struct lttng_ht_node_u64
*node
;
880 struct lttng_ht_iter iter
;
882 pthread_mutex_lock(&consumer_data
.lock
);
885 lttng_ht_lookup(consumer_data
.channel_ht
, &channel
->key
, &iter
);
886 node
= lttng_ht_iter_get_node_u64(&iter
);
888 /* Channel already exist. Ignore the insertion */
889 ERR("Consumer add channel key %" PRIu64
" already exists!",
895 lttng_ht_add_unique_u64(consumer_data
.channel_ht
, &channel
->node
);
899 pthread_mutex_unlock(&consumer_data
.lock
);
901 if (!ret
&& channel
->wait_fd
!= -1 &&
902 channel
->type
== CONSUMER_CHANNEL_TYPE_DATA
) {
903 notify_channel_pipe(ctx
, channel
, -1, CONSUMER_CHANNEL_ADD
);
909 * Allocate the pollfd structure and the local view of the out fds to avoid
910 * doing a lookup in the linked list and concurrency issues when writing is
911 * needed. Called with consumer_data.lock held.
913 * Returns the number of fds in the structures.
915 static int update_poll_array(struct lttng_consumer_local_data
*ctx
,
916 struct pollfd
**pollfd
, struct lttng_consumer_stream
**local_stream
,
920 struct lttng_ht_iter iter
;
921 struct lttng_consumer_stream
*stream
;
926 assert(local_stream
);
928 DBG("Updating poll fd array");
930 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
932 * Only active streams with an active end point can be added to the
933 * poll set and local stream storage of the thread.
935 * There is a potential race here for endpoint_status to be updated
936 * just after the check. However, this is OK since the stream(s) will
937 * be deleted once the thread is notified that the end point state has
938 * changed where this function will be called back again.
940 if (stream
->state
!= LTTNG_CONSUMER_ACTIVE_STREAM
||
941 stream
->endpoint_status
== CONSUMER_ENDPOINT_INACTIVE
) {
945 * This clobbers way too much the debug output. Uncomment that if you
946 * need it for debugging purposes.
948 * DBG("Active FD %d", stream->wait_fd);
950 (*pollfd
)[i
].fd
= stream
->wait_fd
;
951 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
952 local_stream
[i
] = stream
;
958 * Insert the consumer_data_pipe at the end of the array and don't
959 * increment i so nb_fd is the number of real FD.
961 (*pollfd
)[i
].fd
= lttng_pipe_get_readfd(ctx
->consumer_data_pipe
);
962 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
967 * Poll on the should_quit pipe and the command socket return -1 on error and
968 * should exit, 0 if data is available on the command socket
970 int lttng_consumer_poll_socket(struct pollfd
*consumer_sockpoll
)
975 num_rdy
= poll(consumer_sockpoll
, 2, -1);
978 * Restart interrupted system call.
980 if (errno
== EINTR
) {
983 PERROR("Poll error");
986 if (consumer_sockpoll
[0].revents
& (POLLIN
| POLLPRI
)) {
987 DBG("consumer_should_quit wake up");
997 * Set the error socket.
999 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data
*ctx
,
1002 ctx
->consumer_error_socket
= sock
;
1006 * Set the command socket path.
1008 void lttng_consumer_set_command_sock_path(
1009 struct lttng_consumer_local_data
*ctx
, char *sock
)
1011 ctx
->consumer_command_sock_path
= sock
;
1015 * Send return code to the session daemon.
1016 * If the socket is not defined, we return 0, it is not a fatal error
1018 int lttng_consumer_send_error(struct lttng_consumer_local_data
*ctx
, int cmd
)
1020 if (ctx
->consumer_error_socket
> 0) {
1021 return lttcomm_send_unix_sock(ctx
->consumer_error_socket
, &cmd
,
1022 sizeof(enum lttcomm_sessiond_command
));
1029 * Close all the tracefiles and stream fds and MUST be called when all
1030 * instances are destroyed i.e. when all threads were joined and are ended.
1032 void lttng_consumer_cleanup(void)
1034 struct lttng_ht_iter iter
;
1035 struct lttng_consumer_channel
*channel
;
1039 cds_lfht_for_each_entry(consumer_data
.channel_ht
->ht
, &iter
.iter
, channel
,
1041 consumer_del_channel(channel
);
1046 lttng_ht_destroy(consumer_data
.channel_ht
);
1048 cleanup_relayd_ht();
1050 lttng_ht_destroy(consumer_data
.stream_per_chan_id_ht
);
1053 * This HT contains streams that are freed by either the metadata thread or
1054 * the data thread so we do *nothing* on the hash table and simply destroy
1057 lttng_ht_destroy(consumer_data
.stream_list_ht
);
1061 * Called from signal handler.
1063 void lttng_consumer_should_exit(struct lttng_consumer_local_data
*ctx
)
1068 ret
= write(ctx
->consumer_should_quit
[1], "4", 1);
1069 } while (ret
< 0 && errno
== EINTR
);
1070 if (ret
< 0 || ret
!= 1) {
1071 PERROR("write consumer quit");
1074 DBG("Consumer flag that it should quit");
1077 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream
*stream
,
1080 int outfd
= stream
->out_fd
;
1083 * This does a blocking write-and-wait on any page that belongs to the
1084 * subbuffer prior to the one we just wrote.
1085 * Don't care about error values, as these are just hints and ways to
1086 * limit the amount of page cache used.
1088 if (orig_offset
< stream
->max_sb_size
) {
1091 lttng_sync_file_range(outfd
, orig_offset
- stream
->max_sb_size
,
1092 stream
->max_sb_size
,
1093 SYNC_FILE_RANGE_WAIT_BEFORE
1094 | SYNC_FILE_RANGE_WRITE
1095 | SYNC_FILE_RANGE_WAIT_AFTER
);
1097 * Give hints to the kernel about how we access the file:
1098 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1101 * We need to call fadvise again after the file grows because the
1102 * kernel does not seem to apply fadvise to non-existing parts of the
1105 * Call fadvise _after_ having waited for the page writeback to
1106 * complete because the dirty page writeback semantic is not well
1107 * defined. So it can be expected to lead to lower throughput in
1110 posix_fadvise(outfd
, orig_offset
- stream
->max_sb_size
,
1111 stream
->max_sb_size
, POSIX_FADV_DONTNEED
);
1115 * Initialise the necessary environnement :
1116 * - create a new context
1117 * - create the poll_pipe
1118 * - create the should_quit pipe (for signal handler)
1119 * - create the thread pipe (for splice)
1121 * Takes a function pointer as argument, this function is called when data is
1122 * available on a buffer. This function is responsible to do the
1123 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1124 * buffer configuration and then kernctl_put_next_subbuf at the end.
1126 * Returns a pointer to the new context or NULL on error.
1128 struct lttng_consumer_local_data
*lttng_consumer_create(
1129 enum lttng_consumer_type type
,
1130 ssize_t (*buffer_ready
)(struct lttng_consumer_stream
*stream
,
1131 struct lttng_consumer_local_data
*ctx
),
1132 int (*recv_channel
)(struct lttng_consumer_channel
*channel
),
1133 int (*recv_stream
)(struct lttng_consumer_stream
*stream
),
1134 int (*update_stream
)(int stream_key
, uint32_t state
))
1137 struct lttng_consumer_local_data
*ctx
;
1139 assert(consumer_data
.type
== LTTNG_CONSUMER_UNKNOWN
||
1140 consumer_data
.type
== type
);
1141 consumer_data
.type
= type
;
1143 ctx
= zmalloc(sizeof(struct lttng_consumer_local_data
));
1145 PERROR("allocating context");
1149 ctx
->consumer_error_socket
= -1;
1150 ctx
->consumer_metadata_socket
= -1;
1151 /* assign the callbacks */
1152 ctx
->on_buffer_ready
= buffer_ready
;
1153 ctx
->on_recv_channel
= recv_channel
;
1154 ctx
->on_recv_stream
= recv_stream
;
1155 ctx
->on_update_stream
= update_stream
;
1157 ctx
->consumer_data_pipe
= lttng_pipe_open(0);
1158 if (!ctx
->consumer_data_pipe
) {
1159 goto error_poll_pipe
;
1162 ret
= pipe(ctx
->consumer_should_quit
);
1164 PERROR("Error creating recv pipe");
1165 goto error_quit_pipe
;
1168 ret
= pipe(ctx
->consumer_thread_pipe
);
1170 PERROR("Error creating thread pipe");
1171 goto error_thread_pipe
;
1174 ret
= pipe(ctx
->consumer_channel_pipe
);
1176 PERROR("Error creating channel pipe");
1177 goto error_channel_pipe
;
1180 ctx
->consumer_metadata_pipe
= lttng_pipe_open(0);
1181 if (!ctx
->consumer_metadata_pipe
) {
1182 goto error_metadata_pipe
;
1185 ret
= utils_create_pipe(ctx
->consumer_splice_metadata_pipe
);
1187 goto error_splice_pipe
;
1193 lttng_pipe_destroy(ctx
->consumer_metadata_pipe
);
1194 error_metadata_pipe
:
1195 utils_close_pipe(ctx
->consumer_channel_pipe
);
1197 utils_close_pipe(ctx
->consumer_thread_pipe
);
1199 utils_close_pipe(ctx
->consumer_should_quit
);
1201 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1209 * Close all fds associated with the instance and free the context.
