Transmit sessiond uuid to consumerd on launch
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50 #include <common/consumer/consumer-metadata-cache.h>
51
52 struct lttng_consumer_global_data consumer_data = {
53 .stream_count = 0,
54 .need_update = 1,
55 .type = LTTNG_CONSUMER_UNKNOWN,
56 };
57
58 enum consumer_channel_action {
59 CONSUMER_CHANNEL_ADD,
60 CONSUMER_CHANNEL_DEL,
61 CONSUMER_CHANNEL_QUIT,
62 };
63
64 struct consumer_channel_msg {
65 enum consumer_channel_action action;
66 struct lttng_consumer_channel *chan; /* add */
67 uint64_t key; /* del */
68 };
69
70 /* Flag used to temporarily pause data consumption from testpoints. */
71 int data_consumption_paused;
72
73 /*
74 * Flag to inform the polling thread to quit when all fd hung up. Updated by
75 * the consumer_thread_receive_fds when it notices that all fds has hung up.
76 * Also updated by the signal handler (consumer_should_exit()). Read by the
77 * polling threads.
78 */
79 int consumer_quit;
80
81 /*
82 * Global hash table containing respectively metadata and data streams. The
83 * stream element in this ht should only be updated by the metadata poll thread
84 * for the metadata and the data poll thread for the data.
85 */
86 static struct lttng_ht *metadata_ht;
87 static struct lttng_ht *data_ht;
88
89 /*
90 * Notify a thread lttng pipe to poll back again. This usually means that some
91 * global state has changed so we just send back the thread in a poll wait
92 * call.
93 */
94 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
95 {
96 struct lttng_consumer_stream *null_stream = NULL;
97
98 assert(pipe);
99
100 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
101 }
102
103 static void notify_health_quit_pipe(int *pipe)
104 {
105 ssize_t ret;
106
107 ret = lttng_write(pipe[1], "4", 1);
108 if (ret < 1) {
109 PERROR("write consumer health quit");
110 }
111 }
112
113 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
114 struct lttng_consumer_channel *chan,
115 uint64_t key,
116 enum consumer_channel_action action)
117 {
118 struct consumer_channel_msg msg;
119 ssize_t ret;
120
121 memset(&msg, 0, sizeof(msg));
122
123 msg.action = action;
124 msg.chan = chan;
125 msg.key = key;
126 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
127 if (ret < sizeof(msg)) {
128 PERROR("notify_channel_pipe write error");
129 }
130 }
131
132 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
133 uint64_t key)
134 {
135 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
136 }
137
138 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
139 struct lttng_consumer_channel **chan,
140 uint64_t *key,
141 enum consumer_channel_action *action)
142 {
143 struct consumer_channel_msg msg;
144 ssize_t ret;
145
146 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
147 if (ret < sizeof(msg)) {
148 ret = -1;
149 goto error;
150 }
151 *action = msg.action;
152 *chan = msg.chan;
153 *key = msg.key;
154 error:
155 return (int) ret;
156 }
157
158 /*
159 * Cleanup the stream list of a channel. Those streams are not yet globally
160 * visible
161 */
162 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
163 {
164 struct lttng_consumer_stream *stream, *stmp;
165
166 assert(channel);
167
168 /* Delete streams that might have been left in the stream list. */
169 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
170 send_node) {
171 cds_list_del(&stream->send_node);
172 /*
173 * Once a stream is added to this list, the buffers were created so we
174 * have a guarantee that this call will succeed. Setting the monitor
175 * mode to 0 so we don't lock nor try to delete the stream from the
176 * global hash table.
177 */
178 stream->monitor = 0;
179 consumer_stream_destroy(stream, NULL);
180 }
181 }
182
183 /*
184 * Find a stream. The consumer_data.lock must be locked during this
185 * call.
186 */
187 static struct lttng_consumer_stream *find_stream(uint64_t key,
188 struct lttng_ht *ht)
189 {
190 struct lttng_ht_iter iter;
191 struct lttng_ht_node_u64 *node;
192 struct lttng_consumer_stream *stream = NULL;
193
194 assert(ht);
195
196 /* -1ULL keys are lookup failures */
197 if (key == (uint64_t) -1ULL) {
198 return NULL;
199 }
200
201 rcu_read_lock();
202
203 lttng_ht_lookup(ht, &key, &iter);
204 node = lttng_ht_iter_get_node_u64(&iter);
205 if (node != NULL) {
206 stream = caa_container_of(node, struct lttng_consumer_stream, node);
207 }
208
209 rcu_read_unlock();
210
211 return stream;
212 }
213
214 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
215 {
216 struct lttng_consumer_stream *stream;
217
218 rcu_read_lock();
219 stream = find_stream(key, ht);
220 if (stream) {
221 stream->key = (uint64_t) -1ULL;
222 /*
223 * We don't want the lookup to match, but we still need
224 * to iterate on this stream when iterating over the hash table. Just
225 * change the node key.
226 */
227 stream->node.key = (uint64_t) -1ULL;
228 }
229 rcu_read_unlock();
230 }
231
232 /*
233 * Return a channel object for the given key.
234 *
235 * RCU read side lock MUST be acquired before calling this function and
236 * protects the channel ptr.
237 */
238 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
239 {
240 struct lttng_ht_iter iter;
241 struct lttng_ht_node_u64 *node;
242 struct lttng_consumer_channel *channel = NULL;
243
244 /* -1ULL keys are lookup failures */
245 if (key == (uint64_t) -1ULL) {
246 return NULL;
247 }
248
249 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
250 node = lttng_ht_iter_get_node_u64(&iter);
251 if (node != NULL) {
252 channel = caa_container_of(node, struct lttng_consumer_channel, node);
253 }
254
255 return channel;
256 }
257
258 /*
259 * There is a possibility that the consumer does not have enough time between
260 * the close of the channel on the session daemon and the cleanup in here thus
261 * once we have a channel add with an existing key, we know for sure that this
262 * channel will eventually get cleaned up by all streams being closed.
263 *
264 * This function just nullifies the already existing channel key.
265 */
266 static void steal_channel_key(uint64_t key)
267 {
268 struct lttng_consumer_channel *channel;
269
270 rcu_read_lock();
271 channel = consumer_find_channel(key);
272 if (channel) {
273 channel->key = (uint64_t) -1ULL;
274 /*
275 * We don't want the lookup to match, but we still need to iterate on
276 * this channel when iterating over the hash table. Just change the
277 * node key.
278 */
279 channel->node.key = (uint64_t) -1ULL;
280 }
281 rcu_read_unlock();
282 }
283
284 static void free_channel_rcu(struct rcu_head *head)
285 {
286 struct lttng_ht_node_u64 *node =
287 caa_container_of(head, struct lttng_ht_node_u64, head);
288 struct lttng_consumer_channel *channel =
289 caa_container_of(node, struct lttng_consumer_channel, node);
290
291 switch (consumer_data.type) {
292 case LTTNG_CONSUMER_KERNEL:
293 break;
294 case LTTNG_CONSUMER32_UST:
295 case LTTNG_CONSUMER64_UST:
296 lttng_ustconsumer_free_channel(channel);
297 break;
298 default:
299 ERR("Unknown consumer_data type");
300 abort();
301 }
302 free(channel);
303 }
304
305 /*
306 * RCU protected relayd socket pair free.
307 */
308 static void free_relayd_rcu(struct rcu_head *head)
309 {
310 struct lttng_ht_node_u64 *node =
311 caa_container_of(head, struct lttng_ht_node_u64, head);
312 struct consumer_relayd_sock_pair *relayd =
313 caa_container_of(node, struct consumer_relayd_sock_pair, node);
314
315 /*
316 * Close all sockets. This is done in the call RCU since we don't want the
317 * socket fds to be reassigned thus potentially creating bad state of the
318 * relayd object.
319 *
320 * We do not have to lock the control socket mutex here since at this stage
321 * there is no one referencing to this relayd object.
322 */
323 (void) relayd_close(&relayd->control_sock);
324 (void) relayd_close(&relayd->data_sock);
325
326 pthread_mutex_destroy(&relayd->ctrl_sock_mutex);
327 free(relayd);
328 }
329
330 /*
331 * Destroy and free relayd socket pair object.
332 */
333 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
334 {
335 int ret;
336 struct lttng_ht_iter iter;
337
338 if (relayd == NULL) {
339 return;
340 }
341
342 DBG("Consumer destroy and close relayd socket pair");
343
344 iter.iter.node = &relayd->node.node;
345 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
346 if (ret != 0) {
347 /* We assume the relayd is being or is destroyed */
348 return;
349 }
350
351 /* RCU free() call */
352 call_rcu(&relayd->node.head, free_relayd_rcu);
353 }
354
355 /*
356 * Remove a channel from the global list protected by a mutex. This function is
357 * also responsible for freeing its data structures.
358 */
359 void consumer_del_channel(struct lttng_consumer_channel *channel)
360 {
361 int ret;
362 struct lttng_ht_iter iter;
363
364 DBG("Consumer delete channel key %" PRIu64, channel->key);
365
366 pthread_mutex_lock(&consumer_data.lock);
367 pthread_mutex_lock(&channel->lock);
368
369 /* Destroy streams that might have been left in the stream list. */
370 clean_channel_stream_list(channel);
371
372 if (channel->live_timer_enabled == 1) {
373 consumer_timer_live_stop(channel);
374 }
375 if (channel->monitor_timer_enabled == 1) {
376 consumer_timer_monitor_stop(channel);
377 }
378
379 switch (consumer_data.type) {
380 case LTTNG_CONSUMER_KERNEL:
381 break;
382 case LTTNG_CONSUMER32_UST:
383 case LTTNG_CONSUMER64_UST:
384 lttng_ustconsumer_del_channel(channel);
385 break;
386 default:
387 ERR("Unknown consumer_data type");
388 assert(0);
389 goto end;
390 }
391
392 rcu_read_lock();
393 iter.iter.node = &channel->node.node;
394 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
395 assert(!ret);
396
397 iter.iter.node = &channel->channels_by_session_id_ht_node.node;
398 ret = lttng_ht_del(consumer_data.channels_by_session_id_ht, &iter);
399 assert(!ret);
400 rcu_read_unlock();
401
402 call_rcu(&channel->node.head, free_channel_rcu);
403 end:
404 pthread_mutex_unlock(&channel->lock);
405 pthread_mutex_unlock(&consumer_data.lock);
406 }
407
408 /*
409 * Iterate over the relayd hash table and destroy each element. Finally,
410 * destroy the whole hash table.
411 */
412 static void cleanup_relayd_ht(void)
413 {
414 struct lttng_ht_iter iter;
415 struct consumer_relayd_sock_pair *relayd;
416
417 rcu_read_lock();
418
419 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
420 node.node) {
421 consumer_destroy_relayd(relayd);
422 }
423
424 rcu_read_unlock();
425
426 lttng_ht_destroy(consumer_data.relayd_ht);
427 }
428
429 /*
430 * Update the end point status of all streams having the given network sequence
431 * index (relayd index).
432 *
433 * It's atomically set without having the stream mutex locked which is fine
434 * because we handle the write/read race with a pipe wakeup for each thread.
435 */
436 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
437 enum consumer_endpoint_status status)
438 {
439 struct lttng_ht_iter iter;
440 struct lttng_consumer_stream *stream;
441
442 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
443
444 rcu_read_lock();
445
446 /* Let's begin with metadata */
447 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
448 if (stream->net_seq_idx == net_seq_idx) {
449 uatomic_set(&stream->endpoint_status, status);
450 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
451 }
452 }
453
454 /* Follow up by the data streams */
455 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
456 if (stream->net_seq_idx == net_seq_idx) {
457 uatomic_set(&stream->endpoint_status, status);
458 DBG("Delete flag set to data stream %d", stream->wait_fd);
459 }
460 }
461 rcu_read_unlock();
462 }
463
464 /*
465 * Cleanup a relayd object by flagging every associated streams for deletion,
466 * destroying the object meaning removing it from the relayd hash table,
467 * closing the sockets and freeing the memory in a RCU call.
468 *
469 * If a local data context is available, notify the threads that the streams'
470 * state have changed.
471 */
472 void lttng_consumer_cleanup_relayd(struct consumer_relayd_sock_pair *relayd)
473 {
474 uint64_t netidx;
475
476 assert(relayd);
477
478 DBG("Cleaning up relayd object ID %"PRIu64, relayd->net_seq_idx);
479
480 /* Save the net sequence index before destroying the object */
481 netidx = relayd->net_seq_idx;
482
483 /*
484 * Delete the relayd from the relayd hash table, close the sockets and free
485 * the object in a RCU call.
486 */
487 consumer_destroy_relayd(relayd);
488
489 /* Set inactive endpoint to all streams */
490 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
491
492 /*
493 * With a local data context, notify the threads that the streams' state
494 * have changed. The write() action on the pipe acts as an "implicit"
495 * memory barrier ordering the updates of the end point status from the
496 * read of this status which happens AFTER receiving this notify.
497 */
498 notify_thread_lttng_pipe(relayd->ctx->consumer_data_pipe);
499 notify_thread_lttng_pipe(relayd->ctx->consumer_metadata_pipe);
500 }
501
502 /*
503 * Flag a relayd socket pair for destruction. Destroy it if the refcount
504 * reaches zero.
505 *
506 * RCU read side lock MUST be aquired before calling this function.
507 */
508 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
509 {
510 assert(relayd);
511
512 /* Set destroy flag for this object */
513 uatomic_set(&relayd->destroy_flag, 1);
514
515 /* Destroy the relayd if refcount is 0 */
516 if (uatomic_read(&relayd->refcount) == 0) {
517 consumer_destroy_relayd(relayd);
518 }
519 }
520
521 /*
522 * Completly destroy stream from every visiable data structure and the given
523 * hash table if one.
524 *
525 * One this call returns, the stream object is not longer usable nor visible.
526 */
527 void consumer_del_stream(struct lttng_consumer_stream *stream,
528 struct lttng_ht *ht)
529 {
530 consumer_stream_destroy(stream, ht);
531 }
532
533 /*
534 * XXX naming of del vs destroy is all mixed up.
535 */
536 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
537 {
538 consumer_stream_destroy(stream, data_ht);
539 }
540
541 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
542 {
543 consumer_stream_destroy(stream, metadata_ht);
544 }
545
546 void consumer_stream_update_channel_attributes(
547 struct lttng_consumer_stream *stream,
548 struct lttng_consumer_channel *channel)
549 {
550 stream->channel_read_only_attributes.tracefile_size =
551 channel->tracefile_size;
552 memcpy(stream->channel_read_only_attributes.path, channel->pathname,
553 sizeof(stream->channel_read_only_attributes.path));
554 }
555
556 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
557 uint64_t stream_key,
558 enum lttng_consumer_stream_state state,
559 const char *channel_name,
560 uid_t uid,
561 gid_t gid,
562 uint64_t relayd_id,
563 uint64_t session_id,
564 int cpu,
565 int *alloc_ret,
566 enum consumer_channel_type type,
567 unsigned int monitor,
568 uint64_t trace_archive_id)
569 {
570 int ret;
571 struct lttng_consumer_stream *stream;
572
573 stream = zmalloc(sizeof(*stream));
574 if (stream == NULL) {
575 PERROR("malloc struct lttng_consumer_stream");
576 ret = -ENOMEM;
577 goto end;
578 }
579
580 rcu_read_lock();
581
582 stream->key = stream_key;
583 stream->out_fd = -1;
584 stream->out_fd_offset = 0;
585 stream->output_written = 0;
586 stream->state = state;
587 stream->uid = uid;
588 stream->gid = gid;
589 stream->net_seq_idx = relayd_id;
590 stream->session_id = session_id;
591 stream->monitor = monitor;
592 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
593 stream->index_file = NULL;
594 stream->last_sequence_number = -1ULL;
595 stream->trace_archive_id = trace_archive_id;
596 pthread_mutex_init(&stream->lock, NULL);
597 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
598
599 /* If channel is the metadata, flag this stream as metadata. */
600 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
601 stream->metadata_flag = 1;
602 /* Metadata is flat out. */
603 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
604 /* Live rendez-vous point. */
605 pthread_cond_init(&stream->metadata_rdv, NULL);
606 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
607 } else {
608 /* Format stream name to <channel_name>_<cpu_number> */
609 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
610 channel_name, cpu);
611 if (ret < 0) {
612 PERROR("snprintf stream name");
613 goto error;
614 }
615 }
616
617 /* Key is always the wait_fd for streams. */
618 lttng_ht_node_init_u64(&stream->node, stream->key);
619
620 /* Init node per channel id key */
621 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
622
623 /* Init session id node with the stream session id */
624 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
625
626 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
627 " relayd_id %" PRIu64 ", session_id %" PRIu64,
628 stream->name, stream->key, channel_key,
629 stream->net_seq_idx, stream->session_id);
630
631 rcu_read_unlock();
632 return stream;
633
634 error:
635 rcu_read_unlock();
636 free(stream);
637 end:
638 if (alloc_ret) {
639 *alloc_ret = ret;
640 }
641 return NULL;
642 }
643
644 /*
645 * Add a stream to the global list protected by a mutex.
