0005b1039cb27d6ced5dfac3537e72bbf737fce0
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/kernel-ctl/kernel-ctl.h>
37 #include <common/sessiond-comm/relayd.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/kernel-consumer/kernel-consumer.h>
40 #include <common/relayd/relayd.h>
41 #include <common/ust-consumer/ust-consumer.h>
42
43 #include "consumer.h"
44 #include "consumer-stream.h"
45
46 struct lttng_consumer_global_data consumer_data = {
47 .stream_count = 0,
48 .need_update = 1,
49 .type = LTTNG_CONSUMER_UNKNOWN,
50 };
51
52 enum consumer_channel_action {
53 CONSUMER_CHANNEL_ADD,
54 CONSUMER_CHANNEL_DEL,
55 CONSUMER_CHANNEL_QUIT,
56 };
57
58 struct consumer_channel_msg {
59 enum consumer_channel_action action;
60 struct lttng_consumer_channel *chan; /* add */
61 uint64_t key; /* del */
62 };
63
64 /*
65 * Flag to inform the polling thread to quit when all fd hung up. Updated by
66 * the consumer_thread_receive_fds when it notices that all fds has hung up.
67 * Also updated by the signal handler (consumer_should_exit()). Read by the
68 * polling threads.
69 */
70 volatile int consumer_quit;
71
72 /*
73 * Global hash table containing respectively metadata and data streams. The
74 * stream element in this ht should only be updated by the metadata poll thread
75 * for the metadata and the data poll thread for the data.
76 */
77 static struct lttng_ht *metadata_ht;
78 static struct lttng_ht *data_ht;
79
80 /*
81 * Notify a thread lttng pipe to poll back again. This usually means that some
82 * global state has changed so we just send back the thread in a poll wait
83 * call.
84 */
85 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
86 {
87 struct lttng_consumer_stream *null_stream = NULL;
88
89 assert(pipe);
90
91 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
92 }
93
94 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
95 struct lttng_consumer_channel *chan,
96 uint64_t key,
97 enum consumer_channel_action action)
98 {
99 struct consumer_channel_msg msg;
100 int ret;
101
102 memset(&msg, 0, sizeof(msg));
103
104 msg.action = action;
105 msg.chan = chan;
106 msg.key = key;
107 do {
108 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
109 } while (ret < 0 && errno == EINTR);
110 }
111
112 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
113 uint64_t key)
114 {
115 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
116 }
117
118 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
119 struct lttng_consumer_channel **chan,
120 uint64_t *key,
121 enum consumer_channel_action *action)
122 {
123 struct consumer_channel_msg msg;
124 int ret;
125
126 do {
127 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
128 } while (ret < 0 && errno == EINTR);
129 if (ret > 0) {
130 *action = msg.action;
131 *chan = msg.chan;
132 *key = msg.key;
133 }
134 return ret;
135 }
136
137 /*
138 * Find a stream. The consumer_data.lock must be locked during this
139 * call.
140 */
141 static struct lttng_consumer_stream *find_stream(uint64_t key,
142 struct lttng_ht *ht)
143 {
144 struct lttng_ht_iter iter;
145 struct lttng_ht_node_u64 *node;
146 struct lttng_consumer_stream *stream = NULL;
147
148 assert(ht);
149
150 /* -1ULL keys are lookup failures */
151 if (key == (uint64_t) -1ULL) {
152 return NULL;
153 }
154
155 rcu_read_lock();
156
157 lttng_ht_lookup(ht, &key, &iter);
158 node = lttng_ht_iter_get_node_u64(&iter);
159 if (node != NULL) {
160 stream = caa_container_of(node, struct lttng_consumer_stream, node);
161 }
162
163 rcu_read_unlock();
164
165 return stream;
166 }
167
168 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
169 {
170 struct lttng_consumer_stream *stream;
171
172 rcu_read_lock();
173 stream = find_stream(key, ht);
174 if (stream) {
175 stream->key = (uint64_t) -1ULL;
176 /*
177 * We don't want the lookup to match, but we still need
178 * to iterate on this stream when iterating over the hash table. Just
179 * change the node key.
180 */
181 stream->node.key = (uint64_t) -1ULL;
182 }
183 rcu_read_unlock();
184 }
185
186 /*
187 * Return a channel object for the given key.
188 *
189 * RCU read side lock MUST be acquired before calling this function and
190 * protects the channel ptr.
191 */
192 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
193 {
194 struct lttng_ht_iter iter;
195 struct lttng_ht_node_u64 *node;
196 struct lttng_consumer_channel *channel = NULL;
197
198 /* -1ULL keys are lookup failures */
199 if (key == (uint64_t) -1ULL) {
200 return NULL;
201 }
202
203 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
204 node = lttng_ht_iter_get_node_u64(&iter);
205 if (node != NULL) {
206 channel = caa_container_of(node, struct lttng_consumer_channel, node);
207 }
208
209 return channel;
210 }
211
212 static void free_stream_rcu(struct rcu_head *head)
213 {
214 struct lttng_ht_node_u64 *node =
215 caa_container_of(head, struct lttng_ht_node_u64, head);
216 struct lttng_consumer_stream *stream =
217 caa_container_of(node, struct lttng_consumer_stream, node);
218
219 free(stream);
220 }
221
222 static void free_channel_rcu(struct rcu_head *head)
223 {
224 struct lttng_ht_node_u64 *node =
225 caa_container_of(head, struct lttng_ht_node_u64, head);
226 struct lttng_consumer_channel *channel =
227 caa_container_of(node, struct lttng_consumer_channel, node);
228
229 free(channel);
230 }
231
232 /*
233 * RCU protected relayd socket pair free.
234 */
235 static void free_relayd_rcu(struct rcu_head *head)
236 {
237 struct lttng_ht_node_u64 *node =
238 caa_container_of(head, struct lttng_ht_node_u64, head);
239 struct consumer_relayd_sock_pair *relayd =
240 caa_container_of(node, struct consumer_relayd_sock_pair, node);
241
242 /*
243 * Close all sockets. This is done in the call RCU since we don't want the
244 * socket fds to be reassigned thus potentially creating bad state of the
245 * relayd object.
246 *
247 * We do not have to lock the control socket mutex here since at this stage
248 * there is no one referencing to this relayd object.
249 */
250 (void) relayd_close(&relayd->control_sock);
251 (void) relayd_close(&relayd->data_sock);
252
253 free(relayd);
254 }
255
256 /*
257 * Destroy and free relayd socket pair object.
258 */
259 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
260 {
261 int ret;
262 struct lttng_ht_iter iter;
263
264 if (relayd == NULL) {
265 return;
266 }
267
268 DBG("Consumer destroy and close relayd socket pair");
269
270 iter.iter.node = &relayd->node.node;
271 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
272 if (ret != 0) {
273 /* We assume the relayd is being or is destroyed */
274 return;
275 }
276
277 /* RCU free() call */
278 call_rcu(&relayd->node.head, free_relayd_rcu);
279 }
280
281 /*
282 * Remove a channel from the global list protected by a mutex. This function is
283 * also responsible for freeing its data structures.
284 */
285 void consumer_del_channel(struct lttng_consumer_channel *channel)
286 {
287 int ret;
288 struct lttng_ht_iter iter;
289 struct lttng_consumer_stream *stream, *stmp;
290
291 DBG("Consumer delete channel key %" PRIu64, channel->key);
292
293 pthread_mutex_lock(&consumer_data.lock);
294
295 switch (consumer_data.type) {
296 case LTTNG_CONSUMER_KERNEL:
297 break;
298 case LTTNG_CONSUMER32_UST:
299 case LTTNG_CONSUMER64_UST:
300 /* Delete streams that might have been left in the stream list. */
301 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
302 send_node) {
303 cds_list_del(&stream->send_node);
304 /*
305 * Once a stream is added to this list, the buffers were created so
306 * we have a guarantee that this call will succeed.
307 */
308 consumer_stream_destroy(stream, NULL);
309 }
310 lttng_ustconsumer_del_channel(channel);
311 break;
312 default:
313 ERR("Unknown consumer_data type");
314 assert(0);
315 goto end;
316 }
317
318 rcu_read_lock();
319 iter.iter.node = &channel->node.node;
320 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
321 assert(!ret);
322 rcu_read_unlock();
323
324 call_rcu(&channel->node.head, free_channel_rcu);
325 end:
326 pthread_mutex_unlock(&consumer_data.lock);
327 }
328
329 /*
330 * Iterate over the relayd hash table and destroy each element. Finally,
331 * destroy the whole hash table.
332 */
333 static void cleanup_relayd_ht(void)
334 {
335 struct lttng_ht_iter iter;
336 struct consumer_relayd_sock_pair *relayd;
337
338 rcu_read_lock();
339
340 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
341 node.node) {
342 consumer_destroy_relayd(relayd);
343 }
344
345 rcu_read_unlock();
346
347 lttng_ht_destroy(consumer_data.relayd_ht);
348 }
349
350 /*
351 * Update the end point status of all streams having the given network sequence
352 * index (relayd index).
353 *
354 * It's atomically set without having the stream mutex locked which is fine
355 * because we handle the write/read race with a pipe wakeup for each thread.
356 */
357 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
358 enum consumer_endpoint_status status)
359 {
360 struct lttng_ht_iter iter;
361 struct lttng_consumer_stream *stream;
362
363 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
364
365 rcu_read_lock();
366
367 /* Let's begin with metadata */
368 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
369 if (stream->net_seq_idx == net_seq_idx) {
370 uatomic_set(&stream->endpoint_status, status);
371 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
372 }
373 }
374
375 /* Follow up by the data streams */
376 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
377 if (stream->net_seq_idx == net_seq_idx) {
378 uatomic_set(&stream->endpoint_status, status);
379 DBG("Delete flag set to data stream %d", stream->wait_fd);
380 }
381 }
382 rcu_read_unlock();
383 }
384
385 /*
386 * Cleanup a relayd object by flagging every associated streams for deletion,
387 * destroying the object meaning removing it from the relayd hash table,
388 * closing the sockets and freeing the memory in a RCU call.
389 *
390 * If a local data context is available, notify the threads that the streams'
391 * state have changed.
392 */
393 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
394 struct lttng_consumer_local_data *ctx)
395 {
396 uint64_t netidx;
397
398 assert(relayd);
399
400 DBG("Cleaning up relayd sockets");
401
402 /* Save the net sequence index before destroying the object */
403 netidx = relayd->net_seq_idx;
404
405 /*
406 * Delete the relayd from the relayd hash table, close the sockets and free
407 * the object in a RCU call.
408 */
409 consumer_destroy_relayd(relayd);
410
411 /* Set inactive endpoint to all streams */
412 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
413
414 /*
415 * With a local data context, notify the threads that the streams' state
416 * have changed. The write() action on the pipe acts as an "implicit"
417 * memory barrier ordering the updates of the end point status from the
418 * read of this status which happens AFTER receiving this notify.
419 */
420 if (ctx) {
421 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
422 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
423 }
424 }
425
426 /*
427 * Flag a relayd socket pair for destruction. Destroy it if the refcount
428 * reaches zero.
429 *
430 * RCU read side lock MUST be aquired before calling this function.
431 */
432 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
433 {
434 assert(relayd);
435
436 /* Set destroy flag for this object */
437 uatomic_set(&relayd->destroy_flag, 1);
438
439 /* Destroy the relayd if refcount is 0 */
440 if (uatomic_read(&relayd->refcount) == 0) {
441 consumer_destroy_relayd(relayd);
442 }
443 }
444
445 /*
446 * Completly destroy stream from every visiable data structure and the given
447 * hash table if one.
448 *
449 * One this call returns, the stream object is not longer usable nor visible.
450 */
451 void consumer_del_stream(struct lttng_consumer_stream *stream,
452 struct lttng_ht *ht)
453 {
454 consumer_stream_destroy(stream, ht);
455 }
456
457 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
458 uint64_t stream_key,
459 enum lttng_consumer_stream_state state,
460 const char *channel_name,
461 uid_t uid,
462 gid_t gid,
463 uint64_t relayd_id,
464 uint64_t session_id,
465 int cpu,
466 int *alloc_ret,
467 enum consumer_channel_type type)
468 {
469 int ret;
470 struct lttng_consumer_stream *stream;
471
472 stream = zmalloc(sizeof(*stream));
473 if (stream == NULL) {
474 PERROR("malloc struct lttng_consumer_stream");
475 ret = -ENOMEM;
476 goto end;
477 }
478
479 rcu_read_lock();
480
481 stream->key = stream_key;
482 stream->out_fd = -1;
483 stream->out_fd_offset = 0;
484 stream->state = state;
485 stream->uid = uid;
486 stream->gid = gid;
487 stream->net_seq_idx = relayd_id;
488 stream->session_id = session_id;
489 pthread_mutex_init(&stream->lock, NULL);
490
491 /* If channel is the metadata, flag this stream as metadata. */
492 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
493 stream->metadata_flag = 1;
494 /* Metadata is flat out. */
495 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
496 } else {
497 /* Format stream name to <channel_name>_<cpu_number> */
498 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
499 channel_name, cpu);
500 if (ret < 0) {
501 PERROR("snprintf stream name");
502 goto error;
503 }
504 }
505
506 /* Key is always the wait_fd for streams. */
507 lttng_ht_node_init_u64(&stream->node, stream->key);
508
509 /* Init node per channel id key */
510 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
511
512 /* Init session id node with the stream session id */
513 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
514
515 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
516 " relayd_id %" PRIu64 ", session_id %" PRIu64,
517 stream->name, stream->key, channel_key,
518 stream->net_seq_idx, stream->session_id);
519
520 rcu_read_unlock();
521 return stream;
522
523 error:
524 rcu_read_unlock();
525 free(stream);
526 end:
527 if (alloc_ret) {
528 *alloc_ret = ret;
529 }
530 return NULL;
531 }
532
533 /*
534 * Add a stream to the global list protected by a mutex.