1211 void lttng_consumer_destroy(struct lttng_consumer_local_data
*ctx
)
1215 DBG("Consumer destroying it. Closing everything.");
1217 ret
= close(ctx
->consumer_error_socket
);
1221 ret
= close(ctx
->consumer_metadata_socket
);
1225 utils_close_pipe(ctx
->consumer_thread_pipe
);
1226 utils_close_pipe(ctx
->consumer_channel_pipe
);
1227 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1228 lttng_pipe_destroy(ctx
->consumer_metadata_pipe
);
1229 utils_close_pipe(ctx
->consumer_should_quit
);
1230 utils_close_pipe(ctx
->consumer_splice_metadata_pipe
);
1232 unlink(ctx
->consumer_command_sock_path
);
1237 * Write the metadata stream id on the specified file descriptor.
1239 static int write_relayd_metadata_id(int fd
,
1240 struct lttng_consumer_stream
*stream
,
1241 struct consumer_relayd_sock_pair
*relayd
, unsigned long padding
)
1244 struct lttcomm_relayd_metadata_payload hdr
;
1246 hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
1247 hdr
.padding_size
= htobe32(padding
);
1249 ret
= write(fd
, (void *) &hdr
, sizeof(hdr
));
1250 } while (ret
< 0 && errno
== EINTR
);
1251 if (ret
< 0 || ret
!= sizeof(hdr
)) {
1253 * This error means that the fd's end is closed so ignore the perror
1254 * not to clubber the error output since this can happen in a normal
1257 if (errno
!= EPIPE
) {
1258 PERROR("write metadata stream id");
1260 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno
);
1262 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1263 * handle writting the missing part so report that as an error and
1264 * don't lie to the caller.
1269 DBG("Metadata stream id %" PRIu64
" with padding %lu written before data",
1270 stream
->relayd_stream_id
, padding
);
1277 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1278 * core function for writing trace buffers to either the local filesystem or
1281 * It must be called with the stream lock held.
1283 * Careful review MUST be put if any changes occur!
1285 * Returns the number of bytes written
1287 ssize_t
lttng_consumer_on_read_subbuffer_mmap(
1288 struct lttng_consumer_local_data
*ctx
,
1289 struct lttng_consumer_stream
*stream
, unsigned long len
,
1290 unsigned long padding
)
1292 unsigned long mmap_offset
;
1294 ssize_t ret
= 0, written
= 0;
1295 off_t orig_offset
= stream
->out_fd_offset
;
1296 /* Default is on the disk */
1297 int outfd
= stream
->out_fd
;
1298 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1299 unsigned int relayd_hang_up
= 0;
1301 /* RCU lock for the relayd pointer */
1304 /* Flag that the current stream if set for network streaming. */
1305 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1306 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1307 if (relayd
== NULL
) {
1312 /* get the offset inside the fd to mmap */
1313 switch (consumer_data
.type
) {
1314 case LTTNG_CONSUMER_KERNEL
:
1315 mmap_base
= stream
->mmap_base
;
1316 ret
= kernctl_get_mmap_read_offset(stream
->wait_fd
, &mmap_offset
);
1318 case LTTNG_CONSUMER32_UST
:
1319 case LTTNG_CONSUMER64_UST
:
1320 mmap_base
= lttng_ustctl_get_mmap_base(stream
);
1322 ERR("read mmap get mmap base for stream %s", stream
->name
);
1326 ret
= lttng_ustctl_get_mmap_read_offset(stream
, &mmap_offset
);
1330 ERR("Unknown consumer_data type");
1335 PERROR("tracer ctl get_mmap_read_offset");
1340 /* Handle stream on the relayd if the output is on the network */
1342 unsigned long netlen
= len
;
1345 * Lock the control socket for the complete duration of the function
1346 * since from this point on we will use the socket.
1348 if (stream
->metadata_flag
) {
1349 /* Metadata requires the control socket. */
1350 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1351 netlen
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1354 ret
= write_relayd_stream_header(stream
, netlen
, padding
, relayd
);
1356 /* Use the returned socket. */
1359 /* Write metadata stream id before payload */
1360 if (stream
->metadata_flag
) {
1361 ret
= write_relayd_metadata_id(outfd
, stream
, relayd
, padding
);
1364 /* Socket operation failed. We consider the relayd dead */
1365 if (ret
== -EPIPE
|| ret
== -EINVAL
) {
1373 /* Socket operation failed. We consider the relayd dead */
1374 if (ret
== -EPIPE
|| ret
== -EINVAL
) {
1378 /* Else, use the default set before which is the filesystem. */
1381 /* No streaming, we have to set the len with the full padding */
1385 * Check if we need to change the tracefile before writing the packet.
1387 if (stream
->chan
->tracefile_size
> 0 &&
1388 (stream
->tracefile_size_current
+ len
) >
1389 stream
->chan
->tracefile_size
) {
1390 ret
= utils_rotate_stream_file(stream
->chan
->pathname
,
1391 stream
->name
, stream
->chan
->tracefile_size
,
1392 stream
->chan
->tracefile_count
, stream
->uid
, stream
->gid
,
1393 stream
->out_fd
, &(stream
->tracefile_count_current
));
1395 ERR("Rotating output file");
1398 outfd
= stream
->out_fd
= ret
;
1399 /* Reset current size because we just perform a rotation. */
1400 stream
->tracefile_size_current
= 0;
1402 stream
->tracefile_size_current
+= len
;
1407 ret
= write(outfd
, mmap_base
+ mmap_offset
, len
);
1408 } while (ret
< 0 && errno
== EINTR
);
1409 DBG("Consumer mmap write() ret %zd (len %lu)", ret
, len
);
1412 * This is possible if the fd is closed on the other side (outfd)
1413 * or any write problem. It can be verbose a bit for a normal
1414 * execution if for instance the relayd is stopped abruptly. This
1415 * can happen so set this to a DBG statement.
1417 DBG("Error in file write mmap");
1421 /* Socket operation failed. We consider the relayd dead */
1422 if (errno
== EPIPE
|| errno
== EINVAL
) {
1427 } else if (ret
> len
) {
1428 PERROR("Error in file write (ret %zd > len %lu)", ret
, len
);
1436 /* This call is useless on a socket so better save a syscall. */
1438 /* This won't block, but will start writeout asynchronously */
1439 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret
,
1440 SYNC_FILE_RANGE_WRITE
);
1441 stream
->out_fd_offset
+= ret
;
1445 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1449 * This is a special case that the relayd has closed its socket. Let's
1450 * cleanup the relayd object and all associated streams.
1452 if (relayd
&& relayd_hang_up
) {
1453 cleanup_relayd(relayd
, ctx
);
1457 /* Unlock only if ctrl socket used */
1458 if (relayd
&& stream
->metadata_flag
) {
1459 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1467 * Splice the data from the ring buffer to the tracefile.
1469 * It must be called with the stream lock held.
1471 * Returns the number of bytes spliced.
1473 ssize_t
lttng_consumer_on_read_subbuffer_splice(
1474 struct lttng_consumer_local_data
*ctx
,
1475 struct lttng_consumer_stream
*stream
, unsigned long len
,
1476 unsigned long padding
)
1478 ssize_t ret
= 0, written
= 0, ret_splice
= 0;
1480 off_t orig_offset
= stream
->out_fd_offset
;
1481 int fd
= stream
->wait_fd
;
1482 /* Default is on the disk */
1483 int outfd
= stream
->out_fd
;
1484 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1486 unsigned int relayd_hang_up
= 0;
1488 switch (consumer_data
.type
) {
1489 case LTTNG_CONSUMER_KERNEL
:
1491 case LTTNG_CONSUMER32_UST
:
1492 case LTTNG_CONSUMER64_UST
:
1493 /* Not supported for user space tracing */
1496 ERR("Unknown consumer_data type");
1500 /* RCU lock for the relayd pointer */
1503 /* Flag that the current stream if set for network streaming. */
1504 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1505 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1506 if (relayd
== NULL
) {
1512 * Choose right pipe for splice. Metadata and trace data are handled by
1513 * different threads hence the use of two pipes in order not to race or
1514 * corrupt the written data.