646 */
647 void consumer_add_data_stream(struct lttng_consumer_stream *stream)
648 {
649 struct lttng_ht *ht = data_ht;
650
651 assert(stream);
652 assert(ht);
653
654 DBG3("Adding consumer stream %" PRIu64, stream->key);
655
656 pthread_mutex_lock(&consumer_data.lock);
657 pthread_mutex_lock(&stream->chan->lock);
658 pthread_mutex_lock(&stream->chan->timer_lock);
659 pthread_mutex_lock(&stream->lock);
660 rcu_read_lock();
661
662 /* Steal stream identifier to avoid having streams with the same key */
663 steal_stream_key(stream->key, ht);
664
665 lttng_ht_add_unique_u64(ht, &stream->node);
666
667 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
668 &stream->node_channel_id);
669
670 /*
671 * Add stream to the stream_list_ht of the consumer data. No need to steal
672 * the key since the HT does not use it and we allow to add redundant keys
673 * into this table.
674 */
675 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
676
677 /*
678 * When nb_init_stream_left reaches 0, we don't need to trigger any action
679 * in terms of destroying the associated channel, because the action that
680 * causes the count to become 0 also causes a stream to be added. The
681 * channel deletion will thus be triggered by the following removal of this
682 * stream.
683 */
684 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
685 /* Increment refcount before decrementing nb_init_stream_left */
686 cmm_smp_wmb();
687 uatomic_dec(&stream->chan->nb_init_stream_left);
688 }
689
690 /* Update consumer data once the node is inserted. */
691 consumer_data.stream_count++;
692 consumer_data.need_update = 1;
693
694 rcu_read_unlock();
695 pthread_mutex_unlock(&stream->lock);
696 pthread_mutex_unlock(&stream->chan->timer_lock);
697 pthread_mutex_unlock(&stream->chan->lock);
698 pthread_mutex_unlock(&consumer_data.lock);
699 }
700
701 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
702 {
703 consumer_del_stream(stream, data_ht);
704 }
705
706 /*
707 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
708 * be acquired before calling this.
709 */
710 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
711 {
712 int ret = 0;
713 struct lttng_ht_node_u64 *node;
714 struct lttng_ht_iter iter;
715
716 assert(relayd);
717
718 lttng_ht_lookup(consumer_data.relayd_ht,
719 &relayd->net_seq_idx, &iter);
720 node = lttng_ht_iter_get_node_u64(&iter);
721 if (node != NULL) {
722 goto end;
723 }
724 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
725
726 end:
727 return ret;
728 }
729
730 /*
731 * Allocate and return a consumer relayd socket.
732 */
733 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
734 uint64_t net_seq_idx)
735 {
736 struct consumer_relayd_sock_pair *obj = NULL;
737
738 /* net sequence index of -1 is a failure */
739 if (net_seq_idx == (uint64_t) -1ULL) {
740 goto error;
741 }
742
743 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
744 if (obj == NULL) {
745 PERROR("zmalloc relayd sock");
746 goto error;
747 }
748
749 obj->net_seq_idx = net_seq_idx;
750 obj->refcount = 0;
751 obj->destroy_flag = 0;
752 obj->control_sock.sock.fd = -1;
753 obj->data_sock.sock.fd = -1;
754 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
755 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
756
757 error:
758 return obj;
759 }
760
761 /*
762 * Find a relayd socket pair in the global consumer data.
763 *
764 * Return the object if found else NULL.
765 * RCU read-side lock must be held across this call and while using the
766 * returned object.
767 */
768 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
769 {
770 struct lttng_ht_iter iter;
771 struct lttng_ht_node_u64 *node;
772 struct consumer_relayd_sock_pair *relayd = NULL;
773
774 /* Negative keys are lookup failures */
775 if (key == (uint64_t) -1ULL) {
776 goto error;
777 }
778
779 lttng_ht_lookup(consumer_data.relayd_ht, &key,
780 &iter);
781 node = lttng_ht_iter_get_node_u64(&iter);
782 if (node != NULL) {
783 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
784 }
785
786 error:
787 return relayd;
788 }
789
790 /*
791 * Find a relayd and send the stream
792 *
793 * Returns 0 on success, < 0 on error
794 */
795 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
796 char *path)
797 {
798 int ret = 0;
799 struct consumer_relayd_sock_pair *relayd;
800
801 assert(stream);
802 assert(stream->net_seq_idx != -1ULL);
803 assert(path);
804
805 /* The stream is not metadata. Get relayd reference if exists. */
806 rcu_read_lock();
807 relayd = consumer_find_relayd(stream->net_seq_idx);
808 if (relayd != NULL) {
809 /* Add stream on the relayd */
810 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
811 ret = relayd_add_stream(&relayd->control_sock, stream->name,
812 path, &stream->relayd_stream_id,
813 stream->chan->tracefile_size, stream->chan->tracefile_count,
814 stream->trace_archive_id);
815 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
816 if (ret < 0) {
817 ERR("Relayd add stream failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
818 lttng_consumer_cleanup_relayd(relayd);
819 goto end;
820 }
821
822 uatomic_inc(&relayd->refcount);
823 stream->sent_to_relayd = 1;
824 } else {
825 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
826 stream->key, stream->net_seq_idx);
827 ret = -1;
828 goto end;
829 }
830
831 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
832 stream->name, stream->key, stream->net_seq_idx);
833
834 end:
835 rcu_read_unlock();
836 return ret;
837 }
838
839 /*
840 * Find a relayd and send the streams sent message
841 *
842 * Returns 0 on success, < 0 on error
843 */
844 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
845 {
846 int ret = 0;
847 struct consumer_relayd_sock_pair *relayd;
848
849 assert(net_seq_idx != -1ULL);
850
851 /* The stream is not metadata. Get relayd reference if exists. */
852 rcu_read_lock();
853 relayd = consumer_find_relayd(net_seq_idx);
854 if (relayd != NULL) {
855 /* Add stream on the relayd */
856 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
857 ret = relayd_streams_sent(&relayd->control_sock);
858 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
859 if (ret < 0) {
860 ERR("Relayd streams sent failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
861 lttng_consumer_cleanup_relayd(relayd);
862 goto end;
863 }
864 } else {
865 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
866 net_seq_idx);
867 ret = -1;
868 goto end;
869 }
870
871 ret = 0;
872 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
873
874 end:
875 rcu_read_unlock();
876 return ret;
877 }
878
879 /*
880 * Find a relayd and close the stream
881 */
882 void close_relayd_stream(struct lttng_consumer_stream *stream)
883 {
884 struct consumer_relayd_sock_pair *relayd;
885
886 /* The stream is not metadata. Get relayd reference if exists. */
887 rcu_read_lock();
888 relayd = consumer_find_relayd(stream->net_seq_idx);
889 if (relayd) {
890 consumer_stream_relayd_close(stream, relayd);
891 }
892 rcu_read_unlock();
893 }
894
895 /*
896 * Handle stream for relayd transmission if the stream applies for network
897 * streaming where the net sequence index is set.
898 *
899 * Return destination file descriptor or negative value on error.
900 */
901 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
902 size_t data_size, unsigned long padding,
903 struct consumer_relayd_sock_pair *relayd)
904 {
905 int outfd = -1, ret;
906 struct lttcomm_relayd_data_hdr data_hdr;
907
908 /* Safety net */
909 assert(stream);
910 assert(relayd);
911
912 /* Reset data header */
913 memset(&data_hdr, 0, sizeof(data_hdr));
914
915 if (stream->metadata_flag) {
916 /* Caller MUST acquire the relayd control socket lock */
917 ret = relayd_send_metadata(&relayd->control_sock, data_size);
918 if (ret < 0) {
919 goto error;
920 }
921
922 /* Metadata are always sent on the control socket. */
923 outfd = relayd->control_sock.sock.fd;
924 } else {
925 /* Set header with stream information */
926 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
927 data_hdr.data_size = htobe32(data_size);
928 data_hdr.padding_size = htobe32(padding);
929 /*
930 * Note that net_seq_num below is assigned with the *current* value of
931 * next_net_seq_num and only after that the next_net_seq_num will be
932 * increment. This is why when issuing a command on the relayd using
933 * this next value, 1 should always be substracted in order to compare
934 * the last seen sequence number on the relayd side to the last sent.
935 */
936 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
937 /* Other fields are zeroed previously */
938
939 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
940 sizeof(data_hdr));
941 if (ret < 0) {
942 goto error;
943 }
944
945 ++stream->next_net_seq_num;
946
947 /* Set to go on data socket */
948 outfd = relayd->data_sock.sock.fd;
949 }
950
951 error:
952 return outfd;
953 }
954
955 /*
956 * Allocate and return a new lttng_consumer_channel object using the given key
957 * to initialize the hash table node.
958 *
959 * On error, return NULL.
960 */
961 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
962 uint64_t session_id,
963 const char *pathname,
964 const char *name,
965 uid_t uid,
966 gid_t gid,
967 uint64_t relayd_id,
968 enum lttng_event_output output,
969 uint64_t tracefile_size,
970 uint64_t tracefile_count,
971 uint64_t session_id_per_pid,
972 unsigned int monitor,
973 unsigned int live_timer_interval,
974 const char *root_shm_path,
975 const char *shm_path)
976 {
977 struct lttng_consumer_channel *channel;
978
979 channel = zmalloc(sizeof(*channel));
980 if (channel == NULL) {
981 PERROR("malloc struct lttng_consumer_channel");
982 goto end;
983 }
984
985 channel->key = key;
986 channel->refcount = 0;
987 channel->session_id = session_id;
988 channel->session_id_per_pid = session_id_per_pid;
989 channel->uid = uid;
990 channel->gid = gid;
991 channel->relayd_id = relayd_id;
992 channel->tracefile_size = tracefile_size;
993 channel->tracefile_count = tracefile_count;
994 channel->monitor = monitor;
995 channel->live_timer_interval = live_timer_interval;
996 pthread_mutex_init(&channel->lock, NULL);
997 pthread_mutex_init(&channel->timer_lock, NULL);
998
999 switch (output) {
1000 case LTTNG_EVENT_SPLICE:
1001 channel->output = CONSUMER_CHANNEL_SPLICE;
1002 break;
1003 case LTTNG_EVENT_MMAP:
1004 channel->output = CONSUMER_CHANNEL_MMAP;
1005 break;
1006 default:
1007 assert(0);
1008 free(channel);
1009 channel = NULL;
1010 goto end;
1011 }
1012
1013 /*
1014 * In monitor mode, the streams associated with the channel will be put in
1015 * a special list ONLY owned by this channel. So, the refcount is set to 1
1016 * here meaning that the channel itself has streams that are referenced.
1017 *
1018 * On a channel deletion, once the channel is no longer visible, the
1019 * refcount is decremented and checked for a zero value to delete it. With
1020 * streams in no monitor mode, it will now be safe to destroy the channel.
1021 */
1022 if (!channel->monitor) {
1023 channel->refcount = 1;
1024 }
1025
1026 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1027 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1028
1029 strncpy(channel->name, name, sizeof(channel->name));
1030 channel->name[sizeof(channel->name) - 1] = '\0';
1031
1032 if (root_shm_path) {
1033 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1034 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1035 }
1036 if (shm_path) {
1037 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1038 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1039 }
1040
1041 lttng_ht_node_init_u64(&channel->node, channel->key);
1042 lttng_ht_node_init_u64(&channel->channels_by_session_id_ht_node,
1043 channel->session_id);
1044
1045 channel->wait_fd = -1;
1046
1047 CDS_INIT_LIST_HEAD(&channel->streams.head);
1048
1049 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1050
1051 end:
1052 return channel;
1053 }
1054
1055 /*
1056 * Add a channel to the global list protected by a mutex.
1057 *
1058 * Always return 0 indicating success.
1059 */
1060 int consumer_add_channel(struct lttng_consumer_channel *channel,
1061 struct lttng_consumer_local_data *ctx)
1062 {
1063 pthread_mutex_lock(&consumer_data.lock);
1064 pthread_mutex_lock(&channel->lock);
1065 pthread_mutex_lock(&channel->timer_lock);
1066
1067 /*
1068 * This gives us a guarantee that the channel we are about to add to the
1069 * channel hash table will be unique. See this function comment on the why
1070 * we need to steel the channel key at this stage.
1071 */
1072 steal_channel_key(channel->key);
1073
1074 rcu_read_lock();
1075 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1076 lttng_ht_add_u64(consumer_data.channels_by_session_id_ht,
1077 &channel->channels_by_session_id_ht_node);
1078 rcu_read_unlock();
1079
1080 pthread_mutex_unlock(&channel->timer_lock);
1081 pthread_mutex_unlock(&channel->lock);
1082 pthread_mutex_unlock(&consumer_data.lock);
1083
1084 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1085 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1086 }
1087
1088 return 0;
1089 }
1090
1091 /*
1092 * Allocate the pollfd structure and the local view of the out fds to avoid
1093 * doing a lookup in the linked list and concurrency issues when writing is
1094 * needed. Called with consumer_data.lock held.
1095 *
1096 * Returns the number of fds in the structures.
1097 */
1098 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1099 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1100 struct lttng_ht *ht, int *nb_inactive_fd)
1101 {
1102 int i = 0;
1103 struct lttng_ht_iter iter;
1104 struct lttng_consumer_stream *stream;
1105
1106 assert(ctx);
1107 assert(ht);
1108 assert(pollfd);
1109 assert(local_stream);
1110
1111 DBG("Updating poll fd array");
1112 *nb_inactive_fd = 0;
1113 rcu_read_lock();
1114 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1115 /*
1116 * Only active streams with an active end point can be added to the
1117 * poll set and local stream storage of the thread.
1118 *
1119 * There is a potential race here for endpoint_status to be updated
1120 * just after the check. However, this is OK since the stream(s) will
1121 * be deleted once the thread is notified that the end point state has
1122 * changed where this function will be called back again.
1123 *
1124 * We track the number of inactive FDs because they still need to be
1125 * closed by the polling thread after a wakeup on the data_pipe or
1126 * metadata_pipe.
1127 */
1128 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1129 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1130 (*nb_inactive_fd)++;
1131 continue;
1132 }
1133 /*
1134 * This clobbers way too much the debug output. Uncomment that if you
1135 * need it for debugging purposes.
1136 *
1137 * DBG("Active FD %d", stream->wait_fd);
1138 */
1139 (*pollfd)[i].fd = stream->wait_fd;
1140 (*pollfd)[i].events = POLLIN | POLLPRI;
1141 local_stream[i] = stream;
1142 i++;
1143 }
1144 rcu_read_unlock();
1145
1146 /*
1147 * Insert the consumer_data_pipe at the end of the array and don't
1148 * increment i so nb_fd is the number of real FD.
1149 */
1150 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1151 (*pollfd)[i].events = POLLIN | POLLPRI;
1152
1153 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1154 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1155 return i;
1156 }
1157
1158 /*
1159 * Poll on the should_quit pipe and the command socket return -1 on
1160 * error, 1 if should exit, 0 if data is available on the command socket
1161 */
1162 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1163 {
1164 int num_rdy;
1165
1166 restart:
1167 num_rdy = poll(consumer_sockpoll, 2, -1);
1168 if (num_rdy == -1) {
1169 /*
1170 * Restart interrupted system call.
1171 */
1172 if (errno == EINTR) {
1173 goto restart;
1174 }
1175 PERROR("Poll error");
1176 return -1;
1177 }
1178 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1179 DBG("consumer_should_quit wake up");
1180 return 1;
1181 }
1182 return 0;
1183 }
1184
1185 /*
1186 * Set the error socket.
1187 */
1188 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1189 int sock)
1190 {
1191 ctx->consumer_error_socket = sock;
1192 }
1193
1194 /*
1195 * Set the command socket path.
1196 */
1197 void lttng_consumer_set_command_sock_path(
1198 struct lttng_consumer_local_data *ctx, char *sock)
1199 {
1200 ctx->consumer_command_sock_path = sock;
1201 }
1202
1203 /*
1204 * Send return code to the session daemon.
1205 * If the socket is not defined, we return 0, it is not a fatal error
1206 */
1207 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1208 {
1209 if (ctx->consumer_error_socket > 0) {
1210 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1211 sizeof(enum lttcomm_sessiond_command));
1212 }
1213
1214 return 0;
1215 }
1216
1217 /*
1218 * Close all the tracefiles and stream fds and MUST be called when all
1219 * instances are destroyed i.e. when all threads were joined and are ended.