535 */
536 static int add_stream(struct lttng_consumer_stream *stream,
537 struct lttng_ht *ht)
538 {
539 int ret = 0;
540 struct consumer_relayd_sock_pair *relayd;
541
542 assert(stream);
543 assert(ht);
544
545 DBG3("Adding consumer stream %" PRIu64, stream->key);
546
547 pthread_mutex_lock(&consumer_data.lock);
548 pthread_mutex_lock(&stream->lock);
549 rcu_read_lock();
550
551 /* Steal stream identifier to avoid having streams with the same key */
552 steal_stream_key(stream->key, ht);
553
554 lttng_ht_add_unique_u64(ht, &stream->node);
555
556 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
557 &stream->node_channel_id);
558
559 /*
560 * Add stream to the stream_list_ht of the consumer data. No need to steal
561 * the key since the HT does not use it and we allow to add redundant keys
562 * into this table.
563 */
564 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
565
566 /* Check and cleanup relayd */
567 relayd = consumer_find_relayd(stream->net_seq_idx);
568 if (relayd != NULL) {
569 uatomic_inc(&relayd->refcount);
570 }
571
572 /*
573 * When nb_init_stream_left reaches 0, we don't need to trigger any action
574 * in terms of destroying the associated channel, because the action that
575 * causes the count to become 0 also causes a stream to be added. The
576 * channel deletion will thus be triggered by the following removal of this
577 * stream.
578 */
579 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
580 /* Increment refcount before decrementing nb_init_stream_left */
581 cmm_smp_wmb();
582 uatomic_dec(&stream->chan->nb_init_stream_left);
583 }
584
585 /* Update consumer data once the node is inserted. */
586 consumer_data.stream_count++;
587 consumer_data.need_update = 1;
588
589 rcu_read_unlock();
590 pthread_mutex_unlock(&stream->lock);
591 pthread_mutex_unlock(&consumer_data.lock);
592
593 return ret;
594 }
595
596 /*
597 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
598 * be acquired before calling this.
599 */
600 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
601 {
602 int ret = 0;
603 struct lttng_ht_node_u64 *node;
604 struct lttng_ht_iter iter;
605
606 assert(relayd);
607
608 lttng_ht_lookup(consumer_data.relayd_ht,
609 &relayd->net_seq_idx, &iter);
610 node = lttng_ht_iter_get_node_u64(&iter);
611 if (node != NULL) {
612 goto end;
613 }
614 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
615
616 end:
617 return ret;
618 }
619
620 /*
621 * Allocate and return a consumer relayd socket.
622 */
623 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
624 uint64_t net_seq_idx)
625 {
626 struct consumer_relayd_sock_pair *obj = NULL;
627
628 /* net sequence index of -1 is a failure */
629 if (net_seq_idx == (uint64_t) -1ULL) {
630 goto error;
631 }
632
633 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
634 if (obj == NULL) {
635 PERROR("zmalloc relayd sock");
636 goto error;
637 }
638
639 obj->net_seq_idx = net_seq_idx;
640 obj->refcount = 0;
641 obj->destroy_flag = 0;
642 obj->control_sock.sock.fd = -1;
643 obj->data_sock.sock.fd = -1;
644 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
645 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
646
647 error:
648 return obj;
649 }
650
651 /*
652 * Find a relayd socket pair in the global consumer data.
653 *
654 * Return the object if found else NULL.
655 * RCU read-side lock must be held across this call and while using the
656 * returned object.
657 */
658 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
659 {
660 struct lttng_ht_iter iter;
661 struct lttng_ht_node_u64 *node;
662 struct consumer_relayd_sock_pair *relayd = NULL;
663
664 /* Negative keys are lookup failures */
665 if (key == (uint64_t) -1ULL) {
666 goto error;
667 }
668
669 lttng_ht_lookup(consumer_data.relayd_ht, &key,
670 &iter);
671 node = lttng_ht_iter_get_node_u64(&iter);
672 if (node != NULL) {
673 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
674 }
675
676 error:
677 return relayd;
678 }
679
680 /*
681 * Find a relayd and send the stream
682 *
683 * Returns 0 on success, < 0 on error
684 */
685 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
686 char *path)
687 {
688 int ret = 0;
689 struct consumer_relayd_sock_pair *relayd;
690
691 assert(stream);
692 assert(stream->net_seq_idx != -1ULL);
693 assert(path);
694
695 /* The stream is not metadata. Get relayd reference if exists. */
696 rcu_read_lock();
697 relayd = consumer_find_relayd(stream->net_seq_idx);
698 if (relayd != NULL) {
699 /* Add stream on the relayd */
700 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
701 ret = relayd_add_stream(&relayd->control_sock, stream->name,
702 path, &stream->relayd_stream_id,
703 stream->chan->tracefile_size, stream->chan->tracefile_count);
704 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
705 if (ret < 0) {
706 goto end;
707 }
708 uatomic_inc(&relayd->refcount);
709 } else {
710 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
711 stream->key, stream->net_seq_idx);
712 ret = -1;
713 goto end;
714 }
715
716 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
717 stream->name, stream->key, stream->net_seq_idx);
718
719 end:
720 rcu_read_unlock();
721 return ret;
722 }
723
724 /*
725 * Find a relayd and close the stream
726 */
727 void close_relayd_stream(struct lttng_consumer_stream *stream)
728 {
729 struct consumer_relayd_sock_pair *relayd;
730
731 /* The stream is not metadata. Get relayd reference if exists. */
732 rcu_read_lock();
733 relayd = consumer_find_relayd(stream->net_seq_idx);
734 if (relayd) {
735 consumer_stream_relayd_close(stream, relayd);
736 }
737 rcu_read_unlock();
738 }
739
740 /*
741 * Handle stream for relayd transmission if the stream applies for network
742 * streaming where the net sequence index is set.
743 *
744 * Return destination file descriptor or negative value on error.
745 */
746 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
747 size_t data_size, unsigned long padding,
748 struct consumer_relayd_sock_pair *relayd)
749 {
750 int outfd = -1, ret;
751 struct lttcomm_relayd_data_hdr data_hdr;
752
753 /* Safety net */
754 assert(stream);
755 assert(relayd);
756
757 /* Reset data header */
758 memset(&data_hdr, 0, sizeof(data_hdr));
759
760 if (stream->metadata_flag) {
761 /* Caller MUST acquire the relayd control socket lock */
762 ret = relayd_send_metadata(&relayd->control_sock, data_size);
763 if (ret < 0) {
764 goto error;
765 }
766
767 /* Metadata are always sent on the control socket. */
768 outfd = relayd->control_sock.sock.fd;
769 } else {
770 /* Set header with stream information */
771 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
772 data_hdr.data_size = htobe32(data_size);
773 data_hdr.padding_size = htobe32(padding);
774 /*
775 * Note that net_seq_num below is assigned with the *current* value of
776 * next_net_seq_num and only after that the next_net_seq_num will be
777 * increment. This is why when issuing a command on the relayd using
778 * this next value, 1 should always be substracted in order to compare
779 * the last seen sequence number on the relayd side to the last sent.
780 */
781 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
782 /* Other fields are zeroed previously */
783
784 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
785 sizeof(data_hdr));
786 if (ret < 0) {
787 goto error;
788 }
789
790 ++stream->next_net_seq_num;
791
792 /* Set to go on data socket */
793 outfd = relayd->data_sock.sock.fd;
794 }
795
796 error:
797 return outfd;
798 }
799
800 /*
801 * Allocate and return a new lttng_consumer_channel object using the given key
802 * to initialize the hash table node.
803 *
804 * On error, return NULL.
805 */
806 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
807 uint64_t session_id,
808 const char *pathname,
809 const char *name,
810 uid_t uid,
811 gid_t gid,
812 uint64_t relayd_id,
813 enum lttng_event_output output,
814 uint64_t tracefile_size,
815 uint64_t tracefile_count,
816 uint64_t session_id_per_pid,
817 unsigned int monitor)
818 {
819 struct lttng_consumer_channel *channel;
820
821 channel = zmalloc(sizeof(*channel));
822 if (channel == NULL) {
823 PERROR("malloc struct lttng_consumer_channel");
824 goto end;
825 }
826
827 channel->key = key;
828 channel->refcount = 0;
829 channel->session_id = session_id;
830 channel->session_id_per_pid = session_id_per_pid;
831 channel->uid = uid;
832 channel->gid = gid;
833 channel->relayd_id = relayd_id;
834 channel->output = output;
835 channel->tracefile_size = tracefile_size;
836 channel->tracefile_count = tracefile_count;
837 channel->monitor = monitor;
838
839 /*
840 * In monitor mode, the streams associated with the channel will be put in
841 * a special list ONLY owned by this channel. So, the refcount is set to 1
842 * here meaning that the channel itself has streams that are referenced.
843 *
844 * On a channel deletion, once the channel is no longer visible, the
845 * refcount is decremented and checked for a zero value to delete it. With
846 * streams in no monitor mode, it will now be safe to destroy the channel.
847 */
848 if (!channel->monitor) {
849 channel->refcount = 1;
850 }
851
852 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
853 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
854
855 strncpy(channel->name, name, sizeof(channel->name));
856 channel->name[sizeof(channel->name) - 1] = '\0';
857
858 lttng_ht_node_init_u64(&channel->node, channel->key);
859
860 channel->wait_fd = -1;
861
862 CDS_INIT_LIST_HEAD(&channel->streams.head);
863
864 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
865
866 end:
867 return channel;
868 }
869
870 /*
871 * Add a channel to the global list protected by a mutex.
872 *
873 * On success 0 is returned else a negative value.
874 */
875 int consumer_add_channel(struct lttng_consumer_channel *channel,
876 struct lttng_consumer_local_data *ctx)
877 {
878 int ret = 0;
879 struct lttng_ht_node_u64 *node;
880 struct lttng_ht_iter iter;
881
882 pthread_mutex_lock(&consumer_data.lock);
883 rcu_read_lock();
884
885 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
886 node = lttng_ht_iter_get_node_u64(&iter);
887 if (node != NULL) {
888 /* Channel already exist. Ignore the insertion */
889 ERR("Consumer add channel key %" PRIu64 " already exists!",
890 channel->key);
891 ret = -EEXIST;
892 goto end;
893 }
894
895 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
896
897 end:
898 rcu_read_unlock();
899 pthread_mutex_unlock(&consumer_data.lock);
900
901 if (!ret && channel->wait_fd != -1 &&
902 channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
903 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
904 }
905 return ret;
906 }
907
908 /*
909 * Allocate the pollfd structure and the local view of the out fds to avoid
910 * doing a lookup in the linked list and concurrency issues when writing is
911 * needed. Called with consumer_data.lock held.
912 *
913 * Returns the number of fds in the structures.
914 */
915 static int update_poll_array(struct lttng_consumer_local_data *ctx,
916 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
917 struct lttng_ht *ht)
918 {
919 int i = 0;
920 struct lttng_ht_iter iter;
921 struct lttng_consumer_stream *stream;
922
923 assert(ctx);
924 assert(ht);
925 assert(pollfd);
926 assert(local_stream);
927
928 DBG("Updating poll fd array");
929 rcu_read_lock();
930 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
931 /*
932 * Only active streams with an active end point can be added to the
933 * poll set and local stream storage of the thread.
934 *
935 * There is a potential race here for endpoint_status to be updated
936 * just after the check. However, this is OK since the stream(s) will
937 * be deleted once the thread is notified that the end point state has
938 * changed where this function will be called back again.
939 */
940 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
941 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
942 continue;
943 }
944 /*
945 * This clobbers way too much the debug output. Uncomment that if you
946 * need it for debugging purposes.