1516 if (stream
->metadata_flag
) {
1517 splice_pipe
= ctx
->consumer_splice_metadata_pipe
;
1519 splice_pipe
= ctx
->consumer_thread_pipe
;
1522 /* Write metadata stream id before payload */
1524 int total_len
= len
;
1526 if (stream
->metadata_flag
) {
1528 * Lock the control socket for the complete duration of the function
1529 * since from this point on we will use the socket.
1531 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1533 ret
= write_relayd_metadata_id(splice_pipe
[1], stream
, relayd
,
1537 /* Socket operation failed. We consider the relayd dead */
1538 if (ret
== -EBADF
) {
1539 WARN("Remote relayd disconnected. Stopping");
1546 total_len
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1549 ret
= write_relayd_stream_header(stream
, total_len
, padding
, relayd
);
1551 /* Use the returned socket. */
1554 /* Socket operation failed. We consider the relayd dead */
1555 if (ret
== -EBADF
) {
1556 WARN("Remote relayd disconnected. Stopping");
1563 /* No streaming, we have to set the len with the full padding */
1567 * Check if we need to change the tracefile before writing the packet.
1569 if (stream
->chan
->tracefile_size
> 0 &&
1570 (stream
->tracefile_size_current
+ len
) >
1571 stream
->chan
->tracefile_size
) {
1572 ret
= utils_rotate_stream_file(stream
->chan
->pathname
,
1573 stream
->name
, stream
->chan
->tracefile_size
,
1574 stream
->chan
->tracefile_count
, stream
->uid
, stream
->gid
,
1575 stream
->out_fd
, &(stream
->tracefile_count_current
));
1577 ERR("Rotating output file");
1580 outfd
= stream
->out_fd
= ret
;
1581 /* Reset current size because we just perform a rotation. */
1582 stream
->tracefile_size_current
= 0;
1584 stream
->tracefile_size_current
+= len
;
1588 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1589 (unsigned long)offset
, len
, fd
, splice_pipe
[1]);
1590 ret_splice
= splice(fd
, &offset
, splice_pipe
[1], NULL
, len
,
1591 SPLICE_F_MOVE
| SPLICE_F_MORE
);
1592 DBG("splice chan to pipe, ret %zd", ret_splice
);
1593 if (ret_splice
< 0) {
1594 PERROR("Error in relay splice");
1596 written
= ret_splice
;
1602 /* Handle stream on the relayd if the output is on the network */
1604 if (stream
->metadata_flag
) {
1605 size_t metadata_payload_size
=
1606 sizeof(struct lttcomm_relayd_metadata_payload
);
1608 /* Update counter to fit the spliced data */
1609 ret_splice
+= metadata_payload_size
;
1610 len
+= metadata_payload_size
;
1612 * We do this so the return value can match the len passed as
1613 * argument to this function.
1615 written
-= metadata_payload_size
;
1619 /* Splice data out */
1620 ret_splice
= splice(splice_pipe
[0], NULL
, outfd
, NULL
,
1621 ret_splice
, SPLICE_F_MOVE
| SPLICE_F_MORE
);
1622 DBG("Consumer splice pipe to file, ret %zd", ret_splice
);
1623 if (ret_splice
< 0) {
1624 PERROR("Error in file splice");
1626 written
= ret_splice
;
1628 /* Socket operation failed. We consider the relayd dead */
1629 if (errno
== EBADF
|| errno
== EPIPE
) {
1630 WARN("Remote relayd disconnected. Stopping");
1636 } else if (ret_splice
> len
) {
1638 PERROR("Wrote more data than requested %zd (len: %lu)",
1640 written
+= ret_splice
;
1646 /* This call is useless on a socket so better save a syscall. */
1648 /* This won't block, but will start writeout asynchronously */
1649 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret_splice
,
1650 SYNC_FILE_RANGE_WRITE
);
1651 stream
->out_fd_offset
+= ret_splice
;
1653 written
+= ret_splice
;
1655 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1663 * This is a special case that the relayd has closed its socket. Let's
1664 * cleanup the relayd object and all associated streams.
1666 if (relayd
&& relayd_hang_up
) {
1667 cleanup_relayd(relayd
, ctx
);
1668 /* Skip splice error so the consumer does not fail */
1673 /* send the appropriate error description to sessiond */
1676 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_EINVAL
);
1679 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ENOMEM
);
1682 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ESPIPE
);
1687 if (relayd
&& stream
->metadata_flag
) {
1688 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1696 * Take a snapshot for a specific fd
1698 * Returns 0 on success, < 0 on error
1700 int lttng_consumer_take_snapshot(struct lttng_consumer_stream
*stream
)
1702 switch (consumer_data
.type
) {
1703 case LTTNG_CONSUMER_KERNEL
:
1704 return lttng_kconsumer_take_snapshot(stream
);
1705 case LTTNG_CONSUMER32_UST
:
1706 case LTTNG_CONSUMER64_UST
:
1707 return lttng_ustconsumer_take_snapshot(stream
);
1709 ERR("Unknown consumer_data type");
1716 * Get the produced position
1718 * Returns 0 on success, < 0 on error
1720 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream
*stream
,
1723 switch (consumer_data
.type
) {
1724 case LTTNG_CONSUMER_KERNEL
:
1725 return lttng_kconsumer_get_produced_snapshot(stream
, pos
);
1726 case LTTNG_CONSUMER32_UST
:
1727 case LTTNG_CONSUMER64_UST
:
1728 return lttng_ustconsumer_get_produced_snapshot(stream
, pos
);
1730 ERR("Unknown consumer_data type");
1736 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data
*ctx
,
1737 int sock
, struct pollfd
*consumer_sockpoll
)
1739 switch (consumer_data
.type
) {
1740 case LTTNG_CONSUMER_KERNEL
:
1741 return lttng_kconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1742 case LTTNG_CONSUMER32_UST
:
1743 case LTTNG_CONSUMER64_UST
:
1744 return lttng_ustconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1746 ERR("Unknown consumer_data type");
1753 * Iterate over all streams of the hashtable and free them properly.
1755 * WARNING: *MUST* be used with data stream only.
1757 static void destroy_data_stream_ht(struct lttng_ht
*ht
)
1759 struct lttng_ht_iter iter
;
1760 struct lttng_consumer_stream
*stream
;
1767 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1769 * Ignore return value since we are currently cleaning up so any error
1772 (void) consumer_del_stream(stream
, ht
);
1776 lttng_ht_destroy(ht
);
1780 * Iterate over all streams of the hashtable and free them properly.
1782 * XXX: Should not be only for metadata stream or else use an other name.
1784 static void destroy_stream_ht(struct lttng_ht
*ht
)
1786 struct lttng_ht_iter iter
;
1787 struct lttng_consumer_stream
*stream
;
1794 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1796 * Ignore return value since we are currently cleaning up so any error
1799 (void) consumer_del_metadata_stream(stream
, ht
);
1803 lttng_ht_destroy(ht
);
1806 void lttng_consumer_close_metadata(void)
1808 switch (consumer_data
.type
) {
1809 case LTTNG_CONSUMER_KERNEL
:
1811 * The Kernel consumer has a different metadata scheme so we don't
1812 * close anything because the stream will be closed by the session
1816 case LTTNG_CONSUMER32_UST
:
1817 case LTTNG_CONSUMER64_UST
:
1819 * Close all metadata streams. The metadata hash table is passed and
1820 * this call iterates over it by closing all wakeup fd. This is safe
1821 * because at this point we are sure that the metadata producer is
1822 * either dead or blocked.
1824 lttng_ustconsumer_close_metadata(metadata_ht
);
1827 ERR("Unknown consumer_data type");
1833 * Clean up a metadata stream and free its memory.
1835 void consumer_del_metadata_stream(struct lttng_consumer_stream
*stream
,
1836 struct lttng_ht
*ht
)
1839 struct lttng_ht_iter iter
;
1840 struct lttng_consumer_channel
*free_chan
= NULL
;
1841 struct consumer_relayd_sock_pair
*relayd
;
1845 * This call should NEVER receive regular stream. It must always be
1846 * metadata stream and this is crucial for data structure synchronization.