1220 */
1221 void lttng_consumer_cleanup(void)
1222 {
1223 struct lttng_ht_iter iter;
1224 struct lttng_consumer_channel *channel;
1225
1226 rcu_read_lock();
1227
1228 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1229 node.node) {
1230 consumer_del_channel(channel);
1231 }
1232
1233 rcu_read_unlock();
1234
1235 lttng_ht_destroy(consumer_data.channel_ht);
1236 lttng_ht_destroy(consumer_data.channels_by_session_id_ht);
1237
1238 cleanup_relayd_ht();
1239
1240 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1241
1242 /*
1243 * This HT contains streams that are freed by either the metadata thread or
1244 * the data thread so we do *nothing* on the hash table and simply destroy
1245 * it.
1246 */
1247 lttng_ht_destroy(consumer_data.stream_list_ht);
1248
1249 lttng_trace_chunk_registry_destroy(consumer_data.chunk_registry);
1250 }
1251
1252 /*
1253 * Called from signal handler.
1254 */
1255 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1256 {
1257 ssize_t ret;
1258
1259 CMM_STORE_SHARED(consumer_quit, 1);
1260 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1261 if (ret < 1) {
1262 PERROR("write consumer quit");
1263 }
1264
1265 DBG("Consumer flag that it should quit");
1266 }
1267
1268
1269 /*
1270 * Flush pending writes to trace output disk file.
1271 */
1272 static
1273 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1274 off_t orig_offset)
1275 {
1276 int ret;
1277 int outfd = stream->out_fd;
1278
1279 /*
1280 * This does a blocking write-and-wait on any page that belongs to the
1281 * subbuffer prior to the one we just wrote.
1282 * Don't care about error values, as these are just hints and ways to
1283 * limit the amount of page cache used.
1284 */
1285 if (orig_offset < stream->max_sb_size) {
1286 return;
1287 }
1288 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1289 stream->max_sb_size,
1290 SYNC_FILE_RANGE_WAIT_BEFORE
1291 | SYNC_FILE_RANGE_WRITE
1292 | SYNC_FILE_RANGE_WAIT_AFTER);
1293 /*
1294 * Give hints to the kernel about how we access the file:
1295 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1296 * we write it.
1297 *
1298 * We need to call fadvise again after the file grows because the
1299 * kernel does not seem to apply fadvise to non-existing parts of the
1300 * file.
1301 *
1302 * Call fadvise _after_ having waited for the page writeback to
1303 * complete because the dirty page writeback semantic is not well
1304 * defined. So it can be expected to lead to lower throughput in
1305 * streaming.
1306 */
1307 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1308 stream->max_sb_size, POSIX_FADV_DONTNEED);
1309 if (ret && ret != -ENOSYS) {
1310 errno = ret;
1311 PERROR("posix_fadvise on fd %i", outfd);
1312 }
1313 }
1314
1315 /*
1316 * Initialise the necessary environnement :
1317 * - create a new context
1318 * - create the poll_pipe
1319 * - create the should_quit pipe (for signal handler)
1320 * - create the thread pipe (for splice)
1321 *
1322 * Takes a function pointer as argument, this function is called when data is
1323 * available on a buffer. This function is responsible to do the
1324 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1325 * buffer configuration and then kernctl_put_next_subbuf at the end.
1326 *
1327 * Returns a pointer to the new context or NULL on error.
1328 */
1329 struct lttng_consumer_local_data *lttng_consumer_create(
1330 enum lttng_consumer_type type,
1331 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1332 struct lttng_consumer_local_data *ctx),
1333 int (*recv_channel)(struct lttng_consumer_channel *channel),
1334 int (*recv_stream)(struct lttng_consumer_stream *stream),
1335 int (*update_stream)(uint64_t stream_key, uint32_t state))
1336 {
1337 int ret;
1338 struct lttng_consumer_local_data *ctx;
1339
1340 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1341 consumer_data.type == type);
1342 consumer_data.type = type;
1343
1344 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1345 if (ctx == NULL) {
1346 PERROR("allocating context");
1347 goto error;
1348 }
1349
1350 ctx->consumer_error_socket = -1;
1351 ctx->consumer_metadata_socket = -1;
1352 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1353 /* assign the callbacks */
1354 ctx->on_buffer_ready = buffer_ready;
1355 ctx->on_recv_channel = recv_channel;
1356 ctx->on_recv_stream = recv_stream;
1357 ctx->on_update_stream = update_stream;
1358
1359 ctx->consumer_data_pipe = lttng_pipe_open(0);
1360 if (!ctx->consumer_data_pipe) {
1361 goto error_poll_pipe;
1362 }
1363
1364 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1365 if (!ctx->consumer_wakeup_pipe) {
1366 goto error_wakeup_pipe;
1367 }
1368
1369 ret = pipe(ctx->consumer_should_quit);
1370 if (ret < 0) {
1371 PERROR("Error creating recv pipe");
1372 goto error_quit_pipe;
1373 }
1374
1375 ret = pipe(ctx->consumer_channel_pipe);
1376 if (ret < 0) {
1377 PERROR("Error creating channel pipe");
1378 goto error_channel_pipe;
1379 }
1380
1381 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1382 if (!ctx->consumer_metadata_pipe) {
1383 goto error_metadata_pipe;
1384 }
1385
1386 ctx->channel_monitor_pipe = -1;
1387
1388 return ctx;
1389
1390 error_metadata_pipe:
1391 utils_close_pipe(ctx->consumer_channel_pipe);
1392 error_channel_pipe:
1393 utils_close_pipe(ctx->consumer_should_quit);
1394 error_quit_pipe:
1395 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1396 error_wakeup_pipe:
1397 lttng_pipe_destroy(ctx->consumer_data_pipe);
1398 error_poll_pipe:
1399 free(ctx);
1400 error:
1401 return NULL;
1402 }
1403
1404 /*
1405 * Iterate over all streams of the hashtable and free them properly.
1406 */
1407 static void destroy_data_stream_ht(struct lttng_ht *ht)
1408 {
1409 struct lttng_ht_iter iter;
1410 struct lttng_consumer_stream *stream;
1411
1412 if (ht == NULL) {
1413 return;
1414 }
1415
1416 rcu_read_lock();
1417 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1418 /*
1419 * Ignore return value since we are currently cleaning up so any error
1420 * can't be handled.
1421 */
1422 (void) consumer_del_stream(stream, ht);
1423 }
1424 rcu_read_unlock();
1425
1426 lttng_ht_destroy(ht);
1427 }
1428
1429 /*
1430 * Iterate over all streams of the metadata hashtable and free them
1431 * properly.
1432 */
1433 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1434 {
1435 struct lttng_ht_iter iter;
1436 struct lttng_consumer_stream *stream;
1437
1438 if (ht == NULL) {
1439 return;
1440 }
1441
1442 rcu_read_lock();
1443 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1444 /*
1445 * Ignore return value since we are currently cleaning up so any error
1446 * can't be handled.
1447 */
1448 (void) consumer_del_metadata_stream(stream, ht);
1449 }
1450 rcu_read_unlock();
1451
1452 lttng_ht_destroy(ht);
1453 }
1454
1455 /*
1456 * Close all fds associated with the instance and free the context.
1457 */
1458 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1459 {
1460 int ret;
1461
1462 DBG("Consumer destroying it. Closing everything.");
1463
1464 if (!ctx) {
1465 return;
1466 }
1467
1468 destroy_data_stream_ht(data_ht);
1469 destroy_metadata_stream_ht(metadata_ht);
1470
1471 ret = close(ctx->consumer_error_socket);
1472 if (ret) {
1473 PERROR("close");
1474 }
1475 ret = close(ctx->consumer_metadata_socket);
1476 if (ret) {
1477 PERROR("close");
1478 }
1479 utils_close_pipe(ctx->consumer_channel_pipe);
1480 lttng_pipe_destroy(ctx->consumer_data_pipe);
1481 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1482 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1483 utils_close_pipe(ctx->consumer_should_quit);
1484
1485 unlink(ctx->consumer_command_sock_path);
1486 free(ctx);
1487 }
1488
1489 /*
1490 * Write the metadata stream id on the specified file descriptor.
1491 */
1492 static int write_relayd_metadata_id(int fd,
1493 struct lttng_consumer_stream *stream,
1494 unsigned long padding)
1495 {
1496 ssize_t ret;
1497 struct lttcomm_relayd_metadata_payload hdr;
1498
1499 hdr.stream_id = htobe64(stream->relayd_stream_id);
1500 hdr.padding_size = htobe32(padding);
1501 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1502 if (ret < sizeof(hdr)) {
1503 /*
1504 * This error means that the fd's end is closed so ignore the PERROR
1505 * not to clubber the error output since this can happen in a normal
1506 * code path.
1507 */
1508 if (errno != EPIPE) {
1509 PERROR("write metadata stream id");
1510 }
1511 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1512 /*
1513 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1514 * handle writting the missing part so report that as an error and
1515 * don't lie to the caller.
1516 */
1517 ret = -1;
1518 goto end;
1519 }
1520 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1521 stream->relayd_stream_id, padding);
1522
1523 end:
1524 return (int) ret;
1525 }
1526
1527 /*
1528 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1529 * core function for writing trace buffers to either the local filesystem or
1530 * the network.
1531 *
1532 * It must be called with the stream lock held.
1533 *
1534 * Careful review MUST be put if any changes occur!
1535 *
1536 * Returns the number of bytes written
1537 */
1538 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1539 struct lttng_consumer_local_data *ctx,
1540 struct lttng_consumer_stream *stream, unsigned long len,
1541 unsigned long padding,
1542 struct ctf_packet_index *index)
1543 {
1544 unsigned long mmap_offset;
1545 void *mmap_base;
1546 ssize_t ret = 0;
1547 off_t orig_offset = stream->out_fd_offset;
1548 /* Default is on the disk */
1549 int outfd = stream->out_fd;
1550 struct consumer_relayd_sock_pair *relayd = NULL;
1551 unsigned int relayd_hang_up = 0;
1552
1553 /* RCU lock for the relayd pointer */
1554 rcu_read_lock();
1555
1556 /* Flag that the current stream if set for network streaming. */
1557 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1558 relayd = consumer_find_relayd(stream->net_seq_idx);
1559 if (relayd == NULL) {
1560 ret = -EPIPE;
1561 goto end;
1562 }
1563 }
1564
1565 /* get the offset inside the fd to mmap */
1566 switch (consumer_data.type) {
1567 case LTTNG_CONSUMER_KERNEL:
1568 mmap_base = stream->mmap_base;
1569 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1570 if (ret < 0) {
1571 PERROR("tracer ctl get_mmap_read_offset");
1572 goto end;
1573 }
1574 break;
1575 case LTTNG_CONSUMER32_UST:
1576 case LTTNG_CONSUMER64_UST:
1577 mmap_base = lttng_ustctl_get_mmap_base(stream);
1578 if (!mmap_base) {
1579 ERR("read mmap get mmap base for stream %s", stream->name);
1580 ret = -EPERM;
1581 goto end;
1582 }
1583 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1584 if (ret != 0) {
1585 PERROR("tracer ctl get_mmap_read_offset");
1586 ret = -EINVAL;
1587 goto end;
1588 }
1589 break;
1590 default:
1591 ERR("Unknown consumer_data type");
1592 assert(0);
1593 }
1594
1595 /* Handle stream on the relayd if the output is on the network */
1596 if (relayd) {
1597 unsigned long netlen = len;
1598
1599 /*
1600 * Lock the control socket for the complete duration of the function
1601 * since from this point on we will use the socket.
1602 */
1603 if (stream->metadata_flag) {
1604 /* Metadata requires the control socket. */
1605 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1606 if (stream->reset_metadata_flag) {
1607 ret = relayd_reset_metadata(&relayd->control_sock,
1608 stream->relayd_stream_id,
1609 stream->metadata_version);
1610 if (ret < 0) {
1611 relayd_hang_up = 1;
1612 goto write_error;
1613 }
1614 stream->reset_metadata_flag = 0;
1615 }
1616 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1617 }
1618
1619 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1620 if (ret < 0) {
1621 relayd_hang_up = 1;
1622 goto write_error;
1623 }
1624 /* Use the returned socket. */
1625 outfd = ret;
1626
1627 /* Write metadata stream id before payload */
1628 if (stream->metadata_flag) {
1629 ret = write_relayd_metadata_id(outfd, stream, padding);
1630 if (ret < 0) {
1631 relayd_hang_up = 1;
1632 goto write_error;
1633 }
1634 }
1635 } else {
1636 /* No streaming, we have to set the len with the full padding */
1637 len += padding;
1638
1639 if (stream->metadata_flag && stream->reset_metadata_flag) {
1640 ret = utils_truncate_stream_file(stream->out_fd, 0);
1641 if (ret < 0) {
1642 ERR("Reset metadata file");
1643 goto end;
1644 }
1645 stream->reset_metadata_flag = 0;
1646 }
1647
1648 /*
1649 * Check if we need to change the tracefile before writing the packet.
1650 */
1651 if (stream->chan->tracefile_size > 0 &&
1652 (stream->tracefile_size_current + len) >
1653 stream->chan->tracefile_size) {
1654 ret = utils_rotate_stream_file(stream->chan->pathname,
1655 stream->name, stream->chan->tracefile_size,
1656 stream->chan->tracefile_count, stream->uid, stream->gid,
1657 stream->out_fd, &(stream->tracefile_count_current),
1658 &stream->out_fd);
1659 if (ret < 0) {
1660 ERR("Rotating output file");
1661 goto end;
1662 }
1663 outfd = stream->out_fd;
1664
1665 if (stream->index_file) {
1666 lttng_index_file_put(stream->index_file);
1667 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1668 stream->name, stream->uid, stream->gid,
1669 stream->chan->tracefile_size,
1670 stream->tracefile_count_current,
1671 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1672 if (!stream->index_file) {
1673 goto end;
1674 }
1675 }
1676
1677 /* Reset current size because we just perform a rotation. */
1678 stream->tracefile_size_current = 0;
1679 stream->out_fd_offset = 0;
1680 orig_offset = 0;
1681 }
1682 stream->tracefile_size_current += len;
1683 if (index) {
1684 index->offset = htobe64(stream->out_fd_offset);
1685 }
1686 }
1687
1688 /*
1689 * This call guarantee that len or less is returned. It's impossible to
1690 * receive a ret value that is bigger than len.
1691 */
1692 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1693 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1694 if (ret < 0 || ((size_t) ret != len)) {
1695 /*
1696 * Report error to caller if nothing was written else at least send the
1697 * amount written.
1698 */
1699 if (ret < 0) {
1700 ret = -errno;
1701 }
1702 relayd_hang_up = 1;
1703
1704 /* Socket operation failed. We consider the relayd dead */
1705 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1706 /*
1707 * This is possible if the fd is closed on the other side
1708 * (outfd) or any write problem. It can be verbose a bit for a
1709 * normal execution if for instance the relayd is stopped
1710 * abruptly. This can happen so set this to a DBG statement.
1711 */
1712 DBG("Consumer mmap write detected relayd hang up");
1713 } else {
1714 /* Unhandled error, print it and stop function right now. */
1715 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1716 }
1717 goto write_error;
1718 }
1719 stream->output_written += ret;
1720
1721 /* This call is useless on a socket so better save a syscall. */
1722 if (!relayd) {
1723 /* This won't block, but will start writeout asynchronously */
1724 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1725 SYNC_FILE_RANGE_WRITE);
1726 stream->out_fd_offset += len;
1727 lttng_consumer_sync_trace_file(stream, orig_offset);
1728 }
1729
1730 write_error:
1731 /*
1732 * This is a special case that the relayd has closed its socket. Let's
1733 * cleanup the relayd object and all associated streams.
1734 */
1735 if (relayd && relayd_hang_up) {
1736 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
1737 lttng_consumer_cleanup_relayd(relayd);
1738 }
1739
1740 end:
1741 /* Unlock only if ctrl socket used */
1742 if (relayd && stream->metadata_flag) {
1743 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1744 }
1745
1746 rcu_read_unlock();
1747 return ret;
1748 }
1749
1750 /*
1751 * Splice the data from the ring buffer to the tracefile.
1752 *
1753 * It must be called with the stream lock held.
1754 *
1755 * Returns the number of bytes spliced.