947 *
948 * DBG("Active FD %d", stream->wait_fd);
949 */
950 (*pollfd)[i].fd = stream->wait_fd;
951 (*pollfd)[i].events = POLLIN | POLLPRI;
952 local_stream[i] = stream;
953 i++;
954 }
955 rcu_read_unlock();
956
957 /*
958 * Insert the consumer_data_pipe at the end of the array and don't
959 * increment i so nb_fd is the number of real FD.
960 */
961 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
962 (*pollfd)[i].events = POLLIN | POLLPRI;
963 return i;
964 }
965
966 /*
967 * Poll on the should_quit pipe and the command socket return -1 on error and
968 * should exit, 0 if data is available on the command socket
969 */
970 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
971 {
972 int num_rdy;
973
974 restart:
975 num_rdy = poll(consumer_sockpoll, 2, -1);
976 if (num_rdy == -1) {
977 /*
978 * Restart interrupted system call.
979 */
980 if (errno == EINTR) {
981 goto restart;
982 }
983 PERROR("Poll error");
984 goto exit;
985 }
986 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
987 DBG("consumer_should_quit wake up");
988 goto exit;
989 }
990 return 0;
991
992 exit:
993 return -1;
994 }
995
996 /*
997 * Set the error socket.
998 */
999 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1000 int sock)
1001 {
1002 ctx->consumer_error_socket = sock;
1003 }
1004
1005 /*
1006 * Set the command socket path.
1007 */
1008 void lttng_consumer_set_command_sock_path(
1009 struct lttng_consumer_local_data *ctx, char *sock)
1010 {
1011 ctx->consumer_command_sock_path = sock;
1012 }
1013
1014 /*
1015 * Send return code to the session daemon.
1016 * If the socket is not defined, we return 0, it is not a fatal error
1017 */
1018 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1019 {
1020 if (ctx->consumer_error_socket > 0) {
1021 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1022 sizeof(enum lttcomm_sessiond_command));
1023 }
1024
1025 return 0;
1026 }
1027
1028 /*
1029 * Close all the tracefiles and stream fds and MUST be called when all
1030 * instances are destroyed i.e. when all threads were joined and are ended.
1031 */
1032 void lttng_consumer_cleanup(void)
1033 {
1034 struct lttng_ht_iter iter;
1035 struct lttng_consumer_channel *channel;
1036
1037 rcu_read_lock();
1038
1039 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1040 node.node) {
1041 consumer_del_channel(channel);
1042 }
1043
1044 rcu_read_unlock();
1045
1046 lttng_ht_destroy(consumer_data.channel_ht);
1047
1048 cleanup_relayd_ht();
1049
1050 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1051
1052 /*
1053 * This HT contains streams that are freed by either the metadata thread or
1054 * the data thread so we do *nothing* on the hash table and simply destroy
1055 * it.
1056 */
1057 lttng_ht_destroy(consumer_data.stream_list_ht);
1058 }
1059
1060 /*
1061 * Called from signal handler.
1062 */
1063 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1064 {
1065 int ret;
1066 consumer_quit = 1;
1067 do {
1068 ret = write(ctx->consumer_should_quit[1], "4", 1);
1069 } while (ret < 0 && errno == EINTR);
1070 if (ret < 0 || ret != 1) {
1071 PERROR("write consumer quit");
1072 }
1073
1074 DBG("Consumer flag that it should quit");
1075 }
1076
1077 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1078 off_t orig_offset)
1079 {
1080 int outfd = stream->out_fd;
1081
1082 /*
1083 * This does a blocking write-and-wait on any page that belongs to the
1084 * subbuffer prior to the one we just wrote.
1085 * Don't care about error values, as these are just hints and ways to
1086 * limit the amount of page cache used.
1087 */
1088 if (orig_offset < stream->max_sb_size) {
1089 return;
1090 }
1091 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1092 stream->max_sb_size,
1093 SYNC_FILE_RANGE_WAIT_BEFORE
1094 | SYNC_FILE_RANGE_WRITE
1095 | SYNC_FILE_RANGE_WAIT_AFTER);
1096 /*
1097 * Give hints to the kernel about how we access the file:
1098 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1099 * we write it.
1100 *
1101 * We need to call fadvise again after the file grows because the
1102 * kernel does not seem to apply fadvise to non-existing parts of the
1103 * file.
1104 *
1105 * Call fadvise _after_ having waited for the page writeback to
1106 * complete because the dirty page writeback semantic is not well
1107 * defined. So it can be expected to lead to lower throughput in
1108 * streaming.
1109 */
1110 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1111 stream->max_sb_size, POSIX_FADV_DONTNEED);
1112 }
1113
1114 /*
1115 * Initialise the necessary environnement :
1116 * - create a new context
1117 * - create the poll_pipe
1118 * - create the should_quit pipe (for signal handler)
1119 * - create the thread pipe (for splice)
1120 *
1121 * Takes a function pointer as argument, this function is called when data is
1122 * available on a buffer. This function is responsible to do the
1123 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1124 * buffer configuration and then kernctl_put_next_subbuf at the end.
1125 *
1126 * Returns a pointer to the new context or NULL on error.
1127 */
1128 struct lttng_consumer_local_data *lttng_consumer_create(
1129 enum lttng_consumer_type type,
1130 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1131 struct lttng_consumer_local_data *ctx),
1132 int (*recv_channel)(struct lttng_consumer_channel *channel),
1133 int (*recv_stream)(struct lttng_consumer_stream *stream),
1134 int (*update_stream)(int stream_key, uint32_t state))
1135 {
1136 int ret;
1137 struct lttng_consumer_local_data *ctx;
1138
1139 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1140 consumer_data.type == type);
1141 consumer_data.type = type;
1142
1143 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1144 if (ctx == NULL) {
1145 PERROR("allocating context");
1146 goto error;
1147 }
1148
1149 ctx->consumer_error_socket = -1;
1150 ctx->consumer_metadata_socket = -1;
1151 /* assign the callbacks */
1152 ctx->on_buffer_ready = buffer_ready;
1153 ctx->on_recv_channel = recv_channel;
1154 ctx->on_recv_stream = recv_stream;
1155 ctx->on_update_stream = update_stream;
1156
1157 ctx->consumer_data_pipe = lttng_pipe_open(0);
1158 if (!ctx->consumer_data_pipe) {
1159 goto error_poll_pipe;
1160 }
1161
1162 ret = pipe(ctx->consumer_should_quit);
1163 if (ret < 0) {
1164 PERROR("Error creating recv pipe");
1165 goto error_quit_pipe;
1166 }
1167
1168 ret = pipe(ctx->consumer_thread_pipe);
1169 if (ret < 0) {
1170 PERROR("Error creating thread pipe");
1171 goto error_thread_pipe;
1172 }
1173
1174 ret = pipe(ctx->consumer_channel_pipe);
1175 if (ret < 0) {
1176 PERROR("Error creating channel pipe");
1177 goto error_channel_pipe;
1178 }
1179
1180 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1181 if (!ctx->consumer_metadata_pipe) {
1182 goto error_metadata_pipe;
1183 }
1184
1185 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1186 if (ret < 0) {
1187 goto error_splice_pipe;
1188 }
1189
1190 return ctx;
1191
1192 error_splice_pipe:
1193 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1194 error_metadata_pipe:
1195 utils_close_pipe(ctx->consumer_channel_pipe);
1196 error_channel_pipe:
1197 utils_close_pipe(ctx->consumer_thread_pipe);
1198 error_thread_pipe:
1199 utils_close_pipe(ctx->consumer_should_quit);
1200 error_quit_pipe:
1201 lttng_pipe_destroy(ctx->consumer_data_pipe);
1202 error_poll_pipe:
1203 free(ctx);
1204 error:
1205 return NULL;
1206 }
1207
1208 /*
1209 * Close all fds associated with the instance and free the context.
1210 */
1211 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1212 {
1213 int ret;
1214
1215 DBG("Consumer destroying it. Closing everything.");
1216
1217 ret = close(ctx->consumer_error_socket);
1218 if (ret) {
1219 PERROR("close");
1220 }
1221 ret = close(ctx->consumer_metadata_socket);
1222 if (ret) {
1223 PERROR("close");
1224 }
1225 utils_close_pipe(ctx->consumer_thread_pipe);
1226 utils_close_pipe(ctx->consumer_channel_pipe);
1227 lttng_pipe_destroy(ctx->consumer_data_pipe);
1228 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1229 utils_close_pipe(ctx->consumer_should_quit);
1230 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1231
1232 unlink(ctx->consumer_command_sock_path);
1233 free(ctx);
1234 }
1235
1236 /*
1237 * Write the metadata stream id on the specified file descriptor.
1238 */
1239 static int write_relayd_metadata_id(int fd,
1240 struct lttng_consumer_stream *stream,
1241 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1242 {
1243 int ret;
1244 struct lttcomm_relayd_metadata_payload hdr;
1245
1246 hdr.stream_id = htobe64(stream->relayd_stream_id);
1247 hdr.padding_size = htobe32(padding);
1248 do {
1249 ret = write(fd, (void *) &hdr, sizeof(hdr));
1250 } while (ret < 0 && errno == EINTR);
1251 if (ret < 0 || ret != sizeof(hdr)) {
1252 /*
1253 * This error means that the fd's end is closed so ignore the perror
1254 * not to clubber the error output since this can happen in a normal
1255 * code path.
1256 */
1257 if (errno != EPIPE) {
1258 PERROR("write metadata stream id");
1259 }
1260 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1261 /*
1262 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1263 * handle writting the missing part so report that as an error and
1264 * don't lie to the caller.
1265 */
1266 ret = -1;
1267 goto end;
1268 }
1269 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1270 stream->relayd_stream_id, padding);
1271
1272 end:
1273 return ret;
1274 }
1275
1276 /*
1277 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1278 * core function for writing trace buffers to either the local filesystem or
1279 * the network.
1280 *
1281 * It must be called with the stream lock held.
1282 *
1283 * Careful review MUST be put if any changes occur!
1284 *
1285 * Returns the number of bytes written
1286 */
1287 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1288 struct lttng_consumer_local_data *ctx,
1289 struct lttng_consumer_stream *stream, unsigned long len,
1290 unsigned long padding)
1291 {
1292 unsigned long mmap_offset;
1293 void *mmap_base;
1294 ssize_t ret = 0, written = 0;
1295 off_t orig_offset = stream->out_fd_offset;
1296 /* Default is on the disk */
1297 int outfd = stream->out_fd;
1298 struct consumer_relayd_sock_pair *relayd = NULL;
1299 unsigned int relayd_hang_up = 0;
1300
1301 /* RCU lock for the relayd pointer */
1302 rcu_read_lock();
1303
1304 /* Flag that the current stream if set for network streaming. */
1305 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1306 relayd = consumer_find_relayd(stream->net_seq_idx);
1307 if (relayd == NULL) {
1308 goto end;
1309 }
1310 }
1311
1312 /* get the offset inside the fd to mmap */
1313 switch (consumer_data.type) {
1314 case LTTNG_CONSUMER_KERNEL:
1315 mmap_base = stream->mmap_base;
1316 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1317 break;
1318 case LTTNG_CONSUMER32_UST:
1319 case LTTNG_CONSUMER64_UST:
1320 mmap_base = lttng_ustctl_get_mmap_base(stream);
1321 if (!mmap_base) {
1322 ERR("read mmap get mmap base for stream %s", stream->name);
1323 written = -1;
1324 goto end;
1325 }
1326 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1327
1328 break;
1329 default:
1330 ERR("Unknown consumer_data type");
1331 assert(0);
1332 }
1333 if (ret != 0) {
1334 errno = -ret;
1335 PERROR("tracer ctl get_mmap_read_offset");
1336 written = ret;
1337 goto end;
1338 }
1339
1340 /* Handle stream on the relayd if the output is on the network */
1341 if (relayd) {
1342 unsigned long netlen = len;
1343
1344 /*
1345 * Lock the control socket for the complete duration of the function
1346 * since from this point on we will use the socket.
1347 */
1348 if (stream->metadata_flag) {
1349 /* Metadata requires the control socket. */
1350 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1351 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1352 }
1353
1354 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1355 if (ret >= 0) {
1356 /* Use the returned socket. */
1357 outfd = ret;
1358
1359 /* Write metadata stream id before payload */
1360 if (stream->metadata_flag) {
1361 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1362 if (ret < 0) {
1363 written = ret;
1364 /* Socket operation failed. We consider the relayd dead */
1365 if (ret == -EPIPE || ret == -EINVAL) {
1366 relayd_hang_up = 1;
1367 goto write_error;
1368 }
1369 goto end;
1370 }
1371 }
1372 } else {
1373 /* Socket operation failed. We consider the relayd dead */
1374 if (ret == -EPIPE || ret == -EINVAL) {
1375 relayd_hang_up = 1;
1376 goto write_error;
1377 }
1378 /* Else, use the default set before which is the filesystem. */
1379 }
1380 } else {
1381 /* No streaming, we have to set the len with the full padding */
1382 len += padding;
1383
1384 /*
1385 * Check if we need to change the tracefile before writing the packet.