1848 assert(stream
->metadata_flag
);
1850 DBG3("Consumer delete metadata stream %d", stream
->wait_fd
);
1853 /* Means the stream was allocated but not successfully added */
1854 goto free_stream_rcu
;
1857 pthread_mutex_lock(&consumer_data
.lock
);
1858 pthread_mutex_lock(&stream
->lock
);
1860 switch (consumer_data
.type
) {
1861 case LTTNG_CONSUMER_KERNEL
:
1862 if (stream
->mmap_base
!= NULL
) {
1863 ret
= munmap(stream
->mmap_base
, stream
->mmap_len
);
1865 PERROR("munmap metadata stream");
1868 if (stream
->wait_fd
>= 0) {
1869 ret
= close(stream
->wait_fd
);
1871 PERROR("close kernel metadata wait_fd");
1875 case LTTNG_CONSUMER32_UST
:
1876 case LTTNG_CONSUMER64_UST
:
1877 lttng_ustconsumer_del_stream(stream
);
1880 ERR("Unknown consumer_data type");
1886 iter
.iter
.node
= &stream
->node
.node
;
1887 ret
= lttng_ht_del(ht
, &iter
);
1890 iter
.iter
.node
= &stream
->node_channel_id
.node
;
1891 ret
= lttng_ht_del(consumer_data
.stream_per_chan_id_ht
, &iter
);
1894 iter
.iter
.node
= &stream
->node_session_id
.node
;
1895 ret
= lttng_ht_del(consumer_data
.stream_list_ht
, &iter
);
1899 if (stream
->out_fd
>= 0) {
1900 ret
= close(stream
->out_fd
);
1906 /* Check and cleanup relayd */
1908 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1909 if (relayd
!= NULL
) {
1910 uatomic_dec(&relayd
->refcount
);
1911 assert(uatomic_read(&relayd
->refcount
) >= 0);
1913 /* Closing streams requires to lock the control socket. */
1914 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1915 ret
= relayd_send_close_stream(&relayd
->control_sock
,
1916 stream
->relayd_stream_id
, stream
->next_net_seq_num
- 1);
1917 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1919 DBG("Unable to close stream on the relayd. Continuing");
1921 * Continue here. There is nothing we can do for the relayd.
1922 * Chances are that the relayd has closed the socket so we just
1923 * continue cleaning up.
1927 /* Both conditions are met, we destroy the relayd. */
1928 if (uatomic_read(&relayd
->refcount
) == 0 &&
1929 uatomic_read(&relayd
->destroy_flag
)) {
1930 consumer_destroy_relayd(relayd
);
1935 /* Atomically decrement channel refcount since other threads can use it. */
1936 if (!uatomic_sub_return(&stream
->chan
->refcount
, 1)
1937 && !uatomic_read(&stream
->chan
->nb_init_stream_left
)) {
1938 /* Go for channel deletion! */
1939 free_chan
= stream
->chan
;
1944 * Nullify the stream reference so it is not used after deletion. The
1945 * consumer data lock MUST be acquired before being able to check for a
1946 * NULL pointer value.
1948 stream
->chan
->metadata_stream
= NULL
;
1950 pthread_mutex_unlock(&stream
->lock
);
1951 pthread_mutex_unlock(&consumer_data
.lock
);
1954 consumer_del_channel(free_chan
);
1958 call_rcu(&stream
->node
.head
, free_stream_rcu
);
1962 * Action done with the metadata stream when adding it to the consumer internal
1963 * data structures to handle it.
1965 static int add_metadata_stream(struct lttng_consumer_stream
*stream
,
1966 struct lttng_ht
*ht
)
1969 struct consumer_relayd_sock_pair
*relayd
;
1970 struct lttng_ht_iter iter
;
1971 struct lttng_ht_node_u64
*node
;
1976 DBG3("Adding metadata stream %" PRIu64
" to hash table", stream
->key
);
1978 pthread_mutex_lock(&consumer_data
.lock
);
1979 pthread_mutex_lock(&stream
->lock
);
1982 * From here, refcounts are updated so be _careful_ when returning an error
1989 * Lookup the stream just to make sure it does not exist in our internal
1990 * state. This should NEVER happen.
1992 lttng_ht_lookup(ht
, &stream
->key
, &iter
);
1993 node
= lttng_ht_iter_get_node_u64(&iter
);
1996 /* Find relayd and, if one is found, increment refcount. */
1997 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1998 if (relayd
!= NULL
) {
1999 uatomic_inc(&relayd
->refcount
);
2003 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2004 * in terms of destroying the associated channel, because the action that
2005 * causes the count to become 0 also causes a stream to be added. The
2006 * channel deletion will thus be triggered by the following removal of this
2009 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
2010 /* Increment refcount before decrementing nb_init_stream_left */
2012 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
2015 lttng_ht_add_unique_u64(ht
, &stream
->node
);
2017 lttng_ht_add_unique_u64(consumer_data
.stream_per_chan_id_ht
,
2018 &stream
->node_channel_id
);
2021 * Add stream to the stream_list_ht of the consumer data. No need to steal
2022 * the key since the HT does not use it and we allow to add redundant keys
2025 lttng_ht_add_u64(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
2029 pthread_mutex_unlock(&stream
->lock
);
2030 pthread_mutex_unlock(&consumer_data
.lock
);
2035 * Delete data stream that are flagged for deletion (endpoint_status).
2037 static void validate_endpoint_status_data_stream(void)
2039 struct lttng_ht_iter iter
;
2040 struct lttng_consumer_stream
*stream
;
2042 DBG("Consumer delete flagged data stream");
2045 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2046 /* Validate delete flag of the stream */
2047 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2050 /* Delete it right now */
2051 consumer_del_stream(stream
, data_ht
);
2057 * Delete metadata stream that are flagged for deletion (endpoint_status).
2059 static void validate_endpoint_status_metadata_stream(
2060 struct lttng_poll_event
*pollset
)
2062 struct lttng_ht_iter iter
;
2063 struct lttng_consumer_stream
*stream
;
2065 DBG("Consumer delete flagged metadata stream");
2070 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2071 /* Validate delete flag of the stream */
2072 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2076 * Remove from pollset so the metadata thread can continue without
2077 * blocking on a deleted stream.
2079 lttng_poll_del(pollset
, stream
->wait_fd
);
2081 /* Delete it right now */
2082 consumer_del_metadata_stream(stream
, metadata_ht
);
2088 * Thread polls on metadata file descriptor and write them on disk or on the
2091 void *consumer_thread_metadata_poll(void *data
)
2094 uint32_t revents
, nb_fd
;
2095 struct lttng_consumer_stream
*stream
= NULL
;
2096 struct lttng_ht_iter iter
;
2097 struct lttng_ht_node_u64
*node
;
2098 struct lttng_poll_event events
;
2099 struct lttng_consumer_local_data
*ctx
= data
;
2102 rcu_register_thread();
2104 metadata_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
2106 /* ENOMEM at this point. Better to bail out. */
2110 DBG("Thread metadata poll started");
2112 /* Size is set to 1 for the consumer_metadata pipe */
2113 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2115 ERR("Poll set creation failed");
2119 ret
= lttng_poll_add(&events
,
2120 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
), LPOLLIN
);
2126 DBG("Metadata main loop started");
2129 /* Only the metadata pipe is set */
2130 if (LTTNG_POLL_GETNB(&events
) == 0 && consumer_quit
== 1) {
2135 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events
));
2136 ret
= lttng_poll_wait(&events
, -1);
2137 DBG("Metadata event catched in thread");
2139 if (errno
== EINTR
) {
2140 ERR("Poll EINTR catched");
2148 /* From here, the event is a metadata wait fd */
2149 for (i
= 0; i
< nb_fd
; i
++) {
2150 revents
= LTTNG_POLL_GETEV(&events
, i
);
2151 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2153 /* Just don't waste time if no returned events for the fd */
2158 if (pollfd
== lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
)) {
2159 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2160 DBG("Metadata thread pipe hung up");
2162 * Remove the pipe from the poll set and continue the loop
2163 * since their might be data to consume.
2165 lttng_poll_del(&events
,
2166 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
));
2167 lttng_pipe_read_close(ctx
->consumer_metadata_pipe
);
2169 } else if (revents
& LPOLLIN
) {
2172 pipe_len
= lttng_pipe_read(ctx
->consumer_metadata_pipe
,
2173 &stream
, sizeof(stream
));
2175 ERR("read metadata stream, ret: %ld", pipe_len
);
2177 * Continue here to handle the rest of the streams.