1756 */
1757 ssize_t lttng_consumer_on_read_subbuffer_splice(
1758 struct lttng_consumer_local_data *ctx,
1759 struct lttng_consumer_stream *stream, unsigned long len,
1760 unsigned long padding,
1761 struct ctf_packet_index *index)
1762 {
1763 ssize_t ret = 0, written = 0, ret_splice = 0;
1764 loff_t offset = 0;
1765 off_t orig_offset = stream->out_fd_offset;
1766 int fd = stream->wait_fd;
1767 /* Default is on the disk */
1768 int outfd = stream->out_fd;
1769 struct consumer_relayd_sock_pair *relayd = NULL;
1770 int *splice_pipe;
1771 unsigned int relayd_hang_up = 0;
1772
1773 switch (consumer_data.type) {
1774 case LTTNG_CONSUMER_KERNEL:
1775 break;
1776 case LTTNG_CONSUMER32_UST:
1777 case LTTNG_CONSUMER64_UST:
1778 /* Not supported for user space tracing */
1779 return -ENOSYS;
1780 default:
1781 ERR("Unknown consumer_data type");
1782 assert(0);
1783 }
1784
1785 /* RCU lock for the relayd pointer */
1786 rcu_read_lock();
1787
1788 /* Flag that the current stream if set for network streaming. */
1789 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1790 relayd = consumer_find_relayd(stream->net_seq_idx);
1791 if (relayd == NULL) {
1792 written = -ret;
1793 goto end;
1794 }
1795 }
1796 splice_pipe = stream->splice_pipe;
1797
1798 /* Write metadata stream id before payload */
1799 if (relayd) {
1800 unsigned long total_len = len;
1801
1802 if (stream->metadata_flag) {
1803 /*
1804 * Lock the control socket for the complete duration of the function
1805 * since from this point on we will use the socket.
1806 */
1807 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1808
1809 if (stream->reset_metadata_flag) {
1810 ret = relayd_reset_metadata(&relayd->control_sock,
1811 stream->relayd_stream_id,
1812 stream->metadata_version);
1813 if (ret < 0) {
1814 relayd_hang_up = 1;
1815 goto write_error;
1816 }
1817 stream->reset_metadata_flag = 0;
1818 }
1819 ret = write_relayd_metadata_id(splice_pipe[1], stream,
1820 padding);
1821 if (ret < 0) {
1822 written = ret;
1823 relayd_hang_up = 1;
1824 goto write_error;
1825 }
1826
1827 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1828 }
1829
1830 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1831 if (ret < 0) {
1832 written = ret;
1833 relayd_hang_up = 1;
1834 goto write_error;
1835 }
1836 /* Use the returned socket. */
1837 outfd = ret;
1838 } else {
1839 /* No streaming, we have to set the len with the full padding */
1840 len += padding;
1841
1842 if (stream->metadata_flag && stream->reset_metadata_flag) {
1843 ret = utils_truncate_stream_file(stream->out_fd, 0);
1844 if (ret < 0) {
1845 ERR("Reset metadata file");
1846 goto end;
1847 }
1848 stream->reset_metadata_flag = 0;
1849 }
1850 /*
1851 * Check if we need to change the tracefile before writing the packet.
1852 */
1853 if (stream->chan->tracefile_size > 0 &&
1854 (stream->tracefile_size_current + len) >
1855 stream->chan->tracefile_size) {
1856 ret = utils_rotate_stream_file(stream->chan->pathname,
1857 stream->name, stream->chan->tracefile_size,
1858 stream->chan->tracefile_count, stream->uid, stream->gid,
1859 stream->out_fd, &(stream->tracefile_count_current),
1860 &stream->out_fd);
1861 if (ret < 0) {
1862 written = ret;
1863 ERR("Rotating output file");
1864 goto end;
1865 }
1866 outfd = stream->out_fd;
1867
1868 if (stream->index_file) {
1869 lttng_index_file_put(stream->index_file);
1870 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1871 stream->name, stream->uid, stream->gid,
1872 stream->chan->tracefile_size,
1873 stream->tracefile_count_current,
1874 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1875 if (!stream->index_file) {
1876 goto end;
1877 }
1878 }
1879
1880 /* Reset current size because we just perform a rotation. */
1881 stream->tracefile_size_current = 0;
1882 stream->out_fd_offset = 0;
1883 orig_offset = 0;
1884 }
1885 stream->tracefile_size_current += len;
1886 index->offset = htobe64(stream->out_fd_offset);
1887 }
1888
1889 while (len > 0) {
1890 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1891 (unsigned long)offset, len, fd, splice_pipe[1]);
1892 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1893 SPLICE_F_MOVE | SPLICE_F_MORE);
1894 DBG("splice chan to pipe, ret %zd", ret_splice);
1895 if (ret_splice < 0) {
1896 ret = errno;
1897 written = -ret;
1898 PERROR("Error in relay splice");
1899 goto splice_error;
1900 }
1901
1902 /* Handle stream on the relayd if the output is on the network */
1903 if (relayd && stream->metadata_flag) {
1904 size_t metadata_payload_size =
1905 sizeof(struct lttcomm_relayd_metadata_payload);
1906
1907 /* Update counter to fit the spliced data */
1908 ret_splice += metadata_payload_size;
1909 len += metadata_payload_size;
1910 /*
1911 * We do this so the return value can match the len passed as
1912 * argument to this function.
1913 */
1914 written -= metadata_payload_size;
1915 }
1916
1917 /* Splice data out */
1918 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1919 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1920 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1921 outfd, ret_splice);
1922 if (ret_splice < 0) {
1923 ret = errno;
1924 written = -ret;
1925 relayd_hang_up = 1;
1926 goto write_error;
1927 } else if (ret_splice > len) {
1928 /*
1929 * We don't expect this code path to be executed but you never know
1930 * so this is an extra protection agains a buggy splice().
1931 */
1932 ret = errno;
1933 written += ret_splice;
1934 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1935 len);
1936 goto splice_error;
1937 } else {
1938 /* All good, update current len and continue. */
1939 len -= ret_splice;
1940 }
1941
1942 /* This call is useless on a socket so better save a syscall. */
1943 if (!relayd) {
1944 /* This won't block, but will start writeout asynchronously */
1945 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1946 SYNC_FILE_RANGE_WRITE);
1947 stream->out_fd_offset += ret_splice;
1948 }
1949 stream->output_written += ret_splice;
1950 written += ret_splice;
1951 }
1952 if (!relayd) {
1953 lttng_consumer_sync_trace_file(stream, orig_offset);
1954 }
1955 goto end;
1956
1957 write_error:
1958 /*
1959 * This is a special case that the relayd has closed its socket. Let's
1960 * cleanup the relayd object and all associated streams.
1961 */
1962 if (relayd && relayd_hang_up) {
1963 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
1964 lttng_consumer_cleanup_relayd(relayd);
1965 /* Skip splice error so the consumer does not fail */
1966 goto end;
1967 }
1968
1969 splice_error:
1970 /* send the appropriate error description to sessiond */
1971 switch (ret) {
1972 case EINVAL:
1973 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1974 break;
1975 case ENOMEM:
1976 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1977 break;
1978 case ESPIPE:
1979 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1980 break;
1981 }
1982
1983 end:
1984 if (relayd && stream->metadata_flag) {
1985 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1986 }
1987
1988 rcu_read_unlock();
1989 return written;
1990 }
1991
1992 /*
1993 * Sample the snapshot positions for a specific fd
1994 *
1995 * Returns 0 on success, < 0 on error
1996 */
1997 int lttng_consumer_sample_snapshot_positions(struct lttng_consumer_stream *stream)
1998 {
1999 switch (consumer_data.type) {
2000 case LTTNG_CONSUMER_KERNEL:
2001 return lttng_kconsumer_sample_snapshot_positions(stream);
2002 case LTTNG_CONSUMER32_UST:
2003 case LTTNG_CONSUMER64_UST:
2004 return lttng_ustconsumer_sample_snapshot_positions(stream);
2005 default:
2006 ERR("Unknown consumer_data type");
2007 assert(0);
2008 return -ENOSYS;
2009 }
2010 }
2011 /*
2012 * Take a snapshot for a specific fd
2013 *
2014 * Returns 0 on success, < 0 on error
2015 */
2016 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
2017 {
2018 switch (consumer_data.type) {
2019 case LTTNG_CONSUMER_KERNEL:
2020 return lttng_kconsumer_take_snapshot(stream);
2021 case LTTNG_CONSUMER32_UST:
2022 case LTTNG_CONSUMER64_UST:
2023 return lttng_ustconsumer_take_snapshot(stream);
2024 default:
2025 ERR("Unknown consumer_data type");
2026 assert(0);
2027 return -ENOSYS;
2028 }
2029 }
2030
2031 /*
2032 * Get the produced position
2033 *
2034 * Returns 0 on success, < 0 on error
2035 */
2036 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
2037 unsigned long *pos)
2038 {
2039 switch (consumer_data.type) {
2040 case LTTNG_CONSUMER_KERNEL:
2041 return lttng_kconsumer_get_produced_snapshot(stream, pos);
2042 case LTTNG_CONSUMER32_UST:
2043 case LTTNG_CONSUMER64_UST:
2044 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
2045 default:
2046 ERR("Unknown consumer_data type");
2047 assert(0);
2048 return -ENOSYS;
2049 }
2050 }
2051
2052 /*
2053 * Get the consumed position (free-running counter position in bytes).
2054 *
2055 * Returns 0 on success, < 0 on error
2056 */
2057 int lttng_consumer_get_consumed_snapshot(struct lttng_consumer_stream *stream,
2058 unsigned long *pos)
2059 {
2060 switch (consumer_data.type) {
2061 case LTTNG_CONSUMER_KERNEL:
2062 return lttng_kconsumer_get_consumed_snapshot(stream, pos);
2063 case LTTNG_CONSUMER32_UST:
2064 case LTTNG_CONSUMER64_UST:
2065 return lttng_ustconsumer_get_consumed_snapshot(stream, pos);
2066 default:
2067 ERR("Unknown consumer_data type");
2068 assert(0);
2069 return -ENOSYS;
2070 }
2071 }
2072
2073 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2074 int sock, struct pollfd *consumer_sockpoll)
2075 {
2076 switch (consumer_data.type) {
2077 case LTTNG_CONSUMER_KERNEL:
2078 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2079 case LTTNG_CONSUMER32_UST:
2080 case LTTNG_CONSUMER64_UST:
2081 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2082 default:
2083 ERR("Unknown consumer_data type");
2084 assert(0);
2085 return -ENOSYS;
2086 }
2087 }
2088
2089 void lttng_consumer_close_all_metadata(void)
2090 {
2091 switch (consumer_data.type) {
2092 case LTTNG_CONSUMER_KERNEL:
2093 /*
2094 * The Kernel consumer has a different metadata scheme so we don't
2095 * close anything because the stream will be closed by the session
2096 * daemon.
2097 */
2098 break;
2099 case LTTNG_CONSUMER32_UST:
2100 case LTTNG_CONSUMER64_UST:
2101 /*
2102 * Close all metadata streams. The metadata hash table is passed and
2103 * this call iterates over it by closing all wakeup fd. This is safe
2104 * because at this point we are sure that the metadata producer is
2105 * either dead or blocked.
2106 */
2107 lttng_ustconsumer_close_all_metadata(metadata_ht);
2108 break;
2109 default:
2110 ERR("Unknown consumer_data type");
2111 assert(0);
2112 }
2113 }
2114
2115 /*
2116 * Clean up a metadata stream and free its memory.
2117 */
2118 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2119 struct lttng_ht *ht)
2120 {
2121 struct lttng_consumer_channel *free_chan = NULL;
2122
2123 assert(stream);
2124 /*
2125 * This call should NEVER receive regular stream. It must always be
2126 * metadata stream and this is crucial for data structure synchronization.
2127 */
2128 assert(stream->metadata_flag);
2129
2130 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2131
2132 pthread_mutex_lock(&consumer_data.lock);
2133 pthread_mutex_lock(&stream->chan->lock);
2134 pthread_mutex_lock(&stream->lock);
2135 if (stream->chan->metadata_cache) {
2136 /* Only applicable to userspace consumers. */
2137 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2138 }
2139
2140 /* Remove any reference to that stream. */
2141 consumer_stream_delete(stream, ht);
2142
2143 /* Close down everything including the relayd if one. */
2144 consumer_stream_close(stream);
2145 /* Destroy tracer buffers of the stream. */
2146 consumer_stream_destroy_buffers(stream);
2147
2148 /* Atomically decrement channel refcount since other threads can use it. */
2149 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2150 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2151 /* Go for channel deletion! */
2152 free_chan = stream->chan;
2153 }
2154
2155 /*
2156 * Nullify the stream reference so it is not used after deletion. The
2157 * channel lock MUST be acquired before being able to check for a NULL
2158 * pointer value.
2159 */
2160 stream->chan->metadata_stream = NULL;
2161
2162 if (stream->chan->metadata_cache) {
2163 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2164 }
2165 pthread_mutex_unlock(&stream->lock);
2166 pthread_mutex_unlock(&stream->chan->lock);
2167 pthread_mutex_unlock(&consumer_data.lock);
2168
2169 if (free_chan) {
2170 consumer_del_channel(free_chan);
2171 }
2172
2173 consumer_stream_free(stream);
2174 }
2175
2176 /*
2177 * Action done with the metadata stream when adding it to the consumer internal
2178 * data structures to handle it.
2179 */
2180 void consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2181 {
2182 struct lttng_ht *ht = metadata_ht;
2183 struct lttng_ht_iter iter;
2184 struct lttng_ht_node_u64 *node;
2185
2186 assert(stream);
2187 assert(ht);
2188
2189 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2190
2191 pthread_mutex_lock(&consumer_data.lock);
2192 pthread_mutex_lock(&stream->chan->lock);
2193 pthread_mutex_lock(&stream->chan->timer_lock);
2194 pthread_mutex_lock(&stream->lock);
2195
2196 /*
2197 * From here, refcounts are updated so be _careful_ when returning an error
2198 * after this point.
2199 */
2200
2201 rcu_read_lock();
2202
2203 /*
2204 * Lookup the stream just to make sure it does not exist in our internal
2205 * state. This should NEVER happen.
2206 */
2207 lttng_ht_lookup(ht, &stream->key, &iter);
2208 node = lttng_ht_iter_get_node_u64(&iter);
2209 assert(!node);
2210
2211 /*
2212 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2213 * in terms of destroying the associated channel, because the action that
2214 * causes the count to become 0 also causes a stream to be added. The
2215 * channel deletion will thus be triggered by the following removal of this
2216 * stream.
2217 */
2218 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2219 /* Increment refcount before decrementing nb_init_stream_left */
2220 cmm_smp_wmb();
2221 uatomic_dec(&stream->chan->nb_init_stream_left);
2222 }
2223
2224 lttng_ht_add_unique_u64(ht, &stream->node);
2225
2226 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
2227 &stream->node_channel_id);
2228
2229 /*
2230 * Add stream to the stream_list_ht of the consumer data. No need to steal
2231 * the key since the HT does not use it and we allow to add redundant keys
2232 * into this table.
2233 */
2234 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2235
2236 rcu_read_unlock();
2237
2238 pthread_mutex_unlock(&stream->lock);
2239 pthread_mutex_unlock(&stream->chan->lock);
2240 pthread_mutex_unlock(&stream->chan->timer_lock);
2241 pthread_mutex_unlock(&consumer_data.lock);
2242 }
2243
2244 /*
2245 * Delete data stream that are flagged for deletion (endpoint_status).
2246 */
2247 static void validate_endpoint_status_data_stream(void)
2248 {
2249 struct lttng_ht_iter iter;
2250 struct lttng_consumer_stream *stream;
2251
2252 DBG("Consumer delete flagged data stream");
2253
2254 rcu_read_lock();
2255 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2256 /* Validate delete flag of the stream */
2257 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2258 continue;
2259 }
2260 /* Delete it right now */
2261 consumer_del_stream(stream, data_ht);
2262 }
2263 rcu_read_unlock();
2264 }
2265
2266 /*
2267 * Delete metadata stream that are flagged for deletion (endpoint_status).
2268 */
2269 static void validate_endpoint_status_metadata_stream(
2270 struct lttng_poll_event *pollset)
2271 {
2272 struct lttng_ht_iter iter;
2273 struct lttng_consumer_stream *stream;
2274
2275 DBG("Consumer delete flagged metadata stream");
2276
2277 assert(pollset);
2278
2279 rcu_read_lock();
2280 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2281 /* Validate delete flag of the stream */
2282 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2283 continue;
2284 }
2285 /*
2286 * Remove from pollset so the metadata thread can continue without
2287 * blocking on a deleted stream.
2288 */
2289 lttng_poll_del(pollset, stream->wait_fd);
2290
2291 /* Delete it right now */
2292 consumer_del_metadata_stream(stream, metadata_ht);
2293 }
2294 rcu_read_unlock();
2295 }
2296
2297 /*
2298 * Perform operations that need to be done after a stream has
2299 * rotated and released the stream lock.
2300 *
2301 * Multiple rotations cannot occur simultaneously, so we know the state of the
2302 * "rotated" stream flag cannot change.
2303 *
2304 * This MUST be called WITHOUT the stream lock held.