1386 */
1387 if (stream->chan->tracefile_size > 0 &&
1388 (stream->tracefile_size_current + len) >
1389 stream->chan->tracefile_size) {
1390 ret = utils_rotate_stream_file(stream->chan->pathname,
1391 stream->name, stream->chan->tracefile_size,
1392 stream->chan->tracefile_count, stream->uid, stream->gid,
1393 stream->out_fd, &(stream->tracefile_count_current));
1394 if (ret < 0) {
1395 ERR("Rotating output file");
1396 goto end;
1397 }
1398 outfd = stream->out_fd = ret;
1399 /* Reset current size because we just perform a rotation. */
1400 stream->tracefile_size_current = 0;
1401 }
1402 stream->tracefile_size_current += len;
1403 }
1404
1405 while (len > 0) {
1406 do {
1407 ret = write(outfd, mmap_base + mmap_offset, len);
1408 } while (ret < 0 && errno == EINTR);
1409 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1410 if (ret < 0) {
1411 /*
1412 * This is possible if the fd is closed on the other side (outfd)
1413 * or any write problem. It can be verbose a bit for a normal
1414 * execution if for instance the relayd is stopped abruptly. This
1415 * can happen so set this to a DBG statement.
1416 */
1417 DBG("Error in file write mmap");
1418 if (written == 0) {
1419 written = ret;
1420 }
1421 /* Socket operation failed. We consider the relayd dead */
1422 if (errno == EPIPE || errno == EINVAL) {
1423 relayd_hang_up = 1;
1424 goto write_error;
1425 }
1426 goto end;
1427 } else if (ret > len) {
1428 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1429 written += ret;
1430 goto end;
1431 } else {
1432 len -= ret;
1433 mmap_offset += ret;
1434 }
1435
1436 /* This call is useless on a socket so better save a syscall. */
1437 if (!relayd) {
1438 /* This won't block, but will start writeout asynchronously */
1439 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1440 SYNC_FILE_RANGE_WRITE);
1441 stream->out_fd_offset += ret;
1442 }
1443 written += ret;
1444 }
1445 lttng_consumer_sync_trace_file(stream, orig_offset);
1446
1447 write_error:
1448 /*
1449 * This is a special case that the relayd has closed its socket. Let's
1450 * cleanup the relayd object and all associated streams.
1451 */
1452 if (relayd && relayd_hang_up) {
1453 cleanup_relayd(relayd, ctx);
1454 }
1455
1456 end:
1457 /* Unlock only if ctrl socket used */
1458 if (relayd && stream->metadata_flag) {
1459 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1460 }
1461
1462 rcu_read_unlock();
1463 return written;
1464 }
1465
1466 /*
1467 * Splice the data from the ring buffer to the tracefile.
1468 *
1469 * It must be called with the stream lock held.
1470 *
1471 * Returns the number of bytes spliced.
1472 */
1473 ssize_t lttng_consumer_on_read_subbuffer_splice(
1474 struct lttng_consumer_local_data *ctx,
1475 struct lttng_consumer_stream *stream, unsigned long len,
1476 unsigned long padding)
1477 {
1478 ssize_t ret = 0, written = 0, ret_splice = 0;
1479 loff_t offset = 0;
1480 off_t orig_offset = stream->out_fd_offset;
1481 int fd = stream->wait_fd;
1482 /* Default is on the disk */
1483 int outfd = stream->out_fd;
1484 struct consumer_relayd_sock_pair *relayd = NULL;
1485 int *splice_pipe;
1486 unsigned int relayd_hang_up = 0;
1487
1488 switch (consumer_data.type) {
1489 case LTTNG_CONSUMER_KERNEL:
1490 break;
1491 case LTTNG_CONSUMER32_UST:
1492 case LTTNG_CONSUMER64_UST:
1493 /* Not supported for user space tracing */
1494 return -ENOSYS;
1495 default:
1496 ERR("Unknown consumer_data type");
1497 assert(0);
1498 }
1499
1500 /* RCU lock for the relayd pointer */
1501 rcu_read_lock();
1502
1503 /* Flag that the current stream if set for network streaming. */
1504 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1505 relayd = consumer_find_relayd(stream->net_seq_idx);
1506 if (relayd == NULL) {
1507 goto end;
1508 }
1509 }
1510
1511 /*
1512 * Choose right pipe for splice. Metadata and trace data are handled by
1513 * different threads hence the use of two pipes in order not to race or
1514 * corrupt the written data.
1515 */
1516 if (stream->metadata_flag) {
1517 splice_pipe = ctx->consumer_splice_metadata_pipe;
1518 } else {
1519 splice_pipe = ctx->consumer_thread_pipe;
1520 }
1521
1522 /* Write metadata stream id before payload */
1523 if (relayd) {
1524 int total_len = len;
1525
1526 if (stream->metadata_flag) {
1527 /*
1528 * Lock the control socket for the complete duration of the function
1529 * since from this point on we will use the socket.
1530 */
1531 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1532
1533 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1534 padding);
1535 if (ret < 0) {
1536 written = ret;
1537 /* Socket operation failed. We consider the relayd dead */
1538 if (ret == -EBADF) {
1539 WARN("Remote relayd disconnected. Stopping");
1540 relayd_hang_up = 1;
1541 goto write_error;
1542 }
1543 goto end;
1544 }
1545
1546 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1547 }
1548
1549 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1550 if (ret >= 0) {
1551 /* Use the returned socket. */
1552 outfd = ret;
1553 } else {
1554 /* Socket operation failed. We consider the relayd dead */
1555 if (ret == -EBADF) {
1556 WARN("Remote relayd disconnected. Stopping");
1557 relayd_hang_up = 1;
1558 goto write_error;
1559 }
1560 goto end;
1561 }
1562 } else {
1563 /* No streaming, we have to set the len with the full padding */
1564 len += padding;
1565
1566 /*
1567 * Check if we need to change the tracefile before writing the packet.
1568 */
1569 if (stream->chan->tracefile_size > 0 &&
1570 (stream->tracefile_size_current + len) >
1571 stream->chan->tracefile_size) {
1572 ret = utils_rotate_stream_file(stream->chan->pathname,
1573 stream->name, stream->chan->tracefile_size,
1574 stream->chan->tracefile_count, stream->uid, stream->gid,
1575 stream->out_fd, &(stream->tracefile_count_current));
1576 if (ret < 0) {
1577 ERR("Rotating output file");
1578 goto end;
1579 }
1580 outfd = stream->out_fd = ret;
1581 /* Reset current size because we just perform a rotation. */
1582 stream->tracefile_size_current = 0;
1583 }
1584 stream->tracefile_size_current += len;
1585 }
1586
1587 while (len > 0) {
1588 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1589 (unsigned long)offset, len, fd, splice_pipe[1]);
1590 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1591 SPLICE_F_MOVE | SPLICE_F_MORE);
1592 DBG("splice chan to pipe, ret %zd", ret_splice);
1593 if (ret_splice < 0) {
1594 PERROR("Error in relay splice");
1595 if (written == 0) {
1596 written = ret_splice;
1597 }
1598 ret = errno;
1599 goto splice_error;
1600 }
1601
1602 /* Handle stream on the relayd if the output is on the network */
1603 if (relayd) {
1604 if (stream->metadata_flag) {
1605 size_t metadata_payload_size =
1606 sizeof(struct lttcomm_relayd_metadata_payload);
1607
1608 /* Update counter to fit the spliced data */
1609 ret_splice += metadata_payload_size;
1610 len += metadata_payload_size;
1611 /*
1612 * We do this so the return value can match the len passed as
1613 * argument to this function.
1614 */
1615 written -= metadata_payload_size;
1616 }
1617 }
1618
1619 /* Splice data out */
1620 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1621 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1622 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1623 if (ret_splice < 0) {
1624 PERROR("Error in file splice");
1625 if (written == 0) {
1626 written = ret_splice;
1627 }
1628 /* Socket operation failed. We consider the relayd dead */
1629 if (errno == EBADF || errno == EPIPE) {
1630 WARN("Remote relayd disconnected. Stopping");
1631 relayd_hang_up = 1;
1632 goto write_error;
1633 }
1634 ret = errno;
1635 goto splice_error;
1636 } else if (ret_splice > len) {
1637 errno = EINVAL;
1638 PERROR("Wrote more data than requested %zd (len: %lu)",
1639 ret_splice, len);
1640 written += ret_splice;
1641 ret = errno;
1642 goto splice_error;
1643 }
1644 len -= ret_splice;
1645
1646 /* This call is useless on a socket so better save a syscall. */
1647 if (!relayd) {
1648 /* This won't block, but will start writeout asynchronously */
1649 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1650 SYNC_FILE_RANGE_WRITE);
1651 stream->out_fd_offset += ret_splice;
1652 }
1653 written += ret_splice;
1654 }
1655 lttng_consumer_sync_trace_file(stream, orig_offset);
1656
1657 ret = ret_splice;
1658
1659 goto end;
1660
1661 write_error:
1662 /*
1663 * This is a special case that the relayd has closed its socket. Let's
1664 * cleanup the relayd object and all associated streams.
1665 */
1666 if (relayd && relayd_hang_up) {
1667 cleanup_relayd(relayd, ctx);
1668 /* Skip splice error so the consumer does not fail */
1669 goto end;
1670 }
1671
1672 splice_error:
1673 /* send the appropriate error description to sessiond */
1674 switch (ret) {
1675 case EINVAL:
1676 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1677 break;
1678 case ENOMEM:
1679 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1680 break;
1681 case ESPIPE:
1682 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1683 break;
1684 }
1685
1686 end:
1687 if (relayd && stream->metadata_flag) {
1688 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1689 }
1690
1691 rcu_read_unlock();
1692 return written;
1693 }
1694
1695 /*
1696 * Take a snapshot for a specific fd
1697 *
1698 * Returns 0 on success, < 0 on error
1699 */
1700 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1701 {
1702 switch (consumer_data.type) {
1703 case LTTNG_CONSUMER_KERNEL:
1704 return lttng_kconsumer_take_snapshot(stream);
1705 case LTTNG_CONSUMER32_UST:
1706 case LTTNG_CONSUMER64_UST:
1707 return lttng_ustconsumer_take_snapshot(stream);
1708 default:
1709 ERR("Unknown consumer_data type");
1710 assert(0);
1711 return -ENOSYS;
1712 }
1713 }
1714
1715 /*
1716 * Get the produced position
1717 *
1718 * Returns 0 on success, < 0 on error
1719 */
1720 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1721 unsigned long *pos)
1722 {
1723 switch (consumer_data.type) {
1724 case LTTNG_CONSUMER_KERNEL:
1725 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1726 case LTTNG_CONSUMER32_UST:
1727 case LTTNG_CONSUMER64_UST:
1728 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1729 default:
1730 ERR("Unknown consumer_data type");
1731 assert(0);
1732 return -ENOSYS;
1733 }
1734 }
1735
1736 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1737 int sock, struct pollfd *consumer_sockpoll)
1738 {
1739 switch (consumer_data.type) {
1740 case LTTNG_CONSUMER_KERNEL:
1741 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1742 case LTTNG_CONSUMER32_UST:
1743 case LTTNG_CONSUMER64_UST:
1744 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1745 default:
1746 ERR("Unknown consumer_data type");
1747 assert(0);
1748 return -ENOSYS;
1749 }
1750 }
1751
1752 /*
1753 * Iterate over all streams of the hashtable and free them properly.
1754 *
1755 * WARNING: *MUST* be used with data stream only.
1756 */
1757 static void destroy_data_stream_ht(struct lttng_ht *ht)
1758 {
1759 struct lttng_ht_iter iter;
1760 struct lttng_consumer_stream *stream;
1761
1762 if (ht == NULL) {
1763 return;
1764 }
1765
1766 rcu_read_lock();
1767 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1768 /*
1769 * Ignore return value since we are currently cleaning up so any error
1770 * can't be handled.
1771 */
1772 (void) consumer_del_stream(stream, ht);
1773 }
1774 rcu_read_unlock();
1775
1776 lttng_ht_destroy(ht);
1777 }
1778
1779 /*
1780 * Iterate over all streams of the hashtable and free them properly.
1781 *
1782 * XXX: Should not be only for metadata stream or else use an other name.
1783 */
1784 static void destroy_stream_ht(struct lttng_ht *ht)
1785 {
1786 struct lttng_ht_iter iter;
1787 struct lttng_consumer_stream *stream;
1788
1789 if (ht == NULL) {
1790 return;
1791 }
1792
1793 rcu_read_lock();
1794 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1795 /*
1796 * Ignore return value since we are currently cleaning up so any error
1797 * can't be handled.