2182 /* A NULL stream means that the state has changed. */
2183 if (stream
== NULL
) {
2184 /* Check for deleted streams. */
2185 validate_endpoint_status_metadata_stream(&events
);
2189 DBG("Adding metadata stream %d to poll set",
2192 ret
= add_metadata_stream(stream
, metadata_ht
);
2194 ERR("Unable to add metadata stream");
2195 /* Stream was not setup properly. Continuing. */
2196 consumer_del_metadata_stream(stream
, NULL
);
2200 /* Add metadata stream to the global poll events list */
2201 lttng_poll_add(&events
, stream
->wait_fd
,
2202 LPOLLIN
| LPOLLPRI
);
2205 /* Handle other stream */
2211 uint64_t tmp_id
= (uint64_t) pollfd
;
2213 lttng_ht_lookup(metadata_ht
, &tmp_id
, &iter
);
2215 node
= lttng_ht_iter_get_node_u64(&iter
);
2218 stream
= caa_container_of(node
, struct lttng_consumer_stream
,
2221 /* Check for error event */
2222 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2223 DBG("Metadata fd %d is hup|err.", pollfd
);
2224 if (!stream
->hangup_flush_done
2225 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2226 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2227 DBG("Attempting to flush and consume the UST buffers");
2228 lttng_ustconsumer_on_stream_hangup(stream
);
2230 /* We just flushed the stream now read it. */
2232 len
= ctx
->on_buffer_ready(stream
, ctx
);
2234 * We don't check the return value here since if we get
2235 * a negative len, it means an error occured thus we
2236 * simply remove it from the poll set and free the
2242 lttng_poll_del(&events
, stream
->wait_fd
);
2244 * This call update the channel states, closes file descriptors
2245 * and securely free the stream.
2247 consumer_del_metadata_stream(stream
, metadata_ht
);
2248 } else if (revents
& (LPOLLIN
| LPOLLPRI
)) {
2249 /* Get the data out of the metadata file descriptor */
2250 DBG("Metadata available on fd %d", pollfd
);
2251 assert(stream
->wait_fd
== pollfd
);
2253 len
= ctx
->on_buffer_ready(stream
, ctx
);
2254 /* It's ok to have an unavailable sub-buffer */
2255 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2256 /* Clean up stream from consumer and free it. */
2257 lttng_poll_del(&events
, stream
->wait_fd
);
2258 consumer_del_metadata_stream(stream
, metadata_ht
);
2259 } else if (len
> 0) {
2260 stream
->data_read
= 1;
2264 /* Release RCU lock for the stream looked up */
2271 DBG("Metadata poll thread exiting");
2273 lttng_poll_clean(&events
);
2275 destroy_stream_ht(metadata_ht
);
2277 rcu_unregister_thread();
2282 * This thread polls the fds in the set to consume the data and write
2283 * it to tracefile if necessary.
2285 void *consumer_thread_data_poll(void *data
)
2287 int num_rdy
, num_hup
, high_prio
, ret
, i
;
2288 struct pollfd
*pollfd
= NULL
;
2289 /* local view of the streams */
2290 struct lttng_consumer_stream
**local_stream
= NULL
, *new_stream
= NULL
;
2291 /* local view of consumer_data.fds_count */
2293 struct lttng_consumer_local_data
*ctx
= data
;
2296 rcu_register_thread();
2298 data_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
2299 if (data_ht
== NULL
) {
2300 /* ENOMEM at this point. Better to bail out. */
2304 local_stream
= zmalloc(sizeof(struct lttng_consumer_stream
));
2311 * the fds set has been updated, we need to update our
2312 * local array as well
2314 pthread_mutex_lock(&consumer_data
.lock
);
2315 if (consumer_data
.need_update
) {
2320 local_stream
= NULL
;
2322 /* allocate for all fds + 1 for the consumer_data_pipe */
2323 pollfd
= zmalloc((consumer_data
.stream_count
+ 1) * sizeof(struct pollfd
));
2324 if (pollfd
== NULL
) {
2325 PERROR("pollfd malloc");
2326 pthread_mutex_unlock(&consumer_data
.lock
);
2330 /* allocate for all fds + 1 for the consumer_data_pipe */
2331 local_stream
= zmalloc((consumer_data
.stream_count
+ 1) *
2332 sizeof(struct lttng_consumer_stream
*));
2333 if (local_stream
== NULL
) {
2334 PERROR("local_stream malloc");
2335 pthread_mutex_unlock(&consumer_data
.lock
);
2338 ret
= update_poll_array(ctx
, &pollfd
, local_stream
,
2341 ERR("Error in allocating pollfd or local_outfds");
2342 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2343 pthread_mutex_unlock(&consumer_data
.lock
);
2347 consumer_data
.need_update
= 0;
2349 pthread_mutex_unlock(&consumer_data
.lock
);
2351 /* No FDs and consumer_quit, consumer_cleanup the thread */
2352 if (nb_fd
== 0 && consumer_quit
== 1) {
2355 /* poll on the array of fds */
2357 DBG("polling on %d fd", nb_fd
+ 1);
2358 num_rdy
= poll(pollfd
, nb_fd
+ 1, -1);
2359 DBG("poll num_rdy : %d", num_rdy
);
2360 if (num_rdy
== -1) {
2362 * Restart interrupted system call.
2364 if (errno
== EINTR
) {
2367 PERROR("Poll error");
2368 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2370 } else if (num_rdy
== 0) {
2371 DBG("Polling thread timed out");
2376 * If the consumer_data_pipe triggered poll go directly to the
2377 * beginning of the loop to update the array. We want to prioritize
2378 * array update over low-priority reads.
2380 if (pollfd
[nb_fd
].revents
& (POLLIN
| POLLPRI
)) {
2381 ssize_t pipe_readlen
;
2383 DBG("consumer_data_pipe wake up");
2384 pipe_readlen
= lttng_pipe_read(ctx
->consumer_data_pipe
,
2385 &new_stream
, sizeof(new_stream
));
2386 if (pipe_readlen
< 0) {
2387 ERR("Consumer data pipe ret %ld", pipe_readlen
);
2388 /* Continue so we can at least handle the current stream(s). */
2393 * If the stream is NULL, just ignore it. It's also possible that
2394 * the sessiond poll thread changed the consumer_quit state and is
2395 * waking us up to test it.
2397 if (new_stream
== NULL
) {
2398 validate_endpoint_status_data_stream();
2402 ret
= add_stream(new_stream
, data_ht
);
2404 ERR("Consumer add stream %" PRIu64
" failed. Continuing",
2407 * At this point, if the add_stream fails, it is not in the
2408 * hash table thus passing the NULL value here.
2410 consumer_del_stream(new_stream
, NULL
);
2413 /* Continue to update the local streams and handle prio ones */
2417 /* Take care of high priority channels first. */
2418 for (i
= 0; i
< nb_fd
; i
++) {
2419 if (local_stream
[i
] == NULL
) {
2422 if (pollfd
[i
].revents
& POLLPRI
) {
2423 DBG("Urgent read on fd %d", pollfd
[i
].fd
);
2425 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2426 /* it's ok to have an unavailable sub-buffer */
2427 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2428 /* Clean the stream and free it. */
2429 consumer_del_stream(local_stream
[i
], data_ht
);
2430 local_stream
[i
] = NULL
;
2431 } else if (len
> 0) {
2432 local_stream
[i
]->data_read
= 1;
2438 * If we read high prio channel in this loop, try again
2439 * for more high prio data.
2445 /* Take care of low priority channels. */
2446 for (i
= 0; i
< nb_fd
; i
++) {
2447 if (local_stream
[i
] == NULL
) {
2450 if ((pollfd
[i
].revents
& POLLIN
) ||
2451 local_stream
[i
]->hangup_flush_done
) {
2452 DBG("Normal read on fd %d", pollfd
[i
].fd
);
2453 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2454 /* it's ok to have an unavailable sub-buffer */
2455 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2456 /* Clean the stream and free it. */
2457 consumer_del_stream(local_stream
[i
], data_ht
);
2458 local_stream
[i
] = NULL
;
2459 } else if (len
> 0) {
2460 local_stream
[i
]->data_read
= 1;
2465 /* Handle hangup and errors */
2466 for (i
= 0; i
< nb_fd
; i
++) {
2467 if (local_stream
[i
] == NULL
) {
2470 if (!local_stream
[i
]->hangup_flush_done
2471 && (pollfd
[i
].revents
& (POLLHUP
| POLLERR
| POLLNVAL
))
2472 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2473 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2474 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2476 lttng_ustconsumer_on_stream_hangup(local_stream
[i
]);
2477 /* Attempt read again, for the data we just flushed. */
2478 local_stream
[i
]->data_read
= 1;
2481 * If the poll flag is HUP/ERR/NVAL and we have
2482 * read no data in this pass, we can remove the
2483 * stream from its hash table.