2305 */
2306 static
2307 int consumer_post_rotation(struct lttng_consumer_stream *stream,
2308 struct lttng_consumer_local_data *ctx)
2309 {
2310 int ret = 0;
2311
2312 pthread_mutex_lock(&stream->chan->lock);
2313
2314 switch (consumer_data.type) {
2315 case LTTNG_CONSUMER_KERNEL:
2316 break;
2317 case LTTNG_CONSUMER32_UST:
2318 case LTTNG_CONSUMER64_UST:
2319 /*
2320 * The ust_metadata_pushed counter has been reset to 0, so now
2321 * we can wakeup the metadata thread so it dumps the metadata
2322 * cache to the new file.
2323 */
2324 if (stream->metadata_flag) {
2325 consumer_metadata_wakeup_pipe(stream->chan);
2326 }
2327 break;
2328 default:
2329 ERR("Unknown consumer_data type");
2330 abort();
2331 }
2332
2333 pthread_mutex_unlock(&stream->chan->lock);
2334 return ret;
2335 }
2336
2337 /*
2338 * Thread polls on metadata file descriptor and write them on disk or on the
2339 * network.
2340 */
2341 void *consumer_thread_metadata_poll(void *data)
2342 {
2343 int ret, i, pollfd, err = -1;
2344 uint32_t revents, nb_fd;
2345 struct lttng_consumer_stream *stream = NULL;
2346 struct lttng_ht_iter iter;
2347 struct lttng_ht_node_u64 *node;
2348 struct lttng_poll_event events;
2349 struct lttng_consumer_local_data *ctx = data;
2350 ssize_t len;
2351
2352 rcu_register_thread();
2353
2354 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2355
2356 if (testpoint(consumerd_thread_metadata)) {
2357 goto error_testpoint;
2358 }
2359
2360 health_code_update();
2361
2362 DBG("Thread metadata poll started");
2363
2364 /* Size is set to 1 for the consumer_metadata pipe */
2365 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2366 if (ret < 0) {
2367 ERR("Poll set creation failed");
2368 goto end_poll;
2369 }
2370
2371 ret = lttng_poll_add(&events,
2372 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2373 if (ret < 0) {
2374 goto end;
2375 }
2376
2377 /* Main loop */
2378 DBG("Metadata main loop started");
2379
2380 while (1) {
2381 restart:
2382 health_code_update();
2383 health_poll_entry();
2384 DBG("Metadata poll wait");
2385 ret = lttng_poll_wait(&events, -1);
2386 DBG("Metadata poll return from wait with %d fd(s)",
2387 LTTNG_POLL_GETNB(&events));
2388 health_poll_exit();
2389 DBG("Metadata event caught in thread");
2390 if (ret < 0) {
2391 if (errno == EINTR) {
2392 ERR("Poll EINTR caught");
2393 goto restart;
2394 }
2395 if (LTTNG_POLL_GETNB(&events) == 0) {
2396 err = 0; /* All is OK */
2397 }
2398 goto end;
2399 }
2400
2401 nb_fd = ret;
2402
2403 /* From here, the event is a metadata wait fd */
2404 for (i = 0; i < nb_fd; i++) {
2405 health_code_update();
2406
2407 revents = LTTNG_POLL_GETEV(&events, i);
2408 pollfd = LTTNG_POLL_GETFD(&events, i);
2409
2410 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2411 if (revents & LPOLLIN) {
2412 ssize_t pipe_len;
2413
2414 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2415 &stream, sizeof(stream));
2416 if (pipe_len < sizeof(stream)) {
2417 if (pipe_len < 0) {
2418 PERROR("read metadata stream");
2419 }
2420 /*
2421 * Remove the pipe from the poll set and continue the loop
2422 * since their might be data to consume.
2423 */
2424 lttng_poll_del(&events,
2425 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2426 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2427 continue;
2428 }
2429
2430 /* A NULL stream means that the state has changed. */
2431 if (stream == NULL) {
2432 /* Check for deleted streams. */
2433 validate_endpoint_status_metadata_stream(&events);
2434 goto restart;
2435 }
2436
2437 DBG("Adding metadata stream %d to poll set",
2438 stream->wait_fd);
2439
2440 /* Add metadata stream to the global poll events list */
2441 lttng_poll_add(&events, stream->wait_fd,
2442 LPOLLIN | LPOLLPRI | LPOLLHUP);
2443 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2444 DBG("Metadata thread pipe hung up");
2445 /*
2446 * Remove the pipe from the poll set and continue the loop
2447 * since their might be data to consume.
2448 */
2449 lttng_poll_del(&events,
2450 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2451 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2452 continue;
2453 } else {
2454 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2455 goto end;
2456 }
2457
2458 /* Handle other stream */
2459 continue;
2460 }
2461
2462 rcu_read_lock();
2463 {
2464 uint64_t tmp_id = (uint64_t) pollfd;
2465
2466 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2467 }
2468 node = lttng_ht_iter_get_node_u64(&iter);
2469 assert(node);
2470
2471 stream = caa_container_of(node, struct lttng_consumer_stream,
2472 node);
2473
2474 if (revents & (LPOLLIN | LPOLLPRI)) {
2475 /* Get the data out of the metadata file descriptor */
2476 DBG("Metadata available on fd %d", pollfd);
2477 assert(stream->wait_fd == pollfd);
2478
2479 do {
2480 health_code_update();
2481
2482 len = ctx->on_buffer_ready(stream, ctx);
2483 /*
2484 * We don't check the return value here since if we get
2485 * a negative len, it means an error occurred thus we
2486 * simply remove it from the poll set and free the
2487 * stream.
2488 */
2489 } while (len > 0);
2490
2491 /* It's ok to have an unavailable sub-buffer */
2492 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2493 /* Clean up stream from consumer and free it. */
2494 lttng_poll_del(&events, stream->wait_fd);
2495 consumer_del_metadata_stream(stream, metadata_ht);
2496 }
2497 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2498 DBG("Metadata fd %d is hup|err.", pollfd);
2499 if (!stream->hangup_flush_done
2500 && (consumer_data.type == LTTNG_CONSUMER32_UST
2501 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2502 DBG("Attempting to flush and consume the UST buffers");
2503 lttng_ustconsumer_on_stream_hangup(stream);
2504
2505 /* We just flushed the stream now read it. */
2506 do {
2507 health_code_update();
2508
2509 len = ctx->on_buffer_ready(stream, ctx);
2510 /*
2511 * We don't check the return value here since if we get
2512 * a negative len, it means an error occurred thus we
2513 * simply remove it from the poll set and free the
2514 * stream.
2515 */
2516 } while (len > 0);
2517 }
2518
2519 lttng_poll_del(&events, stream->wait_fd);
2520 /*
2521 * This call update the channel states, closes file descriptors
2522 * and securely free the stream.
2523 */
2524 consumer_del_metadata_stream(stream, metadata_ht);
2525 } else {
2526 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2527 rcu_read_unlock();
2528 goto end;
2529 }
2530 /* Release RCU lock for the stream looked up */
2531 rcu_read_unlock();
2532 }
2533 }
2534
2535 /* All is OK */
2536 err = 0;
2537 end:
2538 DBG("Metadata poll thread exiting");
2539
2540 lttng_poll_clean(&events);
2541 end_poll:
2542 error_testpoint:
2543 if (err) {
2544 health_error();
2545 ERR("Health error occurred in %s", __func__);
2546 }
2547 health_unregister(health_consumerd);
2548 rcu_unregister_thread();
2549 return NULL;
2550 }
2551
2552 /*
2553 * This thread polls the fds in the set to consume the data and write
2554 * it to tracefile if necessary.
2555 */
2556 void *consumer_thread_data_poll(void *data)
2557 {
2558 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2559 struct pollfd *pollfd = NULL;
2560 /* local view of the streams */
2561 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2562 /* local view of consumer_data.fds_count */
2563 int nb_fd = 0;
2564 /* 2 for the consumer_data_pipe and wake up pipe */
2565 const int nb_pipes_fd = 2;
2566 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2567 int nb_inactive_fd = 0;
2568 struct lttng_consumer_local_data *ctx = data;
2569 ssize_t len;
2570
2571 rcu_register_thread();
2572
2573 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2574
2575 if (testpoint(consumerd_thread_data)) {
2576 goto error_testpoint;
2577 }
2578
2579 health_code_update();
2580
2581 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2582 if (local_stream == NULL) {
2583 PERROR("local_stream malloc");
2584 goto end;
2585 }
2586
2587 while (1) {
2588 health_code_update();
2589
2590 high_prio = 0;
2591 num_hup = 0;
2592
2593 /*
2594 * the fds set has been updated, we need to update our
2595 * local array as well
2596 */
2597 pthread_mutex_lock(&consumer_data.lock);
2598 if (consumer_data.need_update) {
2599 free(pollfd);
2600 pollfd = NULL;
2601
2602 free(local_stream);
2603 local_stream = NULL;
2604
2605 /* Allocate for all fds */
2606 pollfd = zmalloc((consumer_data.stream_count + nb_pipes_fd) * sizeof(struct pollfd));
2607 if (pollfd == NULL) {
2608 PERROR("pollfd malloc");
2609 pthread_mutex_unlock(&consumer_data.lock);
2610 goto end;
2611 }
2612
2613 local_stream = zmalloc((consumer_data.stream_count + nb_pipes_fd) *
2614 sizeof(struct lttng_consumer_stream *));
2615 if (local_stream == NULL) {
2616 PERROR("local_stream malloc");
2617 pthread_mutex_unlock(&consumer_data.lock);
2618 goto end;
2619 }
2620 ret = update_poll_array(ctx, &pollfd, local_stream,
2621 data_ht, &nb_inactive_fd);
2622 if (ret < 0) {
2623 ERR("Error in allocating pollfd or local_outfds");
2624 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2625 pthread_mutex_unlock(&consumer_data.lock);
2626 goto end;
2627 }
2628 nb_fd = ret;
2629 consumer_data.need_update = 0;
2630 }
2631 pthread_mutex_unlock(&consumer_data.lock);
2632
2633 /* No FDs and consumer_quit, consumer_cleanup the thread */
2634 if (nb_fd == 0 && nb_inactive_fd == 0 &&
2635 CMM_LOAD_SHARED(consumer_quit) == 1) {
2636 err = 0; /* All is OK */
2637 goto end;
2638 }
2639 /* poll on the array of fds */
2640 restart:
2641 DBG("polling on %d fd", nb_fd + nb_pipes_fd);
2642 if (testpoint(consumerd_thread_data_poll)) {
2643 goto end;
2644 }
2645 health_poll_entry();
2646 num_rdy = poll(pollfd, nb_fd + nb_pipes_fd, -1);
2647 health_poll_exit();
2648 DBG("poll num_rdy : %d", num_rdy);
2649 if (num_rdy == -1) {
2650 /*
2651 * Restart interrupted system call.
2652 */
2653 if (errno == EINTR) {
2654 goto restart;
2655 }
2656 PERROR("Poll error");
2657 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2658 goto end;
2659 } else if (num_rdy == 0) {
2660 DBG("Polling thread timed out");
2661 goto end;
2662 }
2663
2664 if (caa_unlikely(data_consumption_paused)) {
2665 DBG("Data consumption paused, sleeping...");
2666 sleep(1);
2667 goto restart;
2668 }
2669
2670 /*
2671 * If the consumer_data_pipe triggered poll go directly to the
2672 * beginning of the loop to update the array. We want to prioritize
2673 * array update over low-priority reads.
2674 */
2675 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2676 ssize_t pipe_readlen;
2677
2678 DBG("consumer_data_pipe wake up");
2679 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2680 &new_stream, sizeof(new_stream));
2681 if (pipe_readlen < sizeof(new_stream)) {
2682 PERROR("Consumer data pipe");
2683 /* Continue so we can at least handle the current stream(s). */
2684 continue;
2685 }
2686
2687 /*
2688 * If the stream is NULL, just ignore it. It's also possible that
2689 * the sessiond poll thread changed the consumer_quit state and is
2690 * waking us up to test it.
2691 */
2692 if (new_stream == NULL) {
2693 validate_endpoint_status_data_stream();
2694 continue;
2695 }
2696
2697 /* Continue to update the local streams and handle prio ones */
2698 continue;
2699 }
2700
2701 /* Handle wakeup pipe. */
2702 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2703 char dummy;
2704 ssize_t pipe_readlen;
2705
2706 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2707 sizeof(dummy));
2708 if (pipe_readlen < 0) {
2709 PERROR("Consumer data wakeup pipe");
2710 }
2711 /* We've been awakened to handle stream(s). */
2712 ctx->has_wakeup = 0;
2713 }
2714
2715 /* Take care of high priority channels first. */
2716 for (i = 0; i < nb_fd; i++) {
2717 health_code_update();
2718
2719 if (local_stream[i] == NULL) {
2720 continue;
2721 }
2722 if (pollfd[i].revents & POLLPRI) {
2723 DBG("Urgent read on fd %d", pollfd[i].fd);
2724 high_prio = 1;
2725 len = ctx->on_buffer_ready(local_stream[i], ctx);
2726 /* it's ok to have an unavailable sub-buffer */
2727 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2728 /* Clean the stream and free it. */
2729 consumer_del_stream(local_stream[i], data_ht);
2730 local_stream[i] = NULL;
2731 } else if (len > 0) {
2732 local_stream[i]->data_read = 1;
2733 }
2734 }
2735 }
2736
2737 /*
2738 * If we read high prio channel in this loop, try again
2739 * for more high prio data.
2740 */
2741 if (high_prio) {
2742 continue;
2743 }
2744
2745 /* Take care of low priority channels. */
2746 for (i = 0; i < nb_fd; i++) {
2747 health_code_update();
2748
2749 if (local_stream[i] == NULL) {
2750 continue;
2751 }
2752 if ((pollfd[i].revents & POLLIN) ||
2753 local_stream[i]->hangup_flush_done ||
2754 local_stream[i]->has_data) {
2755 DBG("Normal read on fd %d", pollfd[i].fd);
2756 len = ctx->on_buffer_ready(local_stream[i], ctx);
2757 /* it's ok to have an unavailable sub-buffer */
2758 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2759 /* Clean the stream and free it. */
2760 consumer_del_stream(local_stream[i], data_ht);
2761 local_stream[i] = NULL;
2762 } else if (len > 0) {
2763 local_stream[i]->data_read = 1;
2764 }
2765 }
2766 }
2767
2768 /* Handle hangup and errors */
2769 for (i = 0; i < nb_fd; i++) {
2770 health_code_update();
2771
2772 if (local_stream[i] == NULL) {
2773 continue;
2774 }
2775 if (!local_stream[i]->hangup_flush_done
2776 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2777 && (consumer_data.type == LTTNG_CONSUMER32_UST
2778 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2779 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2780 pollfd[i].fd);
2781 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2782 /* Attempt read again, for the data we just flushed. */
2783 local_stream[i]->data_read = 1;
2784 }
2785 /*
2786 * If the poll flag is HUP/ERR/NVAL and we have
2787 * read no data in this pass, we can remove the
2788 * stream from its hash table.
2789 */
2790 if ((pollfd[i].revents & POLLHUP)) {
2791 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2792 if (!local_stream[i]->data_read) {
2793 consumer_del_stream(local_stream[i], data_ht);
2794 local_stream[i] = NULL;
2795 num_hup++;
2796 }
2797 } else if (pollfd[i].revents & POLLERR) {
2798 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2799 if (!local_stream[i]->data_read) {
2800 consumer_del_stream(local_stream[i], data_ht);
2801 local_stream[i] = NULL;
2802 num_hup++;
2803 }
2804 } else if (pollfd[i].revents & POLLNVAL) {
2805 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2806 if (!local_stream[i]->data_read) {
2807 consumer_del_stream(local_stream[i], data_ht);
2808 local_stream[i] = NULL;
2809 num_hup++;
2810 }
2811 }
2812 if (local_stream[i] != NULL) {
2813 local_stream[i]->data_read = 0;
2814 }
2815 }
2816 }
2817 /* All is OK */
2818 err = 0;
2819 end:
2820 DBG("polling thread exiting");
2821 free(pollfd);
2822 free(local_stream);
2823
2824 /*
2825 * Close the write side of the pipe so epoll_wait() in
2826 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2827 * read side of the pipe. If we close them both, epoll_wait strangely does
2828 * not return and could create a endless wait period if the pipe is the
2829 * only tracked fd in the poll set. The thread will take care of closing
2830 * the read side.
2831 */
2832 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2833
2834 error_testpoint:
2835 if (err) {
2836 health_error();
2837 ERR("Health error occurred in %s", __func__);
2838 }
2839 health_unregister(health_consumerd);
2840
2841 rcu_unregister_thread();
2842 return NULL;
2843 }
2844
2845 /*
2846 * Close wake-up end of each stream belonging to the channel. This will
2847 * allow the poll() on the stream read-side to detect when the
2848 * write-side (application) finally closes them.