1798 */
1799 (void) consumer_del_metadata_stream(stream, ht);
1800 }
1801 rcu_read_unlock();
1802
1803 lttng_ht_destroy(ht);
1804 }
1805
1806 void lttng_consumer_close_metadata(void)
1807 {
1808 switch (consumer_data.type) {
1809 case LTTNG_CONSUMER_KERNEL:
1810 /*
1811 * The Kernel consumer has a different metadata scheme so we don't
1812 * close anything because the stream will be closed by the session
1813 * daemon.
1814 */
1815 break;
1816 case LTTNG_CONSUMER32_UST:
1817 case LTTNG_CONSUMER64_UST:
1818 /*
1819 * Close all metadata streams. The metadata hash table is passed and
1820 * this call iterates over it by closing all wakeup fd. This is safe
1821 * because at this point we are sure that the metadata producer is
1822 * either dead or blocked.
1823 */
1824 lttng_ustconsumer_close_metadata(metadata_ht);
1825 break;
1826 default:
1827 ERR("Unknown consumer_data type");
1828 assert(0);
1829 }
1830 }
1831
1832 /*
1833 * Clean up a metadata stream and free its memory.
1834 */
1835 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1836 struct lttng_ht *ht)
1837 {
1838 int ret;
1839 struct lttng_ht_iter iter;
1840 struct lttng_consumer_channel *free_chan = NULL;
1841 struct consumer_relayd_sock_pair *relayd;
1842
1843 assert(stream);
1844 /*
1845 * This call should NEVER receive regular stream. It must always be
1846 * metadata stream and this is crucial for data structure synchronization.
1847 */
1848 assert(stream->metadata_flag);
1849
1850 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1851
1852 if (ht == NULL) {
1853 /* Means the stream was allocated but not successfully added */
1854 goto free_stream_rcu;
1855 }
1856
1857 pthread_mutex_lock(&consumer_data.lock);
1858 pthread_mutex_lock(&stream->lock);
1859
1860 switch (consumer_data.type) {
1861 case LTTNG_CONSUMER_KERNEL:
1862 if (stream->mmap_base != NULL) {
1863 ret = munmap(stream->mmap_base, stream->mmap_len);
1864 if (ret != 0) {
1865 PERROR("munmap metadata stream");
1866 }
1867 }
1868 if (stream->wait_fd >= 0) {
1869 ret = close(stream->wait_fd);
1870 if (ret < 0) {
1871 PERROR("close kernel metadata wait_fd");
1872 }
1873 }
1874 break;
1875 case LTTNG_CONSUMER32_UST:
1876 case LTTNG_CONSUMER64_UST:
1877 lttng_ustconsumer_del_stream(stream);
1878 break;
1879 default:
1880 ERR("Unknown consumer_data type");
1881 assert(0);
1882 goto end;
1883 }
1884
1885 rcu_read_lock();
1886 iter.iter.node = &stream->node.node;
1887 ret = lttng_ht_del(ht, &iter);
1888 assert(!ret);
1889
1890 iter.iter.node = &stream->node_channel_id.node;
1891 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1892 assert(!ret);
1893
1894 iter.iter.node = &stream->node_session_id.node;
1895 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1896 assert(!ret);
1897 rcu_read_unlock();
1898
1899 if (stream->out_fd >= 0) {
1900 ret = close(stream->out_fd);
1901 if (ret) {
1902 PERROR("close");
1903 }
1904 }
1905
1906 /* Check and cleanup relayd */
1907 rcu_read_lock();
1908 relayd = consumer_find_relayd(stream->net_seq_idx);
1909 if (relayd != NULL) {
1910 uatomic_dec(&relayd->refcount);
1911 assert(uatomic_read(&relayd->refcount) >= 0);
1912
1913 /* Closing streams requires to lock the control socket. */
1914 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1915 ret = relayd_send_close_stream(&relayd->control_sock,
1916 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1917 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1918 if (ret < 0) {
1919 DBG("Unable to close stream on the relayd. Continuing");
1920 /*
1921 * Continue here. There is nothing we can do for the relayd.
1922 * Chances are that the relayd has closed the socket so we just
1923 * continue cleaning up.
1924 */
1925 }
1926
1927 /* Both conditions are met, we destroy the relayd. */
1928 if (uatomic_read(&relayd->refcount) == 0 &&
1929 uatomic_read(&relayd->destroy_flag)) {
1930 consumer_destroy_relayd(relayd);
1931 }
1932 }
1933 rcu_read_unlock();
1934
1935 /* Atomically decrement channel refcount since other threads can use it. */
1936 if (!uatomic_sub_return(&stream->chan->refcount, 1)
1937 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
1938 /* Go for channel deletion! */
1939 free_chan = stream->chan;
1940 }
1941
1942 end:
1943 /*
1944 * Nullify the stream reference so it is not used after deletion. The
1945 * consumer data lock MUST be acquired before being able to check for a
1946 * NULL pointer value.
1947 */
1948 stream->chan->metadata_stream = NULL;
1949
1950 pthread_mutex_unlock(&stream->lock);
1951 pthread_mutex_unlock(&consumer_data.lock);
1952
1953 if (free_chan) {
1954 consumer_del_channel(free_chan);
1955 }
1956
1957 free_stream_rcu:
1958 call_rcu(&stream->node.head, free_stream_rcu);
1959 }
1960
1961 /*
1962 * Action done with the metadata stream when adding it to the consumer internal
1963 * data structures to handle it.
1964 */
1965 static int add_metadata_stream(struct lttng_consumer_stream *stream,
1966 struct lttng_ht *ht)
1967 {
1968 int ret = 0;
1969 struct consumer_relayd_sock_pair *relayd;
1970 struct lttng_ht_iter iter;
1971 struct lttng_ht_node_u64 *node;
1972
1973 assert(stream);
1974 assert(ht);
1975
1976 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
1977
1978 pthread_mutex_lock(&consumer_data.lock);
1979 pthread_mutex_lock(&stream->lock);
1980
1981 /*
1982 * From here, refcounts are updated so be _careful_ when returning an error
1983 * after this point.
1984 */
1985
1986 rcu_read_lock();
1987
1988 /*
1989 * Lookup the stream just to make sure it does not exist in our internal
1990 * state. This should NEVER happen.
1991 */
1992 lttng_ht_lookup(ht, &stream->key, &iter);
1993 node = lttng_ht_iter_get_node_u64(&iter);
1994 assert(!node);
1995
1996 /* Find relayd and, if one is found, increment refcount. */
1997 relayd = consumer_find_relayd(stream->net_seq_idx);
1998 if (relayd != NULL) {
1999 uatomic_inc(&relayd->refcount);
2000 }
2001
2002 /*
2003 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2004 * in terms of destroying the associated channel, because the action that
2005 * causes the count to become 0 also causes a stream to be added. The
2006 * channel deletion will thus be triggered by the following removal of this
2007 * stream.
2008 */
2009 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2010 /* Increment refcount before decrementing nb_init_stream_left */
2011 cmm_smp_wmb();
2012 uatomic_dec(&stream->chan->nb_init_stream_left);
2013 }
2014
2015 lttng_ht_add_unique_u64(ht, &stream->node);
2016
2017 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2018 &stream->node_channel_id);
2019
2020 /*
2021 * Add stream to the stream_list_ht of the consumer data. No need to steal
2022 * the key since the HT does not use it and we allow to add redundant keys
2023 * into this table.
2024 */
2025 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2026
2027 rcu_read_unlock();
2028
2029 pthread_mutex_unlock(&stream->lock);
2030 pthread_mutex_unlock(&consumer_data.lock);
2031 return ret;
2032 }
2033
2034 /*
2035 * Delete data stream that are flagged for deletion (endpoint_status).
2036 */
2037 static void validate_endpoint_status_data_stream(void)
2038 {
2039 struct lttng_ht_iter iter;
2040 struct lttng_consumer_stream *stream;
2041
2042 DBG("Consumer delete flagged data stream");
2043
2044 rcu_read_lock();
2045 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2046 /* Validate delete flag of the stream */
2047 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2048 continue;
2049 }
2050 /* Delete it right now */
2051 consumer_del_stream(stream, data_ht);
2052 }
2053 rcu_read_unlock();
2054 }
2055
2056 /*
2057 * Delete metadata stream that are flagged for deletion (endpoint_status).
2058 */
2059 static void validate_endpoint_status_metadata_stream(
2060 struct lttng_poll_event *pollset)
2061 {
2062 struct lttng_ht_iter iter;
2063 struct lttng_consumer_stream *stream;
2064
2065 DBG("Consumer delete flagged metadata stream");
2066
2067 assert(pollset);
2068
2069 rcu_read_lock();
2070 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2071 /* Validate delete flag of the stream */
2072 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2073 continue;
2074 }
2075 /*
2076 * Remove from pollset so the metadata thread can continue without
2077 * blocking on a deleted stream.
2078 */
2079 lttng_poll_del(pollset, stream->wait_fd);
2080
2081 /* Delete it right now */
2082 consumer_del_metadata_stream(stream, metadata_ht);
2083 }
2084 rcu_read_unlock();
2085 }
2086
2087 /*
2088 * Thread polls on metadata file descriptor and write them on disk or on the
2089 * network.
2090 */
2091 void *consumer_thread_metadata_poll(void *data)
2092 {
2093 int ret, i, pollfd;
2094 uint32_t revents, nb_fd;
2095 struct lttng_consumer_stream *stream = NULL;
2096 struct lttng_ht_iter iter;
2097 struct lttng_ht_node_u64 *node;
2098 struct lttng_poll_event events;
2099 struct lttng_consumer_local_data *ctx = data;
2100 ssize_t len;
2101
2102 rcu_register_thread();
2103
2104 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2105 if (!metadata_ht) {
2106 /* ENOMEM at this point. Better to bail out. */
2107 goto end_ht;
2108 }
2109
2110 DBG("Thread metadata poll started");
2111
2112 /* Size is set to 1 for the consumer_metadata pipe */
2113 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2114 if (ret < 0) {
2115 ERR("Poll set creation failed");
2116 goto end_poll;
2117 }
2118
2119 ret = lttng_poll_add(&events,
2120 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2121 if (ret < 0) {
2122 goto end;
2123 }
2124
2125 /* Main loop */
2126 DBG("Metadata main loop started");
2127
2128 while (1) {
2129 /* Only the metadata pipe is set */
2130 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2131 goto end;
2132 }
2133
2134 restart:
2135 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2136 ret = lttng_poll_wait(&events, -1);
2137 DBG("Metadata event catched in thread");
2138 if (ret < 0) {
2139 if (errno == EINTR) {
2140 ERR("Poll EINTR catched");
2141 goto restart;
2142 }
2143 goto error;
2144 }
2145
2146 nb_fd = ret;
2147
2148 /* From here, the event is a metadata wait fd */
2149 for (i = 0; i < nb_fd; i++) {
2150 revents = LTTNG_POLL_GETEV(&events, i);
2151 pollfd = LTTNG_POLL_GETFD(&events, i);
2152
2153 /* Just don't waste time if no returned events for the fd */
2154 if (!revents) {
2155 continue;
2156 }
2157
2158 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2159 if (revents & (LPOLLERR | LPOLLHUP )) {
2160 DBG("Metadata thread pipe hung up");
2161 /*
2162 * Remove the pipe from the poll set and continue the loop
2163 * since their might be data to consume.
2164 */
2165 lttng_poll_del(&events,
2166 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2167 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2168 continue;
2169 } else if (revents & LPOLLIN) {
2170 ssize_t pipe_len;
2171
2172 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2173 &stream, sizeof(stream));
2174 if (pipe_len < 0) {
2175 ERR("read metadata stream, ret: %ld", pipe_len);
2176 /*
2177 * Continue here to handle the rest of the streams.