2485 if ((pollfd
[i
].revents
& POLLHUP
)) {
2486 DBG("Polling fd %d tells it has hung up.", pollfd
[i
].fd
);
2487 if (!local_stream
[i
]->data_read
) {
2488 consumer_del_stream(local_stream
[i
], data_ht
);
2489 local_stream
[i
] = NULL
;
2492 } else if (pollfd
[i
].revents
& POLLERR
) {
2493 ERR("Error returned in polling fd %d.", pollfd
[i
].fd
);
2494 if (!local_stream
[i
]->data_read
) {
2495 consumer_del_stream(local_stream
[i
], data_ht
);
2496 local_stream
[i
] = NULL
;
2499 } else if (pollfd
[i
].revents
& POLLNVAL
) {
2500 ERR("Polling fd %d tells fd is not open.", pollfd
[i
].fd
);
2501 if (!local_stream
[i
]->data_read
) {
2502 consumer_del_stream(local_stream
[i
], data_ht
);
2503 local_stream
[i
] = NULL
;
2507 if (local_stream
[i
] != NULL
) {
2508 local_stream
[i
]->data_read
= 0;
2513 DBG("polling thread exiting");
2518 * Close the write side of the pipe so epoll_wait() in
2519 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2520 * read side of the pipe. If we close them both, epoll_wait strangely does
2521 * not return and could create a endless wait period if the pipe is the
2522 * only tracked fd in the poll set. The thread will take care of closing
2525 (void) lttng_pipe_write_close(ctx
->consumer_metadata_pipe
);
2527 destroy_data_stream_ht(data_ht
);
2529 rcu_unregister_thread();
2534 * Close wake-up end of each stream belonging to the channel. This will
2535 * allow the poll() on the stream read-side to detect when the
2536 * write-side (application) finally closes them.
2539 void consumer_close_channel_streams(struct lttng_consumer_channel
*channel
)
2541 struct lttng_ht
*ht
;
2542 struct lttng_consumer_stream
*stream
;
2543 struct lttng_ht_iter iter
;
2545 ht
= consumer_data
.stream_per_chan_id_ht
;
2548 cds_lfht_for_each_entry_duplicate(ht
->ht
,
2549 ht
->hash_fct(&channel
->key
, lttng_ht_seed
),
2550 ht
->match_fct
, &channel
->key
,
2551 &iter
.iter
, stream
, node_channel_id
.node
) {
2553 * Protect against teardown with mutex.
2555 pthread_mutex_lock(&stream
->lock
);
2556 if (cds_lfht_is_node_deleted(&stream
->node
.node
)) {
2559 switch (consumer_data
.type
) {
2560 case LTTNG_CONSUMER_KERNEL
:
2562 case LTTNG_CONSUMER32_UST
:
2563 case LTTNG_CONSUMER64_UST
:
2565 * Note: a mutex is taken internally within
2566 * liblttng-ust-ctl to protect timer wakeup_fd
2567 * use from concurrent close.
2569 lttng_ustconsumer_close_stream_wakeup(stream
);
2572 ERR("Unknown consumer_data type");
2576 pthread_mutex_unlock(&stream
->lock
);
2581 static void destroy_channel_ht(struct lttng_ht
*ht
)
2583 struct lttng_ht_iter iter
;
2584 struct lttng_consumer_channel
*channel
;
2592 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, channel
, wait_fd_node
.node
) {
2593 ret
= lttng_ht_del(ht
, &iter
);
2598 lttng_ht_destroy(ht
);
2602 * This thread polls the channel fds to detect when they are being
2603 * closed. It closes all related streams if the channel is detected as
2604 * closed. It is currently only used as a shim layer for UST because the
2605 * consumerd needs to keep the per-stream wakeup end of pipes open for
2608 void *consumer_thread_channel_poll(void *data
)
2611 uint32_t revents
, nb_fd
;
2612 struct lttng_consumer_channel
*chan
= NULL
;
2613 struct lttng_ht_iter iter
;
2614 struct lttng_ht_node_u64
*node
;
2615 struct lttng_poll_event events
;
2616 struct lttng_consumer_local_data
*ctx
= data
;
2617 struct lttng_ht
*channel_ht
;
2619 rcu_register_thread();
2621 channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
2623 /* ENOMEM at this point. Better to bail out. */
2627 DBG("Thread channel poll started");
2629 /* Size is set to 1 for the consumer_channel pipe */
2630 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2632 ERR("Poll set creation failed");
2636 ret
= lttng_poll_add(&events
, ctx
->consumer_channel_pipe
[0], LPOLLIN
);
2642 DBG("Channel main loop started");
2645 /* Only the channel pipe is set */
2646 if (LTTNG_POLL_GETNB(&events
) == 0 && consumer_quit
== 1) {
2651 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events
));
2652 ret
= lttng_poll_wait(&events
, -1);
2653 DBG("Channel event catched in thread");
2655 if (errno
== EINTR
) {
2656 ERR("Poll EINTR catched");
2664 /* From here, the event is a channel wait fd */
2665 for (i
= 0; i
< nb_fd
; i
++) {
2666 revents
= LTTNG_POLL_GETEV(&events
, i
);
2667 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2669 /* Just don't waste time if no returned events for the fd */
2673 if (pollfd
== ctx
->consumer_channel_pipe
[0]) {
2674 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2675 DBG("Channel thread pipe hung up");
2677 * Remove the pipe from the poll set and continue the loop
2678 * since their might be data to consume.
2680 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
2682 } else if (revents
& LPOLLIN
) {
2683 enum consumer_channel_action action
;
2686 ret
= read_channel_pipe(ctx
, &chan
, &key
, &action
);
2688 ERR("Error reading channel pipe");
2693 case CONSUMER_CHANNEL_ADD
:
2694 DBG("Adding channel %d to poll set",
2697 lttng_ht_node_init_u64(&chan
->wait_fd_node
,
2700 lttng_ht_add_unique_u64(channel_ht
,
2701 &chan
->wait_fd_node
);
2703 /* Add channel to the global poll events list */
2704 lttng_poll_add(&events
, chan
->wait_fd
,
2705 LPOLLIN
| LPOLLPRI
);
2707 case CONSUMER_CHANNEL_DEL
:
2709 struct lttng_consumer_stream
*stream
, *stmp
;
2712 chan
= consumer_find_channel(key
);
2715 ERR("UST consumer get channel key %" PRIu64
" not found for del channel", key
);
2718 lttng_poll_del(&events
, chan
->wait_fd
);
2719 iter
.iter
.node
= &chan
->wait_fd_node
.node
;
2720 ret
= lttng_ht_del(channel_ht
, &iter
);
2722 consumer_close_channel_streams(chan
);
2724 switch (consumer_data
.type
) {
2725 case LTTNG_CONSUMER_KERNEL
:
2727 case LTTNG_CONSUMER32_UST
:
2728 case LTTNG_CONSUMER64_UST
:
2729 /* Delete streams that might have been left in the stream list. */
2730 cds_list_for_each_entry_safe(stream
, stmp
, &chan
->streams
.head
,
2732 cds_list_del(&stream
->send_node
);
2733 lttng_ustconsumer_del_stream(stream
);
2734 uatomic_sub(&stream
->chan
->refcount
, 1);
2735 assert(&chan
->refcount
);
2740 ERR("Unknown consumer_data type");
2745 * Release our own refcount. Force channel deletion even if
2746 * streams were not initialized.
2748 if (!uatomic_sub_return(&chan
->refcount
, 1)) {
2749 consumer_del_channel(chan
);
2754 case CONSUMER_CHANNEL_QUIT
:
2756 * Remove the pipe from the poll set and continue the loop
2757 * since their might be data to consume.