2849 */
2850 static
2851 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2852 {
2853 struct lttng_ht *ht;
2854 struct lttng_consumer_stream *stream;
2855 struct lttng_ht_iter iter;
2856
2857 ht = consumer_data.stream_per_chan_id_ht;
2858
2859 rcu_read_lock();
2860 cds_lfht_for_each_entry_duplicate(ht->ht,
2861 ht->hash_fct(&channel->key, lttng_ht_seed),
2862 ht->match_fct, &channel->key,
2863 &iter.iter, stream, node_channel_id.node) {
2864 /*
2865 * Protect against teardown with mutex.
2866 */
2867 pthread_mutex_lock(&stream->lock);
2868 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2869 goto next;
2870 }
2871 switch (consumer_data.type) {
2872 case LTTNG_CONSUMER_KERNEL:
2873 break;
2874 case LTTNG_CONSUMER32_UST:
2875 case LTTNG_CONSUMER64_UST:
2876 if (stream->metadata_flag) {
2877 /* Safe and protected by the stream lock. */
2878 lttng_ustconsumer_close_metadata(stream->chan);
2879 } else {
2880 /*
2881 * Note: a mutex is taken internally within
2882 * liblttng-ust-ctl to protect timer wakeup_fd
2883 * use from concurrent close.
2884 */
2885 lttng_ustconsumer_close_stream_wakeup(stream);
2886 }
2887 break;
2888 default:
2889 ERR("Unknown consumer_data type");
2890 assert(0);
2891 }
2892 next:
2893 pthread_mutex_unlock(&stream->lock);
2894 }
2895 rcu_read_unlock();
2896 }
2897
2898 static void destroy_channel_ht(struct lttng_ht *ht)
2899 {
2900 struct lttng_ht_iter iter;
2901 struct lttng_consumer_channel *channel;
2902 int ret;
2903
2904 if (ht == NULL) {
2905 return;
2906 }
2907
2908 rcu_read_lock();
2909 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2910 ret = lttng_ht_del(ht, &iter);
2911 assert(ret != 0);
2912 }
2913 rcu_read_unlock();
2914
2915 lttng_ht_destroy(ht);
2916 }
2917
2918 /*
2919 * This thread polls the channel fds to detect when they are being
2920 * closed. It closes all related streams if the channel is detected as
2921 * closed. It is currently only used as a shim layer for UST because the
2922 * consumerd needs to keep the per-stream wakeup end of pipes open for
2923 * periodical flush.
2924 */
2925 void *consumer_thread_channel_poll(void *data)
2926 {
2927 int ret, i, pollfd, err = -1;
2928 uint32_t revents, nb_fd;
2929 struct lttng_consumer_channel *chan = NULL;
2930 struct lttng_ht_iter iter;
2931 struct lttng_ht_node_u64 *node;
2932 struct lttng_poll_event events;
2933 struct lttng_consumer_local_data *ctx = data;
2934 struct lttng_ht *channel_ht;
2935
2936 rcu_register_thread();
2937
2938 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2939
2940 if (testpoint(consumerd_thread_channel)) {
2941 goto error_testpoint;
2942 }
2943
2944 health_code_update();
2945
2946 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2947 if (!channel_ht) {
2948 /* ENOMEM at this point. Better to bail out. */
2949 goto end_ht;
2950 }
2951
2952 DBG("Thread channel poll started");
2953
2954 /* Size is set to 1 for the consumer_channel pipe */
2955 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2956 if (ret < 0) {
2957 ERR("Poll set creation failed");
2958 goto end_poll;
2959 }
2960
2961 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2962 if (ret < 0) {
2963 goto end;
2964 }
2965
2966 /* Main loop */
2967 DBG("Channel main loop started");
2968
2969 while (1) {
2970 restart:
2971 health_code_update();
2972 DBG("Channel poll wait");
2973 health_poll_entry();
2974 ret = lttng_poll_wait(&events, -1);
2975 DBG("Channel poll return from wait with %d fd(s)",
2976 LTTNG_POLL_GETNB(&events));
2977 health_poll_exit();
2978 DBG("Channel event caught in thread");
2979 if (ret < 0) {
2980 if (errno == EINTR) {
2981 ERR("Poll EINTR caught");
2982 goto restart;
2983 }
2984 if (LTTNG_POLL_GETNB(&events) == 0) {
2985 err = 0; /* All is OK */
2986 }
2987 goto end;
2988 }
2989
2990 nb_fd = ret;
2991
2992 /* From here, the event is a channel wait fd */
2993 for (i = 0; i < nb_fd; i++) {
2994 health_code_update();
2995
2996 revents = LTTNG_POLL_GETEV(&events, i);
2997 pollfd = LTTNG_POLL_GETFD(&events, i);
2998
2999 if (pollfd == ctx->consumer_channel_pipe[0]) {
3000 if (revents & LPOLLIN) {
3001 enum consumer_channel_action action;
3002 uint64_t key;
3003
3004 ret = read_channel_pipe(ctx, &chan, &key, &action);
3005 if (ret <= 0) {
3006 if (ret < 0) {
3007 ERR("Error reading channel pipe");
3008 }
3009 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3010 continue;
3011 }
3012
3013 switch (action) {
3014 case CONSUMER_CHANNEL_ADD:
3015 DBG("Adding channel %d to poll set",
3016 chan->wait_fd);
3017
3018 lttng_ht_node_init_u64(&chan->wait_fd_node,
3019 chan->wait_fd);
3020 rcu_read_lock();
3021 lttng_ht_add_unique_u64(channel_ht,
3022 &chan->wait_fd_node);
3023 rcu_read_unlock();
3024 /* Add channel to the global poll events list */
3025 lttng_poll_add(&events, chan->wait_fd,
3026 LPOLLERR | LPOLLHUP);
3027 break;
3028 case CONSUMER_CHANNEL_DEL:
3029 {
3030 /*
3031 * This command should never be called if the channel
3032 * has streams monitored by either the data or metadata
3033 * thread. The consumer only notify this thread with a
3034 * channel del. command if it receives a destroy
3035 * channel command from the session daemon that send it
3036 * if a command prior to the GET_CHANNEL failed.
3037 */
3038
3039 rcu_read_lock();
3040 chan = consumer_find_channel(key);
3041 if (!chan) {
3042 rcu_read_unlock();
3043 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
3044 break;
3045 }
3046 lttng_poll_del(&events, chan->wait_fd);
3047 iter.iter.node = &chan->wait_fd_node.node;
3048 ret = lttng_ht_del(channel_ht, &iter);
3049 assert(ret == 0);
3050
3051 switch (consumer_data.type) {
3052 case LTTNG_CONSUMER_KERNEL:
3053 break;
3054 case LTTNG_CONSUMER32_UST:
3055 case LTTNG_CONSUMER64_UST:
3056 health_code_update();
3057 /* Destroy streams that might have been left in the stream list. */
3058 clean_channel_stream_list(chan);
3059 break;
3060 default:
3061 ERR("Unknown consumer_data type");
3062 assert(0);
3063 }
3064
3065 /*
3066 * Release our own refcount. Force channel deletion even if
3067 * streams were not initialized.
3068 */
3069 if (!uatomic_sub_return(&chan->refcount, 1)) {
3070 consumer_del_channel(chan);
3071 }
3072 rcu_read_unlock();
3073 goto restart;
3074 }
3075 case CONSUMER_CHANNEL_QUIT:
3076 /*
3077 * Remove the pipe from the poll set and continue the loop
3078 * since their might be data to consume.
3079 */
3080 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3081 continue;
3082 default:
3083 ERR("Unknown action");
3084 break;
3085 }
3086 } else if (revents & (LPOLLERR | LPOLLHUP)) {
3087 DBG("Channel thread pipe hung up");
3088 /*
3089 * Remove the pipe from the poll set and continue the loop
3090 * since their might be data to consume.
3091 */
3092 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3093 continue;
3094 } else {
3095 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3096 goto end;
3097 }
3098
3099 /* Handle other stream */
3100 continue;
3101 }
3102
3103 rcu_read_lock();
3104 {
3105 uint64_t tmp_id = (uint64_t) pollfd;
3106
3107 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3108 }
3109 node = lttng_ht_iter_get_node_u64(&iter);
3110 assert(node);
3111
3112 chan = caa_container_of(node, struct lttng_consumer_channel,
3113 wait_fd_node);
3114
3115 /* Check for error event */
3116 if (revents & (LPOLLERR | LPOLLHUP)) {
3117 DBG("Channel fd %d is hup|err.", pollfd);
3118
3119 lttng_poll_del(&events, chan->wait_fd);
3120 ret = lttng_ht_del(channel_ht, &iter);
3121 assert(ret == 0);
3122
3123 /*
3124 * This will close the wait fd for each stream associated to
3125 * this channel AND monitored by the data/metadata thread thus
3126 * will be clean by the right thread.
3127 */
3128 consumer_close_channel_streams(chan);
3129
3130 /* Release our own refcount */
3131 if (!uatomic_sub_return(&chan->refcount, 1)
3132 && !uatomic_read(&chan->nb_init_stream_left)) {
3133 consumer_del_channel(chan);
3134 }
3135 } else {
3136 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3137 rcu_read_unlock();
3138 goto end;
3139 }
3140
3141 /* Release RCU lock for the channel looked up */
3142 rcu_read_unlock();
3143 }
3144 }
3145
3146 /* All is OK */
3147 err = 0;
3148 end:
3149 lttng_poll_clean(&events);
3150 end_poll:
3151 destroy_channel_ht(channel_ht);
3152 end_ht:
3153 error_testpoint:
3154 DBG("Channel poll thread exiting");
3155 if (err) {
3156 health_error();
3157 ERR("Health error occurred in %s", __func__);
3158 }
3159 health_unregister(health_consumerd);
3160 rcu_unregister_thread();
3161 return NULL;
3162 }
3163
3164 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3165 struct pollfd *sockpoll, int client_socket)
3166 {
3167 int ret;
3168
3169 assert(ctx);
3170 assert(sockpoll);
3171
3172 ret = lttng_consumer_poll_socket(sockpoll);
3173 if (ret) {
3174 goto error;
3175 }
3176 DBG("Metadata connection on client_socket");
3177
3178 /* Blocking call, waiting for transmission */
3179 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3180 if (ctx->consumer_metadata_socket < 0) {
3181 WARN("On accept metadata");
3182 ret = -1;
3183 goto error;
3184 }
3185 ret = 0;
3186
3187 error:
3188 return ret;
3189 }
3190
3191 /*
3192 * This thread listens on the consumerd socket and receives the file
3193 * descriptors from the session daemon.
3194 */
3195 void *consumer_thread_sessiond_poll(void *data)
3196 {
3197 int sock = -1, client_socket, ret, err = -1;
3198 /*
3199 * structure to poll for incoming data on communication socket avoids
3200 * making blocking sockets.
3201 */
3202 struct pollfd consumer_sockpoll[2];
3203 struct lttng_consumer_local_data *ctx = data;
3204
3205 rcu_register_thread();
3206
3207 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3208
3209 if (testpoint(consumerd_thread_sessiond)) {
3210 goto error_testpoint;
3211 }
3212
3213 health_code_update();
3214
3215 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3216 unlink(ctx->consumer_command_sock_path);
3217 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3218 if (client_socket < 0) {
3219 ERR("Cannot create command socket");
3220 goto end;
3221 }
3222
3223 ret = lttcomm_listen_unix_sock(client_socket);
3224 if (ret < 0) {
3225 goto end;
3226 }
3227
3228 DBG("Sending ready command to lttng-sessiond");
3229 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3230 /* return < 0 on error, but == 0 is not fatal */
3231 if (ret < 0) {
3232 ERR("Error sending ready command to lttng-sessiond");
3233 goto end;
3234 }
3235
3236 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3237 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3238 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3239 consumer_sockpoll[1].fd = client_socket;
3240 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3241
3242 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3243 if (ret) {
3244 if (ret > 0) {
3245 /* should exit */
3246 err = 0;
3247 }
3248 goto end;
3249 }
3250 DBG("Connection on client_socket");
3251
3252 /* Blocking call, waiting for transmission */
3253 sock = lttcomm_accept_unix_sock(client_socket);
3254 if (sock < 0) {
3255 WARN("On accept");
3256 goto end;
3257 }
3258
3259 /*
3260 * Setup metadata socket which is the second socket connection on the
3261 * command unix socket.
3262 */
3263 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3264 if (ret) {
3265 if (ret > 0) {
3266 /* should exit */
3267 err = 0;
3268 }
3269 goto end;
3270 }
3271
3272 /* This socket is not useful anymore. */
3273 ret = close(client_socket);
3274 if (ret < 0) {
3275 PERROR("close client_socket");
3276 }
3277 client_socket = -1;
3278
3279 /* update the polling structure to poll on the established socket */
3280 consumer_sockpoll[1].fd = sock;
3281 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3282
3283 while (1) {
3284 health_code_update();
3285
3286 health_poll_entry();
3287 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3288 health_poll_exit();
3289 if (ret) {
3290 if (ret > 0) {
3291 /* should exit */
3292 err = 0;
3293 }
3294 goto end;
3295 }
3296 DBG("Incoming command on sock");
3297 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3298 if (ret <= 0) {
3299 /*
3300 * This could simply be a session daemon quitting. Don't output
3301 * ERR() here.
3302 */
3303 DBG("Communication interrupted on command socket");
3304 err = 0;
3305 goto end;
3306 }
3307 if (CMM_LOAD_SHARED(consumer_quit)) {
3308 DBG("consumer_thread_receive_fds received quit from signal");
3309 err = 0; /* All is OK */
3310 goto end;
3311 }
3312 DBG("received command on sock");
3313 }
3314 /* All is OK */
3315 err = 0;
3316
3317 end:
3318 DBG("Consumer thread sessiond poll exiting");
3319
3320 /*
3321 * Close metadata streams since the producer is the session daemon which
3322 * just died.
3323 *
3324 * NOTE: for now, this only applies to the UST tracer.
3325 */
3326 lttng_consumer_close_all_metadata();
3327
3328 /*
3329 * when all fds have hung up, the polling thread
3330 * can exit cleanly
3331 */
3332 CMM_STORE_SHARED(consumer_quit, 1);
3333
3334 /*
3335 * Notify the data poll thread to poll back again and test the
3336 * consumer_quit state that we just set so to quit gracefully.
3337 */
3338 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3339
3340 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3341
3342 notify_health_quit_pipe(health_quit_pipe);
3343
3344 /* Cleaning up possibly open sockets. */
3345 if (sock >= 0) {
3346 ret = close(sock);
3347 if (ret < 0) {
3348 PERROR("close sock sessiond poll");
3349 }
3350 }
3351 if (client_socket >= 0) {
3352 ret = close(client_socket);
3353 if (ret < 0) {
3354 PERROR("close client_socket sessiond poll");
3355 }
3356 }
3357
3358 error_testpoint:
3359 if (err) {
3360 health_error();
3361 ERR("Health error occurred in %s", __func__);
3362 }
3363 health_unregister(health_consumerd);
3364
3365 rcu_unregister_thread();
3366 return NULL;
3367 }
3368
3369 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3370 struct lttng_consumer_local_data *ctx)
3371 {
3372 ssize_t ret;
3373 int rotate_ret;
3374 bool rotated = false;
3375
3376 pthread_mutex_lock(&stream->lock);
3377 if (stream->metadata_flag) {
3378 pthread_mutex_lock(&stream->metadata_rdv_lock);
3379 }
3380
3381 switch (consumer_data.type) {
3382 case LTTNG_CONSUMER_KERNEL:
3383 ret = lttng_kconsumer_read_subbuffer(stream, ctx, &rotated);
3384 break;
3385 case LTTNG_CONSUMER32_UST:
3386 case LTTNG_CONSUMER64_UST:
3387 ret = lttng_ustconsumer_read_subbuffer(stream, ctx, &rotated);
3388 break;
3389 default:
3390 ERR("Unknown consumer_data type");
3391 assert(0);
3392 ret = -ENOSYS;
3393 break;
3394 }
3395
3396 if (stream->metadata_flag) {
3397 pthread_cond_broadcast(&stream->metadata_rdv);
3398 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3399 }
3400 pthread_mutex_unlock(&stream->lock);
3401 if (rotated) {
3402 rotate_ret = consumer_post_rotation(stream, ctx);
3403 if (rotate_ret < 0) {
3404 ERR("Failed after a rotation");
3405 ret = -1;
3406 }
3407 }
3408
3409 return ret;
3410 }
3411
3412 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3413 {
3414 switch (consumer_data.type) {
3415 case LTTNG_CONSUMER_KERNEL:
3416 return lttng_kconsumer_on_recv_stream(stream);
3417 case LTTNG_CONSUMER32_UST:
3418 case LTTNG_CONSUMER64_UST:
3419 return lttng_ustconsumer_on_recv_stream(stream);
3420 default:
3421 ERR("Unknown consumer_data type");
3422 assert(0);
3423 return -ENOSYS;
3424 }
3425 }
3426
3427 /*
3428 * Allocate and set consumer data hash tables.