2178 */
2179 continue;
2180 }
2181
2182 /* A NULL stream means that the state has changed. */
2183 if (stream == NULL) {
2184 /* Check for deleted streams. */
2185 validate_endpoint_status_metadata_stream(&events);
2186 goto restart;
2187 }
2188
2189 DBG("Adding metadata stream %d to poll set",
2190 stream->wait_fd);
2191
2192 ret = add_metadata_stream(stream, metadata_ht);
2193 if (ret) {
2194 ERR("Unable to add metadata stream");
2195 /* Stream was not setup properly. Continuing. */
2196 consumer_del_metadata_stream(stream, NULL);
2197 continue;
2198 }
2199
2200 /* Add metadata stream to the global poll events list */
2201 lttng_poll_add(&events, stream->wait_fd,
2202 LPOLLIN | LPOLLPRI);
2203 }
2204
2205 /* Handle other stream */
2206 continue;
2207 }
2208
2209 rcu_read_lock();
2210 {
2211 uint64_t tmp_id = (uint64_t) pollfd;
2212
2213 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2214 }
2215 node = lttng_ht_iter_get_node_u64(&iter);
2216 assert(node);
2217
2218 stream = caa_container_of(node, struct lttng_consumer_stream,
2219 node);
2220
2221 /* Check for error event */
2222 if (revents & (LPOLLERR | LPOLLHUP)) {
2223 DBG("Metadata fd %d is hup|err.", pollfd);
2224 if (!stream->hangup_flush_done
2225 && (consumer_data.type == LTTNG_CONSUMER32_UST
2226 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2227 DBG("Attempting to flush and consume the UST buffers");
2228 lttng_ustconsumer_on_stream_hangup(stream);
2229
2230 /* We just flushed the stream now read it. */
2231 do {
2232 len = ctx->on_buffer_ready(stream, ctx);
2233 /*
2234 * We don't check the return value here since if we get
2235 * a negative len, it means an error occured thus we
2236 * simply remove it from the poll set and free the
2237 * stream.
2238 */
2239 } while (len > 0);
2240 }
2241
2242 lttng_poll_del(&events, stream->wait_fd);
2243 /*
2244 * This call update the channel states, closes file descriptors
2245 * and securely free the stream.
2246 */
2247 consumer_del_metadata_stream(stream, metadata_ht);
2248 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2249 /* Get the data out of the metadata file descriptor */
2250 DBG("Metadata available on fd %d", pollfd);
2251 assert(stream->wait_fd == pollfd);
2252
2253 len = ctx->on_buffer_ready(stream, ctx);
2254 /* It's ok to have an unavailable sub-buffer */
2255 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2256 /* Clean up stream from consumer and free it. */
2257 lttng_poll_del(&events, stream->wait_fd);
2258 consumer_del_metadata_stream(stream, metadata_ht);
2259 } else if (len > 0) {
2260 stream->data_read = 1;
2261 }
2262 }
2263
2264 /* Release RCU lock for the stream looked up */
2265 rcu_read_unlock();
2266 }
2267 }
2268
2269 error:
2270 end:
2271 DBG("Metadata poll thread exiting");
2272
2273 lttng_poll_clean(&events);
2274 end_poll:
2275 destroy_stream_ht(metadata_ht);
2276 end_ht:
2277 rcu_unregister_thread();
2278 return NULL;
2279 }
2280
2281 /*
2282 * This thread polls the fds in the set to consume the data and write
2283 * it to tracefile if necessary.
2284 */
2285 void *consumer_thread_data_poll(void *data)
2286 {
2287 int num_rdy, num_hup, high_prio, ret, i;
2288 struct pollfd *pollfd = NULL;
2289 /* local view of the streams */
2290 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2291 /* local view of consumer_data.fds_count */
2292 int nb_fd = 0;
2293 struct lttng_consumer_local_data *ctx = data;
2294 ssize_t len;
2295
2296 rcu_register_thread();
2297
2298 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2299 if (data_ht == NULL) {
2300 /* ENOMEM at this point. Better to bail out. */
2301 goto end;
2302 }
2303
2304 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
2305
2306 while (1) {
2307 high_prio = 0;
2308 num_hup = 0;
2309
2310 /*
2311 * the fds set has been updated, we need to update our
2312 * local array as well
2313 */
2314 pthread_mutex_lock(&consumer_data.lock);
2315 if (consumer_data.need_update) {
2316 free(pollfd);
2317 pollfd = NULL;
2318
2319 free(local_stream);
2320 local_stream = NULL;
2321
2322 /* allocate for all fds + 1 for the consumer_data_pipe */
2323 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2324 if (pollfd == NULL) {
2325 PERROR("pollfd malloc");
2326 pthread_mutex_unlock(&consumer_data.lock);
2327 goto end;
2328 }
2329
2330 /* allocate for all fds + 1 for the consumer_data_pipe */
2331 local_stream = zmalloc((consumer_data.stream_count + 1) *
2332 sizeof(struct lttng_consumer_stream *));
2333 if (local_stream == NULL) {
2334 PERROR("local_stream malloc");
2335 pthread_mutex_unlock(&consumer_data.lock);
2336 goto end;
2337 }
2338 ret = update_poll_array(ctx, &pollfd, local_stream,
2339 data_ht);
2340 if (ret < 0) {
2341 ERR("Error in allocating pollfd or local_outfds");
2342 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2343 pthread_mutex_unlock(&consumer_data.lock);
2344 goto end;
2345 }
2346 nb_fd = ret;
2347 consumer_data.need_update = 0;
2348 }
2349 pthread_mutex_unlock(&consumer_data.lock);
2350
2351 /* No FDs and consumer_quit, consumer_cleanup the thread */
2352 if (nb_fd == 0 && consumer_quit == 1) {
2353 goto end;
2354 }
2355 /* poll on the array of fds */
2356 restart:
2357 DBG("polling on %d fd", nb_fd + 1);
2358 num_rdy = poll(pollfd, nb_fd + 1, -1);
2359 DBG("poll num_rdy : %d", num_rdy);
2360 if (num_rdy == -1) {
2361 /*
2362 * Restart interrupted system call.
2363 */
2364 if (errno == EINTR) {
2365 goto restart;
2366 }
2367 PERROR("Poll error");
2368 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2369 goto end;
2370 } else if (num_rdy == 0) {
2371 DBG("Polling thread timed out");
2372 goto end;
2373 }
2374
2375 /*
2376 * If the consumer_data_pipe triggered poll go directly to the
2377 * beginning of the loop to update the array. We want to prioritize
2378 * array update over low-priority reads.
2379 */
2380 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2381 ssize_t pipe_readlen;
2382
2383 DBG("consumer_data_pipe wake up");
2384 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2385 &new_stream, sizeof(new_stream));
2386 if (pipe_readlen < 0) {
2387 ERR("Consumer data pipe ret %ld", pipe_readlen);
2388 /* Continue so we can at least handle the current stream(s). */
2389 continue;
2390 }
2391
2392 /*
2393 * If the stream is NULL, just ignore it. It's also possible that
2394 * the sessiond poll thread changed the consumer_quit state and is
2395 * waking us up to test it.
2396 */
2397 if (new_stream == NULL) {
2398 validate_endpoint_status_data_stream();
2399 continue;
2400 }
2401
2402 ret = add_stream(new_stream, data_ht);
2403 if (ret) {
2404 ERR("Consumer add stream %" PRIu64 " failed. Continuing",
2405 new_stream->key);
2406 /*
2407 * At this point, if the add_stream fails, it is not in the
2408 * hash table thus passing the NULL value here.
2409 */
2410 consumer_del_stream(new_stream, NULL);
2411 }
2412
2413 /* Continue to update the local streams and handle prio ones */
2414 continue;
2415 }
2416
2417 /* Take care of high priority channels first. */
2418 for (i = 0; i < nb_fd; i++) {
2419 if (local_stream[i] == NULL) {
2420 continue;
2421 }
2422 if (pollfd[i].revents & POLLPRI) {
2423 DBG("Urgent read on fd %d", pollfd[i].fd);
2424 high_prio = 1;
2425 len = ctx->on_buffer_ready(local_stream[i], ctx);
2426 /* it's ok to have an unavailable sub-buffer */
2427 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2428 /* Clean the stream and free it. */
2429 consumer_del_stream(local_stream[i], data_ht);
2430 local_stream[i] = NULL;
2431 } else if (len > 0) {
2432 local_stream[i]->data_read = 1;
2433 }
2434 }
2435 }
2436
2437 /*
2438 * If we read high prio channel in this loop, try again
2439 * for more high prio data.
2440 */
2441 if (high_prio) {
2442 continue;
2443 }
2444
2445 /* Take care of low priority channels. */
2446 for (i = 0; i < nb_fd; i++) {
2447 if (local_stream[i] == NULL) {
2448 continue;
2449 }
2450 if ((pollfd[i].revents & POLLIN) ||
2451 local_stream[i]->hangup_flush_done) {
2452 DBG("Normal read on fd %d", pollfd[i].fd);
2453 len = ctx->on_buffer_ready(local_stream[i], ctx);
2454 /* it's ok to have an unavailable sub-buffer */
2455 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2456 /* Clean the stream and free it. */
2457 consumer_del_stream(local_stream[i], data_ht);
2458 local_stream[i] = NULL;
2459 } else if (len > 0) {
2460 local_stream[i]->data_read = 1;
2461 }
2462 }
2463 }
2464
2465 /* Handle hangup and errors */
2466 for (i = 0; i < nb_fd; i++) {
2467 if (local_stream[i] == NULL) {
2468 continue;
2469 }
2470 if (!local_stream[i]->hangup_flush_done
2471 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2472 && (consumer_data.type == LTTNG_CONSUMER32_UST
2473 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2474 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2475 pollfd[i].fd);
2476 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2477 /* Attempt read again, for the data we just flushed. */
2478 local_stream[i]->data_read = 1;
2479 }
2480 /*
2481 * If the poll flag is HUP/ERR/NVAL and we have
2482 * read no data in this pass, we can remove the
2483 * stream from its hash table.
2484 */
2485 if ((pollfd[i].revents & POLLHUP)) {
2486 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2487 if (!local_stream[i]->data_read) {
2488 consumer_del_stream(local_stream[i], data_ht);
2489 local_stream[i] = NULL;
2490 num_hup++;
2491 }
2492 } else if (pollfd[i].revents & POLLERR) {
2493 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2494 if (!local_stream[i]->data_read) {
2495 consumer_del_stream(local_stream[i], data_ht);
2496 local_stream[i] = NULL;
2497 num_hup++;
2498 }
2499 } else if (pollfd[i].revents & POLLNVAL) {
2500 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2501 if (!local_stream[i]->data_read) {
2502 consumer_del_stream(local_stream[i], data_ht);
2503 local_stream[i] = NULL;
2504 num_hup++;
2505 }
2506 }
2507 if (local_stream[i] != NULL) {
2508 local_stream[i]->data_read = 0;
2509 }
2510 }
2511 }
2512 end:
2513 DBG("polling thread exiting");
2514 free(pollfd);
2515 free(local_stream);
2516
2517 /*
2518 * Close the write side of the pipe so epoll_wait() in
2519 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2520 * read side of the pipe. If we close them both, epoll_wait strangely does
2521 * not return and could create a endless wait period if the pipe is the
2522 * only tracked fd in the poll set. The thread will take care of closing
2523 * the read side.
2524 */
2525 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2526
2527 destroy_data_stream_ht(data_ht);
2528
2529 rcu_unregister_thread();
2530 return NULL;
2531 }
2532
2533 /*
2534 * Close wake-up end of each stream belonging to the channel. This will
2535 * allow the poll() on the stream read-side to detect when the
2536 * write-side (application) finally closes them.
2537 */
2538 static
2539 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2540 {
2541 struct lttng_ht *ht;
2542 struct lttng_consumer_stream *stream;
2543 struct lttng_ht_iter iter;
2544
2545 ht = consumer_data.stream_per_chan_id_ht;
2546
2547 rcu_read_lock();
2548 cds_lfht_for_each_entry_duplicate(ht->ht,
2549 ht->hash_fct(&channel->key, lttng_ht_seed),
2550 ht->match_fct, &channel->key,
2551 &iter.iter, stream, node_channel_id.node) {
2552 /*
2553 * Protect against teardown with mutex.
2554 */
2555 pthread_mutex_lock(&stream->lock);
2556 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2557 goto next;
2558 }
2559 switch (consumer_data.type) {
2560 case LTTNG_CONSUMER_KERNEL:
2561 break;
2562 case LTTNG_CONSUMER32_UST:
2563 case LTTNG_CONSUMER64_UST:
2564 /*
2565 * Note: a mutex is taken internally within
2566 * liblttng-ust-ctl to protect timer wakeup_fd
2567 * use from concurrent close.
2568 */
2569 lttng_ustconsumer_close_stream_wakeup(stream);
2570 break;
2571 default:
2572 ERR("Unknown consumer_data type");
2573 assert(0);
2574 }
2575 next:
2576 pthread_mutex_unlock(&stream->lock);
2577 }
2578 rcu_read_unlock();
2579 }
2580
2581 static void destroy_channel_ht(struct lttng_ht *ht)
2582 {
2583 struct lttng_ht_iter iter;
2584 struct lttng_consumer_channel *channel;
2585 int ret;
2586
2587 if (ht == NULL) {
2588 return;
2589 }
2590
2591 rcu_read_lock();
2592 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2593 ret = lttng_ht_del(ht, &iter);
2594 assert(ret != 0);
2595 }
2596 rcu_read_unlock();
2597
2598 lttng_ht_destroy(ht);
2599 }
2600
2601 /*
2602 * This thread polls the channel fds to detect when they are being
2603 * closed. It closes all related streams if the channel is detected as
2604 * closed. It is currently only used as a shim layer for UST because the
2605 * consumerd needs to keep the per-stream wakeup end of pipes open for
2606 * periodical flush.