2759 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
2762 ERR("Unknown action");
2767 /* Handle other stream */
2773 uint64_t tmp_id
= (uint64_t) pollfd
;
2775 lttng_ht_lookup(channel_ht
, &tmp_id
, &iter
);
2777 node
= lttng_ht_iter_get_node_u64(&iter
);
2780 chan
= caa_container_of(node
, struct lttng_consumer_channel
,
2783 /* Check for error event */
2784 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2785 DBG("Channel fd %d is hup|err.", pollfd
);
2787 lttng_poll_del(&events
, chan
->wait_fd
);
2788 ret
= lttng_ht_del(channel_ht
, &iter
);
2790 consumer_close_channel_streams(chan
);
2792 /* Release our own refcount */
2793 if (!uatomic_sub_return(&chan
->refcount
, 1)
2794 && !uatomic_read(&chan
->nb_init_stream_left
)) {
2795 consumer_del_channel(chan
);
2799 /* Release RCU lock for the channel looked up */
2805 lttng_poll_clean(&events
);
2807 destroy_channel_ht(channel_ht
);
2809 DBG("Channel poll thread exiting");
2810 rcu_unregister_thread();
2814 static int set_metadata_socket(struct lttng_consumer_local_data
*ctx
,
2815 struct pollfd
*sockpoll
, int client_socket
)
2822 if (lttng_consumer_poll_socket(sockpoll
) < 0) {
2826 DBG("Metadata connection on client_socket");
2828 /* Blocking call, waiting for transmission */
2829 ctx
->consumer_metadata_socket
= lttcomm_accept_unix_sock(client_socket
);
2830 if (ctx
->consumer_metadata_socket
< 0) {
2831 WARN("On accept metadata");
2842 * This thread listens on the consumerd socket and receives the file
2843 * descriptors from the session daemon.
2845 void *consumer_thread_sessiond_poll(void *data
)
2847 int sock
= -1, client_socket
, ret
;
2849 * structure to poll for incoming data on communication socket avoids
2850 * making blocking sockets.
2852 struct pollfd consumer_sockpoll
[2];
2853 struct lttng_consumer_local_data
*ctx
= data
;
2855 rcu_register_thread();
2857 DBG("Creating command socket %s", ctx
->consumer_command_sock_path
);
2858 unlink(ctx
->consumer_command_sock_path
);
2859 client_socket
= lttcomm_create_unix_sock(ctx
->consumer_command_sock_path
);
2860 if (client_socket
< 0) {
2861 ERR("Cannot create command socket");
2865 ret
= lttcomm_listen_unix_sock(client_socket
);
2870 DBG("Sending ready command to lttng-sessiond");
2871 ret
= lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY
);
2872 /* return < 0 on error, but == 0 is not fatal */
2874 ERR("Error sending ready command to lttng-sessiond");
2878 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2879 consumer_sockpoll
[0].fd
= ctx
->consumer_should_quit
[0];
2880 consumer_sockpoll
[0].events
= POLLIN
| POLLPRI
;
2881 consumer_sockpoll
[1].fd
= client_socket
;
2882 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
2884 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2887 DBG("Connection on client_socket");
2889 /* Blocking call, waiting for transmission */
2890 sock
= lttcomm_accept_unix_sock(client_socket
);
2897 * Setup metadata socket which is the second socket connection on the
2898 * command unix socket.
2900 ret
= set_metadata_socket(ctx
, consumer_sockpoll
, client_socket
);
2905 /* This socket is not useful anymore. */
2906 ret
= close(client_socket
);
2908 PERROR("close client_socket");
2912 /* update the polling structure to poll on the established socket */
2913 consumer_sockpoll
[1].fd
= sock
;
2914 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
2917 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2920 DBG("Incoming command on sock");
2921 ret
= lttng_consumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
2922 if (ret
== -ENOENT
) {
2923 DBG("Received STOP command");
2928 * This could simply be a session daemon quitting. Don't output
2931 DBG("Communication interrupted on command socket");
2934 if (consumer_quit
) {
2935 DBG("consumer_thread_receive_fds received quit from signal");
2938 DBG("received command on sock");
2941 DBG("Consumer thread sessiond poll exiting");
2944 * Close metadata streams since the producer is the session daemon which
2947 * NOTE: for now, this only applies to the UST tracer.
2949 lttng_consumer_close_metadata();
2952 * when all fds have hung up, the polling thread
2958 * Notify the data poll thread to poll back again and test the
2959 * consumer_quit state that we just set so to quit gracefully.
2961 notify_thread_lttng_pipe(ctx
->consumer_data_pipe
);
2963 notify_channel_pipe(ctx
, NULL
, -1, CONSUMER_CHANNEL_QUIT
);
2965 /* Cleaning up possibly open sockets. */
2969 PERROR("close sock sessiond poll");
2972 if (client_socket
>= 0) {
2973 ret
= close(client_socket
);
2975 PERROR("close client_socket sessiond poll");
2979 rcu_unregister_thread();
2983 ssize_t
lttng_consumer_read_subbuffer(struct lttng_consumer_stream
*stream
,
2984 struct lttng_consumer_local_data
*ctx
)
2988 pthread_mutex_lock(&stream
->lock
);
2990 switch (consumer_data
.type
) {
2991 case LTTNG_CONSUMER_KERNEL
:
2992 ret
= lttng_kconsumer_read_subbuffer(stream
, ctx
);
2994 case LTTNG_CONSUMER32_UST
:
2995 case LTTNG_CONSUMER64_UST
:
2996 ret
= lttng_ustconsumer_read_subbuffer(stream
, ctx
);
2999 ERR("Unknown consumer_data type");
3005 pthread_mutex_unlock(&stream
->lock
);
3009 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream
*stream
)
3011 switch (consumer_data
.type
) {
3012 case LTTNG_CONSUMER_KERNEL
:
3013 return lttng_kconsumer_on_recv_stream(stream
);
3014 case LTTNG_CONSUMER32_UST
:
3015 case LTTNG_CONSUMER64_UST
:
3016 return lttng_ustconsumer_on_recv_stream(stream
);
3018 ERR("Unknown consumer_data type");
3025 * Allocate and set consumer data hash tables.
3027 void lttng_consumer_init(void)
3029 consumer_data
.channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3030 consumer_data
.relayd_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3031 consumer_data
.stream_list_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3032 consumer_data
.stream_per_chan_id_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3036 * Process the ADD_RELAYD command receive by a consumer.
3038 * This will create a relayd socket pair and add it to the relayd hash table.
3039 * The caller MUST acquire a RCU read side lock before calling it.
3041 int consumer_add_relayd_socket(uint64_t net_seq_idx
, int sock_type
,
3042 struct lttng_consumer_local_data
*ctx
, int sock
,
3043 struct pollfd
*consumer_sockpoll
,
3044 struct lttcomm_relayd_sock
*relayd_sock
, unsigned int sessiond_id
)
3046 int fd
= -1, ret
= -1, relayd_created
= 0;
3047 enum lttng_error_code ret_code
= LTTNG_OK
;
3048 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3051 assert(relayd_sock
);
3053 DBG("Consumer adding relayd socket (idx: %" PRIu64
")", net_seq_idx
);
3055 /* Get relayd reference if exists. */
3056 relayd
= consumer_find_relayd(net_seq_idx
);
3057 if (relayd
== NULL
) {
3058 assert(sock_type
== LTTNG_STREAM_CONTROL
);
3059 /* Not found. Allocate one. */
3060 relayd
= consumer_allocate_relayd_sock_pair(net_seq_idx
);
3061 if (relayd
== NULL
) {
3063 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3066 relayd
->sessiond_session_id
= (uint64_t) sessiond_id
;
3071 * This code path MUST continue to the consumer send status message to
3072 * we can notify the session daemon and continue our work without
3073 * killing everything.
3077 * relayd key should never be found for control socket.
3079 assert(sock_type
!= LTTNG_STREAM_CONTROL
);
3082 /* First send a status message before receiving the fds. */
3083 ret
= consumer_send_status_msg(sock
, LTTNG_OK
);
3085 /* Somehow, the session daemon is not responding anymore. */
3086 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3087 goto error_nosignal
;
3090 /* Poll on consumer socket. */
3091 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
3092 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
3094 goto error_nosignal
;
3097 /* Get relayd socket from session daemon */
3098 ret
= lttcomm_recv_fds_unix_sock(sock
, &fd
, 1);
3099 if (ret
!= sizeof(fd
)) {
3101 fd
= -1; /* Just in case it gets set with an invalid value. */
3104 * Failing to receive FDs might indicate a major problem such as
3105 * reaching a fd limit during the receive where the kernel returns a
3106 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3107 * don't take any chances and stop everything.
3109 * XXX: Feature request #558 will fix that and avoid this possible
3110 * issue when reaching the fd limit.