3429 */
3430 int lttng_consumer_init(void)
3431 {
3432 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3433 if (!consumer_data.channel_ht) {
3434 goto error;
3435 }
3436
3437 consumer_data.channels_by_session_id_ht =
3438 lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3439 if (!consumer_data.channels_by_session_id_ht) {
3440 goto error;
3441 }
3442
3443 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3444 if (!consumer_data.relayd_ht) {
3445 goto error;
3446 }
3447
3448 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3449 if (!consumer_data.stream_list_ht) {
3450 goto error;
3451 }
3452
3453 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3454 if (!consumer_data.stream_per_chan_id_ht) {
3455 goto error;
3456 }
3457
3458 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3459 if (!data_ht) {
3460 goto error;
3461 }
3462
3463 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3464 if (!metadata_ht) {
3465 goto error;
3466 }
3467
3468 consumer_data.chunk_registry = lttng_trace_chunk_registry_create();
3469 if (!consumer_data.chunk_registry) {
3470 goto error;
3471 }
3472
3473 return 0;
3474
3475 error:
3476 return -1;
3477 }
3478
3479 /*
3480 * Process the ADD_RELAYD command receive by a consumer.
3481 *
3482 * This will create a relayd socket pair and add it to the relayd hash table.
3483 * The caller MUST acquire a RCU read side lock before calling it.
3484 */
3485 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3486 struct lttng_consumer_local_data *ctx, int sock,
3487 struct pollfd *consumer_sockpoll,
3488 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3489 uint64_t relayd_session_id)
3490 {
3491 int fd = -1, ret = -1, relayd_created = 0;
3492 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3493 struct consumer_relayd_sock_pair *relayd = NULL;
3494
3495 assert(ctx);
3496 assert(relayd_sock);
3497
3498 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3499
3500 /* Get relayd reference if exists. */
3501 relayd = consumer_find_relayd(net_seq_idx);
3502 if (relayd == NULL) {
3503 assert(sock_type == LTTNG_STREAM_CONTROL);
3504 /* Not found. Allocate one. */
3505 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3506 if (relayd == NULL) {
3507 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3508 goto error;
3509 } else {
3510 relayd->sessiond_session_id = sessiond_id;
3511 relayd_created = 1;
3512 }
3513
3514 /*
3515 * This code path MUST continue to the consumer send status message to
3516 * we can notify the session daemon and continue our work without
3517 * killing everything.
3518 */
3519 } else {
3520 /*
3521 * relayd key should never be found for control socket.
3522 */
3523 assert(sock_type != LTTNG_STREAM_CONTROL);
3524 }
3525
3526 /* First send a status message before receiving the fds. */
3527 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3528 if (ret < 0) {
3529 /* Somehow, the session daemon is not responding anymore. */
3530 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3531 goto error_nosignal;
3532 }
3533
3534 /* Poll on consumer socket. */
3535 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3536 if (ret) {
3537 /* Needing to exit in the middle of a command: error. */
3538 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3539 goto error_nosignal;
3540 }
3541
3542 /* Get relayd socket from session daemon */
3543 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3544 if (ret != sizeof(fd)) {
3545 fd = -1; /* Just in case it gets set with an invalid value. */
3546
3547 /*
3548 * Failing to receive FDs might indicate a major problem such as
3549 * reaching a fd limit during the receive where the kernel returns a
3550 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3551 * don't take any chances and stop everything.
3552 *
3553 * XXX: Feature request #558 will fix that and avoid this possible
3554 * issue when reaching the fd limit.
3555 */
3556 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3557 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3558 goto error;
3559 }
3560
3561 /* Copy socket information and received FD */
3562 switch (sock_type) {
3563 case LTTNG_STREAM_CONTROL:
3564 /* Copy received lttcomm socket */
3565 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3566 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3567 /* Handle create_sock error. */
3568 if (ret < 0) {
3569 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3570 goto error;
3571 }
3572 /*
3573 * Close the socket created internally by
3574 * lttcomm_create_sock, so we can replace it by the one
3575 * received from sessiond.
3576 */
3577 if (close(relayd->control_sock.sock.fd)) {
3578 PERROR("close");
3579 }
3580
3581 /* Assign new file descriptor */
3582 relayd->control_sock.sock.fd = fd;
3583 /* Assign version values. */
3584 relayd->control_sock.major = relayd_sock->major;
3585 relayd->control_sock.minor = relayd_sock->minor;
3586
3587 relayd->relayd_session_id = relayd_session_id;
3588
3589 break;
3590 case LTTNG_STREAM_DATA:
3591 /* Copy received lttcomm socket */
3592 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3593 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3594 /* Handle create_sock error. */
3595 if (ret < 0) {
3596 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3597 goto error;
3598 }
3599 /*
3600 * Close the socket created internally by
3601 * lttcomm_create_sock, so we can replace it by the one
3602 * received from sessiond.
3603 */
3604 if (close(relayd->data_sock.sock.fd)) {
3605 PERROR("close");
3606 }
3607
3608 /* Assign new file descriptor */
3609 relayd->data_sock.sock.fd = fd;
3610 /* Assign version values. */
3611 relayd->data_sock.major = relayd_sock->major;
3612 relayd->data_sock.minor = relayd_sock->minor;
3613 break;
3614 default:
3615 ERR("Unknown relayd socket type (%d)", sock_type);
3616 ret_code = LTTCOMM_CONSUMERD_FATAL;
3617 goto error;
3618 }
3619
3620 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3621 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3622 relayd->net_seq_idx, fd);
3623 /*
3624 * We gave the ownership of the fd to the relayd structure. Set the
3625 * fd to -1 so we don't call close() on it in the error path below.
3626 */
3627 fd = -1;
3628
3629 /* We successfully added the socket. Send status back. */
3630 ret = consumer_send_status_msg(sock, ret_code);
3631 if (ret < 0) {
3632 /* Somehow, the session daemon is not responding anymore. */
3633 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3634 goto error_nosignal;
3635 }
3636
3637 /*
3638 * Add relayd socket pair to consumer data hashtable. If object already
3639 * exists or on error, the function gracefully returns.
3640 */
3641 relayd->ctx = ctx;
3642 add_relayd(relayd);
3643
3644 /* All good! */
3645 return;
3646
3647 error:
3648 if (consumer_send_status_msg(sock, ret_code) < 0) {
3649 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3650 }
3651
3652 error_nosignal:
3653 /* Close received socket if valid. */
3654 if (fd >= 0) {
3655 if (close(fd)) {
3656 PERROR("close received socket");
3657 }
3658 }
3659
3660 if (relayd_created) {
3661 free(relayd);
3662 }
3663 }
3664
3665 /*
3666 * Search for a relayd associated to the session id and return the reference.
3667 *
3668 * A rcu read side lock MUST be acquire before calling this function and locked
3669 * until the relayd object is no longer necessary.
3670 */
3671 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3672 {
3673 struct lttng_ht_iter iter;
3674 struct consumer_relayd_sock_pair *relayd = NULL;
3675
3676 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3677 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3678 node.node) {
3679 /*
3680 * Check by sessiond id which is unique here where the relayd session
3681 * id might not be when having multiple relayd.
3682 */
3683 if (relayd->sessiond_session_id == id) {
3684 /* Found the relayd. There can be only one per id. */
3685 goto found;
3686 }
3687 }
3688
3689 return NULL;
3690
3691 found:
3692 return relayd;
3693 }
3694
3695 /*
3696 * Check if for a given session id there is still data needed to be extract
3697 * from the buffers.
3698 *
3699 * Return 1 if data is pending or else 0 meaning ready to be read.
3700 */
3701 int consumer_data_pending(uint64_t id)
3702 {
3703 int ret;
3704 struct lttng_ht_iter iter;
3705 struct lttng_ht *ht;
3706 struct lttng_consumer_stream *stream;
3707 struct consumer_relayd_sock_pair *relayd = NULL;
3708 int (*data_pending)(struct lttng_consumer_stream *);
3709
3710 DBG("Consumer data pending command on session id %" PRIu64, id);
3711
3712 rcu_read_lock();
3713 pthread_mutex_lock(&consumer_data.lock);
3714
3715 switch (consumer_data.type) {
3716 case LTTNG_CONSUMER_KERNEL:
3717 data_pending = lttng_kconsumer_data_pending;
3718 break;
3719 case LTTNG_CONSUMER32_UST:
3720 case LTTNG_CONSUMER64_UST:
3721 data_pending = lttng_ustconsumer_data_pending;
3722 break;
3723 default:
3724 ERR("Unknown consumer data type");
3725 assert(0);
3726 }
3727
3728 /* Ease our life a bit */
3729 ht = consumer_data.stream_list_ht;
3730
3731 cds_lfht_for_each_entry_duplicate(ht->ht,
3732 ht->hash_fct(&id, lttng_ht_seed),
3733 ht->match_fct, &id,
3734 &iter.iter, stream, node_session_id.node) {
3735 pthread_mutex_lock(&stream->lock);
3736
3737 /*
3738 * A removed node from the hash table indicates that the stream has
3739 * been deleted thus having a guarantee that the buffers are closed
3740 * on the consumer side. However, data can still be transmitted
3741 * over the network so don't skip the relayd check.
3742 */
3743 ret = cds_lfht_is_node_deleted(&stream->node.node);
3744 if (!ret) {
3745 /* Check the stream if there is data in the buffers. */
3746 ret = data_pending(stream);
3747 if (ret == 1) {
3748 pthread_mutex_unlock(&stream->lock);
3749 goto data_pending;
3750 }
3751 }
3752
3753 pthread_mutex_unlock(&stream->lock);
3754 }
3755
3756 relayd = find_relayd_by_session_id(id);
3757 if (relayd) {
3758 unsigned int is_data_inflight = 0;
3759
3760 /* Send init command for data pending. */
3761 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3762 ret = relayd_begin_data_pending(&relayd->control_sock,
3763 relayd->relayd_session_id);
3764 if (ret < 0) {
3765 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3766 /* Communication error thus the relayd so no data pending. */
3767 goto data_not_pending;
3768 }
3769
3770 cds_lfht_for_each_entry_duplicate(ht->ht,
3771 ht->hash_fct(&id, lttng_ht_seed),
3772 ht->match_fct, &id,
3773 &iter.iter, stream, node_session_id.node) {
3774 if (stream->metadata_flag) {
3775 ret = relayd_quiescent_control(&relayd->control_sock,
3776 stream->relayd_stream_id);
3777 } else {
3778 ret = relayd_data_pending(&relayd->control_sock,
3779 stream->relayd_stream_id,
3780 stream->next_net_seq_num - 1);
3781 }
3782
3783 if (ret == 1) {
3784 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3785 goto data_pending;
3786 } else if (ret < 0) {
3787 ERR("Relayd data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3788 lttng_consumer_cleanup_relayd(relayd);
3789 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3790 goto data_not_pending;
3791 }
3792 }
3793
3794 /* Send end command for data pending. */
3795 ret = relayd_end_data_pending(&relayd->control_sock,
3796 relayd->relayd_session_id, &is_data_inflight);
3797 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3798 if (ret < 0) {
3799 ERR("Relayd end data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3800 lttng_consumer_cleanup_relayd(relayd);
3801 goto data_not_pending;
3802 }
3803 if (is_data_inflight) {
3804 goto data_pending;
3805 }
3806 }
3807
3808 /*
3809 * Finding _no_ node in the hash table and no inflight data means that the
3810 * stream(s) have been removed thus data is guaranteed to be available for
3811 * analysis from the trace files.
3812 */
3813
3814 data_not_pending:
3815 /* Data is available to be read by a viewer. */
3816 pthread_mutex_unlock(&consumer_data.lock);
3817 rcu_read_unlock();
3818 return 0;
3819
3820 data_pending:
3821 /* Data is still being extracted from buffers. */
3822 pthread_mutex_unlock(&consumer_data.lock);
3823 rcu_read_unlock();
3824 return 1;
3825 }
3826
3827 /*
3828 * Send a ret code status message to the sessiond daemon.
3829 *
3830 * Return the sendmsg() return value.
3831 */
3832 int consumer_send_status_msg(int sock, int ret_code)
3833 {
3834 struct lttcomm_consumer_status_msg msg;
3835
3836 memset(&msg, 0, sizeof(msg));
3837 msg.ret_code = ret_code;
3838
3839 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3840 }
3841
3842 /*
3843 * Send a channel status message to the sessiond daemon.
3844 *
3845 * Return the sendmsg() return value.
3846 */
3847 int consumer_send_status_channel(int sock,
3848 struct lttng_consumer_channel *channel)
3849 {
3850 struct lttcomm_consumer_status_channel msg;
3851
3852 assert(sock >= 0);
3853
3854 memset(&msg, 0, sizeof(msg));
3855 if (!channel) {
3856 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3857 } else {
3858 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3859 msg.key = channel->key;
3860 msg.stream_count = channel->streams.count;
3861 }
3862
3863 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3864 }
3865
3866 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3867 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3868 uint64_t max_sb_size)
3869 {
3870 unsigned long start_pos;
3871
3872 if (!nb_packets_per_stream) {
3873 return consumed_pos; /* Grab everything */
3874 }
3875 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3876 start_pos -= max_sb_size * nb_packets_per_stream;
3877 if ((long) (start_pos - consumed_pos) < 0) {
3878 return consumed_pos; /* Grab everything */
3879 }
3880 return start_pos;
3881 }
3882
3883 static
3884 int consumer_flush_buffer(struct lttng_consumer_stream *stream, int producer_active)
3885 {
3886 int ret = 0;
3887
3888 switch (consumer_data.type) {
3889 case LTTNG_CONSUMER_KERNEL:
3890 ret = kernctl_buffer_flush(stream->wait_fd);
3891 if (ret < 0) {
3892 ERR("Failed to flush kernel stream");
3893 goto end;
3894 }
3895 break;
3896 case LTTNG_CONSUMER32_UST:
3897 case LTTNG_CONSUMER64_UST:
3898 lttng_ustctl_flush_buffer(stream, producer_active);
3899 break;
3900 default:
3901 ERR("Unknown consumer_data type");
3902 abort();
3903 }
3904
3905 end:
3906 return ret;
3907 }
3908
3909 /*
3910 * Sample the rotate position for all the streams of a channel. If a stream
3911 * is already at the rotate position (produced == consumed), we flag it as
3912 * ready for rotation. The rotation of ready streams occurs after we have
3913 * replied to the session daemon that we have finished sampling the positions.
3914 * Must be called with RCU read-side lock held to ensure existence of channel.
3915 *
3916 * Returns 0 on success, < 0 on error
3917 */
3918 int lttng_consumer_rotate_channel(struct lttng_consumer_channel *channel,
3919 uint64_t key, const char *path, uint64_t relayd_id,
3920 uint32_t metadata, uint64_t new_chunk_id,
3921 struct lttng_consumer_local_data *ctx)
3922 {
3923 int ret;
3924 struct lttng_consumer_stream *stream;
3925 struct lttng_ht_iter iter;
3926 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
3927
3928 DBG("Consumer sample rotate position for channel %" PRIu64, key);
3929
3930 rcu_read_lock();
3931
3932 pthread_mutex_lock(&channel->lock);
3933 channel->current_chunk_id = new_chunk_id;
3934
3935 ret = lttng_strncpy(channel->pathname, path, sizeof(channel->pathname));
3936 if (ret) {
3937 ERR("Failed to copy new path to channel during channel rotation");
3938 ret = -1;
3939 goto end_unlock_channel;
3940 }
3941
3942 if (relayd_id == -1ULL) {
3943 /*
3944 * The domain path (/ust or /kernel) has been created before, we
3945 * now need to create the last part of the path: the application/user
3946 * specific section (uid/1000/64-bit).
3947 */
3948 ret = utils_mkdir_recursive(channel->pathname, S_IRWXU | S_IRWXG,
3949 channel->uid, channel->gid);
3950 if (ret < 0) {
3951 ERR("Failed to create trace directory at %s during rotation",
3952 channel->pathname);
3953 ret = -1;
3954 goto end_unlock_channel;
3955 }
3956 }
3957
3958 cds_lfht_for_each_entry_duplicate(ht->ht,
3959 ht->hash_fct(&channel->key, lttng_ht_seed),
3960 ht->match_fct, &channel->key, &iter.iter,
3961 stream, node_channel_id.node) {
3962 unsigned long consumed_pos;
3963
3964 health_code_update();
3965
3966 /*
3967 * Lock stream because we are about to change its state.