2607 */
2608 void *consumer_thread_channel_poll(void *data)
2609 {
2610 int ret, i, pollfd;
2611 uint32_t revents, nb_fd;
2612 struct lttng_consumer_channel *chan = NULL;
2613 struct lttng_ht_iter iter;
2614 struct lttng_ht_node_u64 *node;
2615 struct lttng_poll_event events;
2616 struct lttng_consumer_local_data *ctx = data;
2617 struct lttng_ht *channel_ht;
2618
2619 rcu_register_thread();
2620
2621 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2622 if (!channel_ht) {
2623 /* ENOMEM at this point. Better to bail out. */
2624 goto end_ht;
2625 }
2626
2627 DBG("Thread channel poll started");
2628
2629 /* Size is set to 1 for the consumer_channel pipe */
2630 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2631 if (ret < 0) {
2632 ERR("Poll set creation failed");
2633 goto end_poll;
2634 }
2635
2636 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2637 if (ret < 0) {
2638 goto end;
2639 }
2640
2641 /* Main loop */
2642 DBG("Channel main loop started");
2643
2644 while (1) {
2645 /* Only the channel pipe is set */
2646 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2647 goto end;
2648 }
2649
2650 restart:
2651 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2652 ret = lttng_poll_wait(&events, -1);
2653 DBG("Channel event catched in thread");
2654 if (ret < 0) {
2655 if (errno == EINTR) {
2656 ERR("Poll EINTR catched");
2657 goto restart;
2658 }
2659 goto end;
2660 }
2661
2662 nb_fd = ret;
2663
2664 /* From here, the event is a channel wait fd */
2665 for (i = 0; i < nb_fd; i++) {
2666 revents = LTTNG_POLL_GETEV(&events, i);
2667 pollfd = LTTNG_POLL_GETFD(&events, i);
2668
2669 /* Just don't waste time if no returned events for the fd */
2670 if (!revents) {
2671 continue;
2672 }
2673 if (pollfd == ctx->consumer_channel_pipe[0]) {
2674 if (revents & (LPOLLERR | LPOLLHUP)) {
2675 DBG("Channel thread pipe hung up");
2676 /*
2677 * Remove the pipe from the poll set and continue the loop
2678 * since their might be data to consume.
2679 */
2680 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2681 continue;
2682 } else if (revents & LPOLLIN) {
2683 enum consumer_channel_action action;
2684 uint64_t key;
2685
2686 ret = read_channel_pipe(ctx, &chan, &key, &action);
2687 if (ret <= 0) {
2688 ERR("Error reading channel pipe");
2689 continue;
2690 }
2691
2692 switch (action) {
2693 case CONSUMER_CHANNEL_ADD:
2694 DBG("Adding channel %d to poll set",
2695 chan->wait_fd);
2696
2697 lttng_ht_node_init_u64(&chan->wait_fd_node,
2698 chan->wait_fd);
2699 rcu_read_lock();
2700 lttng_ht_add_unique_u64(channel_ht,
2701 &chan->wait_fd_node);
2702 rcu_read_unlock();
2703 /* Add channel to the global poll events list */
2704 lttng_poll_add(&events, chan->wait_fd,
2705 LPOLLIN | LPOLLPRI);
2706 break;
2707 case CONSUMER_CHANNEL_DEL:
2708 {
2709 struct lttng_consumer_stream *stream, *stmp;
2710
2711 rcu_read_lock();
2712 chan = consumer_find_channel(key);
2713 if (!chan) {
2714 rcu_read_unlock();
2715 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2716 break;
2717 }
2718 lttng_poll_del(&events, chan->wait_fd);
2719 iter.iter.node = &chan->wait_fd_node.node;
2720 ret = lttng_ht_del(channel_ht, &iter);
2721 assert(ret == 0);
2722 consumer_close_channel_streams(chan);
2723
2724 switch (consumer_data.type) {
2725 case LTTNG_CONSUMER_KERNEL:
2726 break;
2727 case LTTNG_CONSUMER32_UST:
2728 case LTTNG_CONSUMER64_UST:
2729 /* Delete streams that might have been left in the stream list. */
2730 cds_list_for_each_entry_safe(stream, stmp, &chan->streams.head,
2731 send_node) {
2732 cds_list_del(&stream->send_node);
2733 lttng_ustconsumer_del_stream(stream);
2734 uatomic_sub(&stream->chan->refcount, 1);
2735 assert(&chan->refcount);
2736 free(stream);
2737 }
2738 break;
2739 default:
2740 ERR("Unknown consumer_data type");
2741 assert(0);
2742 }
2743
2744 /*
2745 * Release our own refcount. Force channel deletion even if
2746 * streams were not initialized.
2747 */
2748 if (!uatomic_sub_return(&chan->refcount, 1)) {
2749 consumer_del_channel(chan);
2750 }
2751 rcu_read_unlock();
2752 goto restart;
2753 }
2754 case CONSUMER_CHANNEL_QUIT:
2755 /*
2756 * Remove the pipe from the poll set and continue the loop
2757 * since their might be data to consume.
2758 */
2759 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2760 continue;
2761 default:
2762 ERR("Unknown action");
2763 break;
2764 }
2765 }
2766
2767 /* Handle other stream */
2768 continue;
2769 }
2770
2771 rcu_read_lock();
2772 {
2773 uint64_t tmp_id = (uint64_t) pollfd;
2774
2775 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2776 }
2777 node = lttng_ht_iter_get_node_u64(&iter);
2778 assert(node);
2779
2780 chan = caa_container_of(node, struct lttng_consumer_channel,
2781 wait_fd_node);
2782
2783 /* Check for error event */
2784 if (revents & (LPOLLERR | LPOLLHUP)) {
2785 DBG("Channel fd %d is hup|err.", pollfd);
2786
2787 lttng_poll_del(&events, chan->wait_fd);
2788 ret = lttng_ht_del(channel_ht, &iter);
2789 assert(ret == 0);
2790 consumer_close_channel_streams(chan);
2791
2792 /* Release our own refcount */
2793 if (!uatomic_sub_return(&chan->refcount, 1)
2794 && !uatomic_read(&chan->nb_init_stream_left)) {
2795 consumer_del_channel(chan);
2796 }
2797 }
2798
2799 /* Release RCU lock for the channel looked up */
2800 rcu_read_unlock();
2801 }
2802 }
2803
2804 end:
2805 lttng_poll_clean(&events);
2806 end_poll:
2807 destroy_channel_ht(channel_ht);
2808 end_ht:
2809 DBG("Channel poll thread exiting");
2810 rcu_unregister_thread();
2811 return NULL;
2812 }
2813
2814 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2815 struct pollfd *sockpoll, int client_socket)
2816 {
2817 int ret;
2818
2819 assert(ctx);
2820 assert(sockpoll);
2821
2822 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2823 ret = -1;
2824 goto error;
2825 }
2826 DBG("Metadata connection on client_socket");
2827
2828 /* Blocking call, waiting for transmission */
2829 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2830 if (ctx->consumer_metadata_socket < 0) {
2831 WARN("On accept metadata");
2832 ret = -1;
2833 goto error;
2834 }
2835 ret = 0;
2836
2837 error:
2838 return ret;
2839 }
2840
2841 /*
2842 * This thread listens on the consumerd socket and receives the file
2843 * descriptors from the session daemon.
2844 */
2845 void *consumer_thread_sessiond_poll(void *data)
2846 {
2847 int sock = -1, client_socket, ret;
2848 /*
2849 * structure to poll for incoming data on communication socket avoids
2850 * making blocking sockets.
2851 */
2852 struct pollfd consumer_sockpoll[2];
2853 struct lttng_consumer_local_data *ctx = data;
2854
2855 rcu_register_thread();
2856
2857 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2858 unlink(ctx->consumer_command_sock_path);
2859 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2860 if (client_socket < 0) {
2861 ERR("Cannot create command socket");
2862 goto end;
2863 }
2864
2865 ret = lttcomm_listen_unix_sock(client_socket);
2866 if (ret < 0) {
2867 goto end;
2868 }
2869
2870 DBG("Sending ready command to lttng-sessiond");
2871 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2872 /* return < 0 on error, but == 0 is not fatal */
2873 if (ret < 0) {
2874 ERR("Error sending ready command to lttng-sessiond");
2875 goto end;
2876 }
2877
2878 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2879 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2880 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2881 consumer_sockpoll[1].fd = client_socket;
2882 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2883
2884 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2885 goto end;
2886 }
2887 DBG("Connection on client_socket");
2888
2889 /* Blocking call, waiting for transmission */
2890 sock = lttcomm_accept_unix_sock(client_socket);
2891 if (sock < 0) {
2892 WARN("On accept");
2893 goto end;
2894 }
2895
2896 /*
2897 * Setup metadata socket which is the second socket connection on the
2898 * command unix socket.
2899 */
2900 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
2901 if (ret < 0) {
2902 goto end;
2903 }
2904
2905 /* This socket is not useful anymore. */
2906 ret = close(client_socket);
2907 if (ret < 0) {
2908 PERROR("close client_socket");
2909 }
2910 client_socket = -1;
2911
2912 /* update the polling structure to poll on the established socket */
2913 consumer_sockpoll[1].fd = sock;
2914 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2915
2916 while (1) {
2917 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2918 goto end;
2919 }
2920 DBG("Incoming command on sock");
2921 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2922 if (ret == -ENOENT) {
2923 DBG("Received STOP command");
2924 goto end;
2925 }
2926 if (ret <= 0) {
2927 /*
2928 * This could simply be a session daemon quitting. Don't output
2929 * ERR() here.
2930 */
2931 DBG("Communication interrupted on command socket");
2932 goto end;
2933 }
2934 if (consumer_quit) {
2935 DBG("consumer_thread_receive_fds received quit from signal");
2936 goto end;
2937 }
2938 DBG("received command on sock");
2939 }
2940 end:
2941 DBG("Consumer thread sessiond poll exiting");
2942
2943 /*
2944 * Close metadata streams since the producer is the session daemon which
2945 * just died.
2946 *
2947 * NOTE: for now, this only applies to the UST tracer.
2948 */
2949 lttng_consumer_close_metadata();
2950
2951 /*
2952 * when all fds have hung up, the polling thread
2953 * can exit cleanly
2954 */
2955 consumer_quit = 1;
2956
2957 /*
2958 * Notify the data poll thread to poll back again and test the
2959 * consumer_quit state that we just set so to quit gracefully.
2960 */
2961 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
2962
2963 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
2964
2965 /* Cleaning up possibly open sockets. */
2966 if (sock >= 0) {
2967 ret = close(sock);
2968 if (ret < 0) {
2969 PERROR("close sock sessiond poll");
2970 }
2971 }
2972 if (client_socket >= 0) {
2973 ret = close(client_socket);
2974 if (ret < 0) {
2975 PERROR("close client_socket sessiond poll");
2976 }
2977 }
2978
2979 rcu_unregister_thread();
2980 return NULL;
2981 }
2982
2983 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
2984 struct lttng_consumer_local_data *ctx)
2985 {
2986 ssize_t ret;
2987
2988 pthread_mutex_lock(&stream->lock);
2989
2990 switch (consumer_data.type) {
2991 case LTTNG_CONSUMER_KERNEL:
2992 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
2993 break;
2994 case LTTNG_CONSUMER32_UST:
2995 case LTTNG_CONSUMER64_UST:
2996 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
2997 break;
2998 default:
2999 ERR("Unknown consumer_data type");
3000 assert(0);
3001 ret = -ENOSYS;
3002 break;
3003 }
3004
3005 pthread_mutex_unlock(&stream->lock);
3006 return ret;
3007 }
3008
3009 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3010 {
3011 switch (consumer_data.type) {
3012 case LTTNG_CONSUMER_KERNEL:
3013 return lttng_kconsumer_on_recv_stream(stream);
3014 case LTTNG_CONSUMER32_UST:
3015 case LTTNG_CONSUMER64_UST:
3016 return lttng_ustconsumer_on_recv_stream(stream);
3017 default:
3018 ERR("Unknown consumer_data type");
3019 assert(0);
3020 return -ENOSYS;
3021 }
3022 }
3023
3024 /*
3025 * Allocate and set consumer data hash tables.
3026 */
3027 void lttng_consumer_init(void)
3028 {
3029 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3030 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3031 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3032 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3033 }
3034
3035 /*
3036 * Process the ADD_RELAYD command receive by a consumer.
3037 *
3038 * This will create a relayd socket pair and add it to the relayd hash table.
3039 * The caller MUST acquire a RCU read side lock before calling it.