3112 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_ERROR_RECV_FD
);
3113 ret_code
= LTTCOMM_CONSUMERD_ERROR_RECV_FD
;
3117 /* Copy socket information and received FD */
3118 switch (sock_type
) {
3119 case LTTNG_STREAM_CONTROL
:
3120 /* Copy received lttcomm socket */
3121 lttcomm_copy_sock(&relayd
->control_sock
.sock
, &relayd_sock
->sock
);
3122 ret
= lttcomm_create_sock(&relayd
->control_sock
.sock
);
3123 /* Handle create_sock error. */
3125 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3129 * Close the socket created internally by
3130 * lttcomm_create_sock, so we can replace it by the one
3131 * received from sessiond.
3133 if (close(relayd
->control_sock
.sock
.fd
)) {
3137 /* Assign new file descriptor */
3138 relayd
->control_sock
.sock
.fd
= fd
;
3139 fd
= -1; /* For error path */
3140 /* Assign version values. */
3141 relayd
->control_sock
.major
= relayd_sock
->major
;
3142 relayd
->control_sock
.minor
= relayd_sock
->minor
;
3145 * Create a session on the relayd and store the returned id. Lock the
3146 * control socket mutex if the relayd was NOT created before.
3148 if (!relayd_created
) {
3149 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3151 ret
= relayd_create_session(&relayd
->control_sock
,
3152 &relayd
->relayd_session_id
);
3153 if (!relayd_created
) {
3154 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3158 * Close all sockets of a relayd object. It will be freed if it was
3159 * created at the error code path or else it will be garbage
3162 (void) relayd_close(&relayd
->control_sock
);
3163 (void) relayd_close(&relayd
->data_sock
);
3164 ret_code
= LTTCOMM_CONSUMERD_RELAYD_FAIL
;
3169 case LTTNG_STREAM_DATA
:
3170 /* Copy received lttcomm socket */
3171 lttcomm_copy_sock(&relayd
->data_sock
.sock
, &relayd_sock
->sock
);
3172 ret
= lttcomm_create_sock(&relayd
->data_sock
.sock
);
3173 /* Handle create_sock error. */
3175 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3179 * Close the socket created internally by
3180 * lttcomm_create_sock, so we can replace it by the one
3181 * received from sessiond.
3183 if (close(relayd
->data_sock
.sock
.fd
)) {
3187 /* Assign new file descriptor */
3188 relayd
->data_sock
.sock
.fd
= fd
;
3189 fd
= -1; /* for eventual error paths */
3190 /* Assign version values. */
3191 relayd
->data_sock
.major
= relayd_sock
->major
;
3192 relayd
->data_sock
.minor
= relayd_sock
->minor
;
3195 ERR("Unknown relayd socket type (%d)", sock_type
);
3197 ret_code
= LTTCOMM_CONSUMERD_FATAL
;
3201 DBG("Consumer %s socket created successfully with net idx %" PRIu64
" (fd: %d)",
3202 sock_type
== LTTNG_STREAM_CONTROL
? "control" : "data",
3203 relayd
->net_seq_idx
, fd
);
3205 /* We successfully added the socket. Send status back. */
3206 ret
= consumer_send_status_msg(sock
, ret_code
);
3208 /* Somehow, the session daemon is not responding anymore. */
3209 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3210 goto error_nosignal
;
3214 * Add relayd socket pair to consumer data hashtable. If object already
3215 * exists or on error, the function gracefully returns.
3223 if (consumer_send_status_msg(sock
, ret_code
) < 0) {
3224 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3228 /* Close received socket if valid. */
3231 PERROR("close received socket");
3235 if (relayd_created
) {
3243 * Try to lock the stream mutex.
3245 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3247 static int stream_try_lock(struct lttng_consumer_stream
*stream
)
3254 * Try to lock the stream mutex. On failure, we know that the stream is
3255 * being used else where hence there is data still being extracted.
3257 ret
= pthread_mutex_trylock(&stream
->lock
);
3259 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3271 * Search for a relayd associated to the session id and return the reference.
3273 * A rcu read side lock MUST be acquire before calling this function and locked
3274 * until the relayd object is no longer necessary.
3276 static struct consumer_relayd_sock_pair
*find_relayd_by_session_id(uint64_t id
)
3278 struct lttng_ht_iter iter
;
3279 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3281 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3282 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
3285 * Check by sessiond id which is unique here where the relayd session
3286 * id might not be when having multiple relayd.
3288 if (relayd
->sessiond_session_id
== id
) {
3289 /* Found the relayd. There can be only one per id. */
3301 * Check if for a given session id there is still data needed to be extract
3304 * Return 1 if data is pending or else 0 meaning ready to be read.
3306 int consumer_data_pending(uint64_t id
)
3309 struct lttng_ht_iter iter
;
3310 struct lttng_ht
*ht
;
3311 struct lttng_consumer_stream
*stream
;
3312 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3313 int (*data_pending
)(struct lttng_consumer_stream
*);
3315 DBG("Consumer data pending command on session id %" PRIu64
, id
);
3318 pthread_mutex_lock(&consumer_data
.lock
);
3320 switch (consumer_data
.type
) {
3321 case LTTNG_CONSUMER_KERNEL
:
3322 data_pending
= lttng_kconsumer_data_pending
;
3324 case LTTNG_CONSUMER32_UST
:
3325 case LTTNG_CONSUMER64_UST
:
3326 data_pending
= lttng_ustconsumer_data_pending
;
3329 ERR("Unknown consumer data type");
3333 /* Ease our life a bit */
3334 ht
= consumer_data
.stream_list_ht
;
3336 relayd
= find_relayd_by_session_id(id
);
3338 /* Send init command for data pending. */
3339 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3340 ret
= relayd_begin_data_pending(&relayd
->control_sock
,
3341 relayd
->relayd_session_id
);
3342 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3344 /* Communication error thus the relayd so no data pending. */
3345 goto data_not_pending
;
3349 cds_lfht_for_each_entry_duplicate(ht
->ht
,
3350 ht
->hash_fct(&id
, lttng_ht_seed
),
3352 &iter
.iter
, stream
, node_session_id
.node
) {
3353 /* If this call fails, the stream is being used hence data pending. */
3354 ret
= stream_try_lock(stream
);
3360 * A removed node from the hash table indicates that the stream has
3361 * been deleted thus having a guarantee that the buffers are closed
3362 * on the consumer side. However, data can still be transmitted
3363 * over the network so don't skip the relayd check.
3365 ret
= cds_lfht_is_node_deleted(&stream
->node
.node
);
3367 /* Check the stream if there is data in the buffers. */
3368 ret
= data_pending(stream
);
3370 pthread_mutex_unlock(&stream
->lock
);
3377 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3378 if (stream
->metadata_flag
) {
3379 ret
= relayd_quiescent_control(&relayd
->control_sock
,
3380 stream
->relayd_stream_id
);
3382 ret
= relayd_data_pending(&relayd
->control_sock
,
3383 stream
->relayd_stream_id
,
3384 stream
->next_net_seq_num
- 1);
3386 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3388 pthread_mutex_unlock(&stream
->lock
);
3392 pthread_mutex_unlock(&stream
->lock
);
3396 unsigned int is_data_inflight
= 0;
3398 /* Send init command for data pending. */
3399 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3400 ret
= relayd_end_data_pending(&relayd
->control_sock
,
3401 relayd
->relayd_session_id
, &is_data_inflight
);
3402 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3404 goto data_not_pending
;
3406 if (is_data_inflight
) {
3412 * Finding _no_ node in the hash table and no inflight data means that the
3413 * stream(s) have been removed thus data is guaranteed to be available for
3414 * analysis from the trace files.
3418 /* Data is available to be read by a viewer. */
3419 pthread_mutex_unlock(&consumer_data
.lock
);
3424 /* Data is still being extracted from buffers. */
3425 pthread_mutex_unlock(&consumer_data
.lock
);
3431 * Send a ret code status message to the sessiond daemon.
3433 * Return the sendmsg() return value.
3435 int consumer_send_status_msg(int sock
, int ret_code
)
3437 struct lttcomm_consumer_status_msg msg
;
3439 msg
.ret_code
= ret_code
;
3441 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));
3445 * Send a channel status message to the sessiond daemon.
3447 * Return the sendmsg() return value.
3449 int consumer_send_status_channel(int sock
,
3450 struct lttng_consumer_channel
*channel
)
3452 struct lttcomm_consumer_status_channel msg
;
3457 msg
.ret_code
= -LTTNG_ERR_UST_CHAN_FAIL
;
3459 msg
.ret_code
= LTTNG_OK
;
3460 msg
.key
= channel
->key
;
3461 msg
.stream_count
= channel
->streams
.count
;
3464 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));