3968 */
3969 pthread_mutex_lock(&stream->lock);
3970
3971 ret = lttng_strncpy(stream->channel_read_only_attributes.path,
3972 channel->pathname,
3973 sizeof(stream->channel_read_only_attributes.path));
3974 if (ret) {
3975 ERR("Failed to sample channel path name during channel rotation");
3976 goto end_unlock_stream;
3977 }
3978 ret = lttng_consumer_sample_snapshot_positions(stream);
3979 if (ret < 0) {
3980 ERR("Failed to sample snapshot position during channel rotation");
3981 goto end_unlock_stream;
3982 }
3983
3984 ret = lttng_consumer_get_produced_snapshot(stream,
3985 &stream->rotate_position);
3986 if (ret < 0) {
3987 ERR("Failed to sample produced position during channel rotation");
3988 goto end_unlock_stream;
3989 }
3990
3991 lttng_consumer_get_consumed_snapshot(stream,
3992 &consumed_pos);
3993 if (consumed_pos == stream->rotate_position) {
3994 stream->rotate_ready = true;
3995 }
3996
3997 ret = consumer_flush_buffer(stream, 1);
3998 if (ret < 0) {
3999 ERR("Failed to flush stream %" PRIu64 " during channel rotation",
4000 stream->key);
4001 goto end_unlock_stream;
4002 }
4003
4004 pthread_mutex_unlock(&stream->lock);
4005 }
4006 pthread_mutex_unlock(&channel->lock);
4007
4008 ret = 0;
4009 goto end;
4010
4011 end_unlock_stream:
4012 pthread_mutex_unlock(&stream->lock);
4013 end_unlock_channel:
4014 pthread_mutex_unlock(&channel->lock);
4015 end:
4016 rcu_read_unlock();
4017 return ret;
4018 }
4019
4020 /*
4021 * Check if a stream is ready to be rotated after extracting it.
4022 *
4023 * Return 1 if it is ready for rotation, 0 if it is not, a negative value on
4024 * error. Stream lock must be held.
4025 */
4026 int lttng_consumer_stream_is_rotate_ready(struct lttng_consumer_stream *stream)
4027 {
4028 int ret;
4029 unsigned long consumed_pos;
4030
4031 if (!stream->rotate_position && !stream->rotate_ready) {
4032 ret = 0;
4033 goto end;
4034 }
4035
4036 if (stream->rotate_ready) {
4037 ret = 1;
4038 goto end;
4039 }
4040
4041 /*
4042 * If we don't have the rotate_ready flag, check the consumed position
4043 * to determine if we need to rotate.
4044 */
4045 ret = lttng_consumer_sample_snapshot_positions(stream);
4046 if (ret < 0) {
4047 ERR("Taking snapshot positions");
4048 goto end;
4049 }
4050
4051 ret = lttng_consumer_get_consumed_snapshot(stream, &consumed_pos);
4052 if (ret < 0) {
4053 ERR("Consumed snapshot position");
4054 goto end;
4055 }
4056
4057 /* Rotate position not reached yet (with check for overflow). */
4058 if ((long) (consumed_pos - stream->rotate_position) < 0) {
4059 ret = 0;
4060 goto end;
4061 }
4062 ret = 1;
4063
4064 end:
4065 return ret;
4066 }
4067
4068 /*
4069 * Reset the state for a stream after a rotation occurred.
4070 */
4071 void lttng_consumer_reset_stream_rotate_state(struct lttng_consumer_stream *stream)
4072 {
4073 stream->rotate_position = 0;
4074 stream->rotate_ready = false;
4075 }
4076
4077 /*
4078 * Perform the rotation a local stream file.
4079 */
4080 int rotate_local_stream(struct lttng_consumer_local_data *ctx,
4081 struct lttng_consumer_stream *stream)
4082 {
4083 int ret;
4084
4085 DBG("Rotate local stream: stream key %" PRIu64 ", channel key %" PRIu64 " at path %s",
4086 stream->key,
4087 stream->chan->key,
4088 stream->channel_read_only_attributes.path);
4089
4090 ret = close(stream->out_fd);
4091 if (ret < 0) {
4092 PERROR("Closing trace file (fd %d), stream %" PRIu64,
4093 stream->out_fd, stream->key);
4094 assert(0);
4095 goto error;
4096 }
4097
4098 ret = utils_create_stream_file(
4099 stream->channel_read_only_attributes.path,
4100 stream->name,
4101 stream->channel_read_only_attributes.tracefile_size,
4102 stream->tracefile_count_current,
4103 stream->uid, stream->gid, NULL);
4104 if (ret < 0) {
4105 ERR("Rotate create stream file");
4106 goto error;
4107 }
4108 stream->out_fd = ret;
4109 stream->tracefile_size_current = 0;
4110
4111 if (!stream->metadata_flag) {
4112 struct lttng_index_file *index_file;
4113
4114 lttng_index_file_put(stream->index_file);
4115
4116 index_file = lttng_index_file_create(
4117 stream->channel_read_only_attributes.path,
4118 stream->name, stream->uid, stream->gid,
4119 stream->channel_read_only_attributes.tracefile_size,
4120 stream->tracefile_count_current,
4121 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
4122 if (!index_file) {
4123 ERR("Create index file during rotation");
4124 goto error;
4125 }
4126 stream->index_file = index_file;
4127 stream->out_fd_offset = 0;
4128 }
4129
4130 ret = 0;
4131 goto end;
4132
4133 error:
4134 ret = -1;
4135 end:
4136 return ret;
4137
4138 }
4139
4140 /*
4141 * Perform the rotation a stream file on the relay.
4142 */
4143 int rotate_relay_stream(struct lttng_consumer_local_data *ctx,
4144 struct lttng_consumer_stream *stream)
4145 {
4146 int ret;
4147 struct consumer_relayd_sock_pair *relayd;
4148
4149 DBG("Rotate relay stream");
4150 relayd = consumer_find_relayd(stream->net_seq_idx);
4151 if (!relayd) {
4152 ERR("Failed to find relayd");
4153 ret = -1;
4154 goto end;
4155 }
4156
4157 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4158 ret = relayd_rotate_stream(&relayd->control_sock,
4159 stream->relayd_stream_id,
4160 stream->channel_read_only_attributes.path,
4161 stream->chan->current_chunk_id,
4162 stream->last_sequence_number);
4163 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4164 if (ret < 0) {
4165 ERR("Relayd rotate stream failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
4166 lttng_consumer_cleanup_relayd(relayd);
4167 }
4168 if (ret) {
4169 ERR("Rotate relay stream");
4170 }
4171
4172 end:
4173 return ret;
4174 }
4175
4176 /*
4177 * Performs the stream rotation for the rotate session feature if needed.
4178 * It must be called with the stream lock held.
4179 *
4180 * Return 0 on success, a negative number of error.
4181 */
4182 int lttng_consumer_rotate_stream(struct lttng_consumer_local_data *ctx,
4183 struct lttng_consumer_stream *stream, bool *rotated)
4184 {
4185 int ret;
4186
4187 DBG("Consumer rotate stream %" PRIu64, stream->key);
4188
4189 if (stream->net_seq_idx != (uint64_t) -1ULL) {
4190 ret = rotate_relay_stream(ctx, stream);
4191 } else {
4192 ret = rotate_local_stream(ctx, stream);
4193 }
4194 stream->trace_archive_id++;
4195 if (ret < 0) {
4196 ERR("Failed to rotate stream, ret = %i", ret);
4197 goto error;
4198 }
4199
4200 if (stream->metadata_flag) {
4201 switch (consumer_data.type) {
4202 case LTTNG_CONSUMER_KERNEL:
4203 /*
4204 * Reset the position of what has been read from the metadata
4205 * cache to 0 so we can dump it again.
4206 */
4207 ret = kernctl_metadata_cache_dump(stream->wait_fd);
4208 if (ret < 0) {
4209 ERR("Failed to dump the kernel metadata cache after rotation");
4210 goto error;
4211 }
4212 break;
4213 case LTTNG_CONSUMER32_UST:
4214 case LTTNG_CONSUMER64_UST:
4215 /*
4216 * Reset the position pushed from the metadata cache so it
4217 * will write from the beginning on the next push.
4218 */
4219 stream->ust_metadata_pushed = 0;
4220 break;
4221 default:
4222 ERR("Unknown consumer_data type");
4223 abort();
4224 }
4225 }
4226 lttng_consumer_reset_stream_rotate_state(stream);
4227
4228 if (rotated) {
4229 *rotated = true;
4230 }
4231
4232 ret = 0;
4233
4234 error:
4235 return ret;
4236 }
4237
4238 /*
4239 * Rotate all the ready streams now.
4240 *
4241 * This is especially important for low throughput streams that have already
4242 * been consumed, we cannot wait for their next packet to perform the
4243 * rotation.
4244 * Need to be called with RCU read-side lock held to ensure existence of
4245 * channel.
4246 *
4247 * Returns 0 on success, < 0 on error
4248 */
4249 int lttng_consumer_rotate_ready_streams(struct lttng_consumer_channel *channel,
4250 uint64_t key, struct lttng_consumer_local_data *ctx)
4251 {
4252 int ret;
4253 struct lttng_consumer_stream *stream;
4254 struct lttng_ht_iter iter;
4255 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
4256
4257 rcu_read_lock();
4258
4259 DBG("Consumer rotate ready streams in channel %" PRIu64, key);
4260
4261 cds_lfht_for_each_entry_duplicate(ht->ht,
4262 ht->hash_fct(&channel->key, lttng_ht_seed),
4263 ht->match_fct, &channel->key, &iter.iter,
4264 stream, node_channel_id.node) {
4265 health_code_update();
4266
4267 pthread_mutex_lock(&stream->lock);
4268
4269 if (!stream->rotate_ready) {
4270 pthread_mutex_unlock(&stream->lock);
4271 continue;
4272 }
4273 DBG("Consumer rotate ready stream %" PRIu64, stream->key);
4274
4275 ret = lttng_consumer_rotate_stream(ctx, stream, NULL);
4276 pthread_mutex_unlock(&stream->lock);
4277 if (ret) {
4278 goto end;
4279 }
4280
4281 ret = consumer_post_rotation(stream, ctx);
4282 if (ret) {
4283 goto end;
4284 }
4285 }
4286
4287 ret = 0;
4288
4289 end:
4290 rcu_read_unlock();
4291 return ret;
4292 }
4293
4294 static
4295 int rotate_rename_local(const char *old_path, const char *new_path,
4296 uid_t uid, gid_t gid)
4297 {
4298 int ret;
4299
4300 assert(old_path);
4301 assert(new_path);
4302
4303 ret = utils_mkdir_recursive(new_path, S_IRWXU | S_IRWXG, uid, gid);
4304 if (ret < 0) {
4305 ERR("Create directory on rotate");
4306 goto end;
4307 }
4308
4309 ret = rename(old_path, new_path);
4310 if (ret < 0 && errno != ENOENT) {
4311 PERROR("Rename completed rotation chunk");
4312 goto end;
4313 }
4314
4315 ret = 0;
4316 end:
4317 return ret;
4318 }
4319
4320 static
4321 int rotate_rename_relay(const char *old_path, const char *new_path,
4322 uint64_t relayd_id)
4323 {
4324 int ret;
4325 struct consumer_relayd_sock_pair *relayd;
4326
4327 relayd = consumer_find_relayd(relayd_id);
4328 if (!relayd) {
4329 ERR("Failed to find relayd while running rotate_rename_relay command");
4330 ret = -1;
4331 goto end;
4332 }
4333
4334 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4335 ret = relayd_rotate_rename(&relayd->control_sock, old_path, new_path);
4336 if (ret < 0) {
4337 ERR("Relayd rotate rename failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
4338 lttng_consumer_cleanup_relayd(relayd);
4339 }
4340 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4341 end:
4342 return ret;
4343 }
4344
4345 int lttng_consumer_rotate_rename(const char *old_path, const char *new_path,
4346 uid_t uid, gid_t gid, uint64_t relayd_id)
4347 {
4348 if (relayd_id != -1ULL) {
4349 return rotate_rename_relay(old_path, new_path, relayd_id);
4350 } else {
4351 return rotate_rename_local(old_path, new_path, uid, gid);
4352 }
4353 }
4354
4355 /* Stream lock must be acquired by the caller. */
4356 static
4357 bool check_stream_rotation_pending(const struct lttng_consumer_stream *stream,
4358 uint64_t session_id, uint64_t chunk_id)
4359 {
4360 bool pending = false;
4361
4362 if (stream->session_id != session_id) {
4363 /* Skip. */
4364 goto end;
4365 }
4366
4367 /*
4368 * If the stream's archive_id belongs to the chunk being rotated (or an
4369 * even older one), it means that the consumer has not consumed all the
4370 * buffers that belong to the chunk being rotated. Therefore, the
4371 * rotation is considered as ongoing/pending.
4372 */
4373 pending = stream->trace_archive_id <= chunk_id;
4374 end:
4375 return pending;
4376 }
4377
4378 /* RCU read lock must be acquired by the caller. */
4379 int lttng_consumer_check_rotation_pending_local(uint64_t session_id,
4380 uint64_t chunk_id)
4381 {
4382 struct lttng_ht_iter iter;
4383 struct lttng_consumer_stream *stream;
4384 bool rotation_pending = false;
4385
4386 /* Start with the metadata streams... */
4387 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
4388 pthread_mutex_lock(&stream->lock);
4389 rotation_pending = check_stream_rotation_pending(stream,
4390 session_id, chunk_id);
4391 pthread_mutex_unlock(&stream->lock);
4392 if (rotation_pending) {
4393 goto end;
4394 }
4395 }
4396
4397 /* ... followed by the data streams. */
4398 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
4399 pthread_mutex_lock(&stream->lock);
4400 rotation_pending = check_stream_rotation_pending(stream,
4401 session_id, chunk_id);
4402 pthread_mutex_unlock(&stream->lock);
4403 if (rotation_pending) {
4404 goto end;
4405 }
4406 }
4407
4408 end:
4409 return !!rotation_pending;
4410 }
4411
4412 int lttng_consumer_check_rotation_pending_relay(uint64_t session_id,
4413 uint64_t relayd_id, uint64_t chunk_id)
4414 {
4415 int ret;
4416 struct consumer_relayd_sock_pair *relayd;
4417
4418 relayd = consumer_find_relayd(relayd_id);
4419 if (!relayd) {
4420 ERR("Failed to find relayd id %" PRIu64, relayd_id);
4421 ret = -1;
4422 goto end;
4423 }
4424
4425 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4426 ret = relayd_rotate_pending(&relayd->control_sock, chunk_id);
4427 if (ret < 0) {
4428 ERR("Relayd rotate pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
4429 lttng_consumer_cleanup_relayd(relayd);
4430 }
4431 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4432
4433 end:
4434 return ret;
4435 }
4436
4437 static
4438 int mkdir_local(const char *path, uid_t uid, gid_t gid)
4439 {
4440 int ret;
4441
4442 ret = utils_mkdir_recursive(path, S_IRWXU | S_IRWXG, uid, gid);
4443 if (ret < 0) {
4444 /* utils_mkdir_recursive logs an error. */
4445 goto end;
4446 }
4447
4448 ret = 0;
4449 end:
4450 return ret;
4451 }
4452
4453 static
4454 int mkdir_relay(const char *path, uint64_t relayd_id)
4455 {
4456 int ret;
4457 struct consumer_relayd_sock_pair *relayd;
4458
4459 relayd = consumer_find_relayd(relayd_id);
4460 if (!relayd) {
4461 ERR("Failed to find relayd");
4462 ret = -1;
4463 goto end;
4464 }
4465
4466 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4467 ret = relayd_mkdir(&relayd->control_sock, path);
4468 if (ret < 0) {
4469 ERR("Relayd mkdir failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
4470 lttng_consumer_cleanup_relayd(relayd);
4471 }
4472 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4473
4474 end:
4475 return ret;
4476
4477 }
4478
4479 int lttng_consumer_mkdir(const char *path, uid_t uid, gid_t gid,
4480 uint64_t relayd_id)
4481 {
4482 if (relayd_id != -1ULL) {
4483 return mkdir_relay(path, relayd_id);
4484 } else {
4485 return mkdir_local(path, uid, gid);
4486 }
4487 }
4488
4489 enum lttcomm_return_code lttng_consumer_init_command(
4490 struct lttng_consumer_local_data *ctx,
4491 const lttng_uuid sessiond_uuid)
4492 {
4493 enum lttcomm_return_code ret;
4494 char uuid_str[UUID_STR_LEN];
4495
4496 if (ctx->sessiond_uuid.is_set) {
4497 ret = LTTCOMM_CONSUMERD_ALREADY_SET;
4498 goto end;
4499 }
4500
4501 ctx->sessiond_uuid.is_set = true;
4502 memcpy(ctx->sessiond_uuid.value, sessiond_uuid, sizeof(lttng_uuid));
4503 ret = LTTCOMM_CONSUMERD_SUCCESS;
4504 lttng_uuid_to_str(sessiond_uuid, uuid_str);
4505 DBG("Received session daemon UUID: %s", uuid_str);
4506 end:
4507 return ret;
4508 }
This page took 0.214692 seconds and 5 git commands to generate.