3040 */
3041 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3042 struct lttng_consumer_local_data *ctx, int sock,
3043 struct pollfd *consumer_sockpoll,
3044 struct lttcomm_relayd_sock *relayd_sock, unsigned int sessiond_id)
3045 {
3046 int fd = -1, ret = -1, relayd_created = 0;
3047 enum lttng_error_code ret_code = LTTNG_OK;
3048 struct consumer_relayd_sock_pair *relayd = NULL;
3049
3050 assert(ctx);
3051 assert(relayd_sock);
3052
3053 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3054
3055 /* Get relayd reference if exists. */
3056 relayd = consumer_find_relayd(net_seq_idx);
3057 if (relayd == NULL) {
3058 assert(sock_type == LTTNG_STREAM_CONTROL);
3059 /* Not found. Allocate one. */
3060 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3061 if (relayd == NULL) {
3062 ret = -ENOMEM;
3063 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3064 goto error;
3065 } else {
3066 relayd->sessiond_session_id = (uint64_t) sessiond_id;
3067 relayd_created = 1;
3068 }
3069
3070 /*
3071 * This code path MUST continue to the consumer send status message to
3072 * we can notify the session daemon and continue our work without
3073 * killing everything.
3074 */
3075 } else {
3076 /*
3077 * relayd key should never be found for control socket.
3078 */
3079 assert(sock_type != LTTNG_STREAM_CONTROL);
3080 }
3081
3082 /* First send a status message before receiving the fds. */
3083 ret = consumer_send_status_msg(sock, LTTNG_OK);
3084 if (ret < 0) {
3085 /* Somehow, the session daemon is not responding anymore. */
3086 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3087 goto error_nosignal;
3088 }
3089
3090 /* Poll on consumer socket. */
3091 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3092 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3093 ret = -EINTR;
3094 goto error_nosignal;
3095 }
3096
3097 /* Get relayd socket from session daemon */
3098 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3099 if (ret != sizeof(fd)) {
3100 ret = -1;
3101 fd = -1; /* Just in case it gets set with an invalid value. */
3102
3103 /*
3104 * Failing to receive FDs might indicate a major problem such as
3105 * reaching a fd limit during the receive where the kernel returns a
3106 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3107 * don't take any chances and stop everything.
3108 *
3109 * XXX: Feature request #558 will fix that and avoid this possible
3110 * issue when reaching the fd limit.
3111 */
3112 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3113 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3114 goto error;
3115 }
3116
3117 /* Copy socket information and received FD */
3118 switch (sock_type) {
3119 case LTTNG_STREAM_CONTROL:
3120 /* Copy received lttcomm socket */
3121 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3122 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3123 /* Handle create_sock error. */
3124 if (ret < 0) {
3125 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3126 goto error;
3127 }
3128 /*
3129 * Close the socket created internally by
3130 * lttcomm_create_sock, so we can replace it by the one
3131 * received from sessiond.
3132 */
3133 if (close(relayd->control_sock.sock.fd)) {
3134 PERROR("close");
3135 }
3136
3137 /* Assign new file descriptor */
3138 relayd->control_sock.sock.fd = fd;
3139 fd = -1; /* For error path */
3140 /* Assign version values. */
3141 relayd->control_sock.major = relayd_sock->major;
3142 relayd->control_sock.minor = relayd_sock->minor;
3143
3144 /*
3145 * Create a session on the relayd and store the returned id. Lock the
3146 * control socket mutex if the relayd was NOT created before.
3147 */
3148 if (!relayd_created) {
3149 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3150 }
3151 ret = relayd_create_session(&relayd->control_sock,
3152 &relayd->relayd_session_id);
3153 if (!relayd_created) {
3154 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3155 }
3156 if (ret < 0) {
3157 /*
3158 * Close all sockets of a relayd object. It will be freed if it was
3159 * created at the error code path or else it will be garbage
3160 * collect.
3161 */
3162 (void) relayd_close(&relayd->control_sock);
3163 (void) relayd_close(&relayd->data_sock);
3164 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
3165 goto error;
3166 }
3167
3168 break;
3169 case LTTNG_STREAM_DATA:
3170 /* Copy received lttcomm socket */
3171 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3172 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3173 /* Handle create_sock error. */
3174 if (ret < 0) {
3175 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3176 goto error;
3177 }
3178 /*
3179 * Close the socket created internally by
3180 * lttcomm_create_sock, so we can replace it by the one
3181 * received from sessiond.
3182 */
3183 if (close(relayd->data_sock.sock.fd)) {
3184 PERROR("close");
3185 }
3186
3187 /* Assign new file descriptor */
3188 relayd->data_sock.sock.fd = fd;
3189 fd = -1; /* for eventual error paths */
3190 /* Assign version values. */
3191 relayd->data_sock.major = relayd_sock->major;
3192 relayd->data_sock.minor = relayd_sock->minor;
3193 break;
3194 default:
3195 ERR("Unknown relayd socket type (%d)", sock_type);
3196 ret = -1;
3197 ret_code = LTTCOMM_CONSUMERD_FATAL;
3198 goto error;
3199 }
3200
3201 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3202 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3203 relayd->net_seq_idx, fd);
3204
3205 /* We successfully added the socket. Send status back. */
3206 ret = consumer_send_status_msg(sock, ret_code);
3207 if (ret < 0) {
3208 /* Somehow, the session daemon is not responding anymore. */
3209 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3210 goto error_nosignal;
3211 }
3212
3213 /*
3214 * Add relayd socket pair to consumer data hashtable. If object already
3215 * exists or on error, the function gracefully returns.
3216 */
3217 add_relayd(relayd);
3218
3219 /* All good! */
3220 return 0;
3221
3222 error:
3223 if (consumer_send_status_msg(sock, ret_code) < 0) {
3224 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3225 }
3226
3227 error_nosignal:
3228 /* Close received socket if valid. */
3229 if (fd >= 0) {
3230 if (close(fd)) {
3231 PERROR("close received socket");
3232 }
3233 }
3234
3235 if (relayd_created) {
3236 free(relayd);
3237 }
3238
3239 return ret;
3240 }
3241
3242 /*
3243 * Try to lock the stream mutex.
3244 *
3245 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3246 */
3247 static int stream_try_lock(struct lttng_consumer_stream *stream)
3248 {
3249 int ret;
3250
3251 assert(stream);
3252
3253 /*
3254 * Try to lock the stream mutex. On failure, we know that the stream is
3255 * being used else where hence there is data still being extracted.
3256 */
3257 ret = pthread_mutex_trylock(&stream->lock);
3258 if (ret) {
3259 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3260 ret = 0;
3261 goto end;
3262 }
3263
3264 ret = 1;
3265
3266 end:
3267 return ret;
3268 }
3269
3270 /*
3271 * Search for a relayd associated to the session id and return the reference.
3272 *
3273 * A rcu read side lock MUST be acquire before calling this function and locked
3274 * until the relayd object is no longer necessary.
3275 */
3276 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3277 {
3278 struct lttng_ht_iter iter;
3279 struct consumer_relayd_sock_pair *relayd = NULL;
3280
3281 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3282 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3283 node.node) {
3284 /*
3285 * Check by sessiond id which is unique here where the relayd session
3286 * id might not be when having multiple relayd.
3287 */
3288 if (relayd->sessiond_session_id == id) {
3289 /* Found the relayd. There can be only one per id. */
3290 goto found;
3291 }
3292 }
3293
3294 return NULL;
3295
3296 found:
3297 return relayd;
3298 }
3299
3300 /*
3301 * Check if for a given session id there is still data needed to be extract
3302 * from the buffers.
3303 *
3304 * Return 1 if data is pending or else 0 meaning ready to be read.
3305 */
3306 int consumer_data_pending(uint64_t id)
3307 {
3308 int ret;
3309 struct lttng_ht_iter iter;
3310 struct lttng_ht *ht;
3311 struct lttng_consumer_stream *stream;
3312 struct consumer_relayd_sock_pair *relayd = NULL;
3313 int (*data_pending)(struct lttng_consumer_stream *);
3314
3315 DBG("Consumer data pending command on session id %" PRIu64, id);
3316
3317 rcu_read_lock();
3318 pthread_mutex_lock(&consumer_data.lock);
3319
3320 switch (consumer_data.type) {
3321 case LTTNG_CONSUMER_KERNEL:
3322 data_pending = lttng_kconsumer_data_pending;
3323 break;
3324 case LTTNG_CONSUMER32_UST:
3325 case LTTNG_CONSUMER64_UST:
3326 data_pending = lttng_ustconsumer_data_pending;
3327 break;
3328 default:
3329 ERR("Unknown consumer data type");
3330 assert(0);
3331 }
3332
3333 /* Ease our life a bit */
3334 ht = consumer_data.stream_list_ht;
3335
3336 relayd = find_relayd_by_session_id(id);
3337 if (relayd) {
3338 /* Send init command for data pending. */
3339 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3340 ret = relayd_begin_data_pending(&relayd->control_sock,
3341 relayd->relayd_session_id);
3342 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3343 if (ret < 0) {
3344 /* Communication error thus the relayd so no data pending. */
3345 goto data_not_pending;
3346 }
3347 }
3348
3349 cds_lfht_for_each_entry_duplicate(ht->ht,
3350 ht->hash_fct(&id, lttng_ht_seed),
3351 ht->match_fct, &id,
3352 &iter.iter, stream, node_session_id.node) {
3353 /* If this call fails, the stream is being used hence data pending. */
3354 ret = stream_try_lock(stream);
3355 if (!ret) {
3356 goto data_pending;
3357 }
3358
3359 /*
3360 * A removed node from the hash table indicates that the stream has
3361 * been deleted thus having a guarantee that the buffers are closed
3362 * on the consumer side. However, data can still be transmitted
3363 * over the network so don't skip the relayd check.
3364 */
3365 ret = cds_lfht_is_node_deleted(&stream->node.node);
3366 if (!ret) {
3367 /* Check the stream if there is data in the buffers. */
3368 ret = data_pending(stream);
3369 if (ret == 1) {
3370 pthread_mutex_unlock(&stream->lock);
3371 goto data_pending;
3372 }
3373 }
3374
3375 /* Relayd check */
3376 if (relayd) {
3377 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3378 if (stream->metadata_flag) {
3379 ret = relayd_quiescent_control(&relayd->control_sock,
3380 stream->relayd_stream_id);
3381 } else {
3382 ret = relayd_data_pending(&relayd->control_sock,
3383 stream->relayd_stream_id,
3384 stream->next_net_seq_num - 1);
3385 }
3386 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3387 if (ret == 1) {
3388 pthread_mutex_unlock(&stream->lock);
3389 goto data_pending;
3390 }
3391 }
3392 pthread_mutex_unlock(&stream->lock);
3393 }
3394
3395 if (relayd) {
3396 unsigned int is_data_inflight = 0;
3397
3398 /* Send init command for data pending. */
3399 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3400 ret = relayd_end_data_pending(&relayd->control_sock,
3401 relayd->relayd_session_id, &is_data_inflight);
3402 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3403 if (ret < 0) {
3404 goto data_not_pending;
3405 }
3406 if (is_data_inflight) {
3407 goto data_pending;
3408 }
3409 }
3410
3411 /*
3412 * Finding _no_ node in the hash table and no inflight data means that the
3413 * stream(s) have been removed thus data is guaranteed to be available for
3414 * analysis from the trace files.
3415 */
3416
3417 data_not_pending:
3418 /* Data is available to be read by a viewer. */
3419 pthread_mutex_unlock(&consumer_data.lock);
3420 rcu_read_unlock();
3421 return 0;
3422
3423 data_pending:
3424 /* Data is still being extracted from buffers. */
3425 pthread_mutex_unlock(&consumer_data.lock);
3426 rcu_read_unlock();
3427 return 1;
3428 }
3429
3430 /*
3431 * Send a ret code status message to the sessiond daemon.
3432 *
3433 * Return the sendmsg() return value.
3434 */
3435 int consumer_send_status_msg(int sock, int ret_code)
3436 {
3437 struct lttcomm_consumer_status_msg msg;
3438
3439 msg.ret_code = ret_code;
3440
3441 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3442 }
3443
3444 /*
3445 * Send a channel status message to the sessiond daemon.
3446 *
3447 * Return the sendmsg() return value.
3448 */
3449 int consumer_send_status_channel(int sock,
3450 struct lttng_consumer_channel *channel)
3451 {
3452 struct lttcomm_consumer_status_channel msg;
3453
3454 assert(sock >= 0);
3455
3456 if (!channel) {
3457 msg.ret_code = -LTTNG_ERR_UST_CHAN_FAIL;
3458 } else {
3459 msg.ret_code = LTTNG_OK;
3460 msg.key = channel->key;
3461 msg.stream_count = channel->streams.count;
3462 }
3463
3464 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3465 }
This page took 0.100308 seconds and 4 git commands to generate.