2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 #include <sys/socket.h>
28 #include <sys/types.h>
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/time.h>
37 #include <common/compat/poll.h>
38 #include <common/compat/endian.h>
39 #include <common/index/index.h>
40 #include <common/kernel-ctl/kernel-ctl.h>
41 #include <common/sessiond-comm/relayd.h>
42 #include <common/sessiond-comm/sessiond-comm.h>
43 #include <common/kernel-consumer/kernel-consumer.h>
44 #include <common/relayd/relayd.h>
45 #include <common/ust-consumer/ust-consumer.h>
46 #include <common/consumer/consumer-timer.h>
47 #include <common/consumer/consumer.h>
48 #include <common/consumer/consumer-stream.h>
49 #include <common/consumer/consumer-testpoint.h>
50 #include <common/align.h>
51 #include <common/consumer/consumer-metadata-cache.h>
52 #include <common/trace-chunk.h>
53 #include <common/trace-chunk-registry.h>
54 #include <common/string-utils/format.h>
55 #include <common/dynamic-array.h>
57 struct lttng_consumer_global_data consumer_data
= {
60 .type
= LTTNG_CONSUMER_UNKNOWN
,
63 enum consumer_channel_action
{
66 CONSUMER_CHANNEL_QUIT
,
69 struct consumer_channel_msg
{
70 enum consumer_channel_action action
;
71 struct lttng_consumer_channel
*chan
; /* add */
72 uint64_t key
; /* del */
75 /* Flag used to temporarily pause data consumption from testpoints. */
76 int data_consumption_paused
;
79 * Flag to inform the polling thread to quit when all fd hung up. Updated by
80 * the consumer_thread_receive_fds when it notices that all fds has hung up.
81 * Also updated by the signal handler (consumer_should_exit()). Read by the
87 * Global hash table containing respectively metadata and data streams. The
88 * stream element in this ht should only be updated by the metadata poll thread
89 * for the metadata and the data poll thread for the data.
91 static struct lttng_ht
*metadata_ht
;
92 static struct lttng_ht
*data_ht
;
95 * Notify a thread lttng pipe to poll back again. This usually means that some
96 * global state has changed so we just send back the thread in a poll wait
99 static void notify_thread_lttng_pipe(struct lttng_pipe
*pipe
)
101 struct lttng_consumer_stream
*null_stream
= NULL
;
105 (void) lttng_pipe_write(pipe
, &null_stream
, sizeof(null_stream
));
108 static void notify_health_quit_pipe(int *pipe
)
112 ret
= lttng_write(pipe
[1], "4", 1);
114 PERROR("write consumer health quit");
118 static void notify_channel_pipe(struct lttng_consumer_local_data
*ctx
,
119 struct lttng_consumer_channel
*chan
,
121 enum consumer_channel_action action
)
123 struct consumer_channel_msg msg
;
126 memset(&msg
, 0, sizeof(msg
));
131 ret
= lttng_write(ctx
->consumer_channel_pipe
[1], &msg
, sizeof(msg
));
132 if (ret
< sizeof(msg
)) {
133 PERROR("notify_channel_pipe write error");
137 void notify_thread_del_channel(struct lttng_consumer_local_data
*ctx
,
140 notify_channel_pipe(ctx
, NULL
, key
, CONSUMER_CHANNEL_DEL
);
143 static int read_channel_pipe(struct lttng_consumer_local_data
*ctx
,
144 struct lttng_consumer_channel
**chan
,
146 enum consumer_channel_action
*action
)
148 struct consumer_channel_msg msg
;
151 ret
= lttng_read(ctx
->consumer_channel_pipe
[0], &msg
, sizeof(msg
));
152 if (ret
< sizeof(msg
)) {
156 *action
= msg
.action
;
164 * Cleanup the stream list of a channel. Those streams are not yet globally
167 static void clean_channel_stream_list(struct lttng_consumer_channel
*channel
)
169 struct lttng_consumer_stream
*stream
, *stmp
;
173 /* Delete streams that might have been left in the stream list. */
174 cds_list_for_each_entry_safe(stream
, stmp
, &channel
->streams
.head
,
176 cds_list_del(&stream
->send_node
);
178 * Once a stream is added to this list, the buffers were created so we
179 * have a guarantee that this call will succeed. Setting the monitor
180 * mode to 0 so we don't lock nor try to delete the stream from the
184 consumer_stream_destroy(stream
, NULL
);
189 * Find a stream. The consumer_data.lock must be locked during this
192 static struct lttng_consumer_stream
*find_stream(uint64_t key
,
195 struct lttng_ht_iter iter
;
196 struct lttng_ht_node_u64
*node
;
197 struct lttng_consumer_stream
*stream
= NULL
;
201 /* -1ULL keys are lookup failures */
202 if (key
== (uint64_t) -1ULL) {
208 lttng_ht_lookup(ht
, &key
, &iter
);
209 node
= lttng_ht_iter_get_node_u64(&iter
);
211 stream
= caa_container_of(node
, struct lttng_consumer_stream
, node
);
219 static void steal_stream_key(uint64_t key
, struct lttng_ht
*ht
)
221 struct lttng_consumer_stream
*stream
;
224 stream
= find_stream(key
, ht
);
226 stream
->key
= (uint64_t) -1ULL;
228 * We don't want the lookup to match, but we still need
229 * to iterate on this stream when iterating over the hash table. Just
230 * change the node key.
232 stream
->node
.key
= (uint64_t) -1ULL;
238 * Return a channel object for the given key.
240 * RCU read side lock MUST be acquired before calling this function and
241 * protects the channel ptr.
243 struct lttng_consumer_channel
*consumer_find_channel(uint64_t key
)
245 struct lttng_ht_iter iter
;
246 struct lttng_ht_node_u64
*node
;
247 struct lttng_consumer_channel
*channel
= NULL
;
249 /* -1ULL keys are lookup failures */
250 if (key
== (uint64_t) -1ULL) {
254 lttng_ht_lookup(consumer_data
.channel_ht
, &key
, &iter
);
255 node
= lttng_ht_iter_get_node_u64(&iter
);
257 channel
= caa_container_of(node
, struct lttng_consumer_channel
, node
);
264 * There is a possibility that the consumer does not have enough time between
265 * the close of the channel on the session daemon and the cleanup in here thus
266 * once we have a channel add with an existing key, we know for sure that this
267 * channel will eventually get cleaned up by all streams being closed.
269 * This function just nullifies the already existing channel key.
271 static void steal_channel_key(uint64_t key
)
273 struct lttng_consumer_channel
*channel
;
276 channel
= consumer_find_channel(key
);
278 channel
->key
= (uint64_t) -1ULL;
280 * We don't want the lookup to match, but we still need to iterate on
281 * this channel when iterating over the hash table. Just change the
284 channel
->node
.key
= (uint64_t) -1ULL;
289 static void free_channel_rcu(struct rcu_head
*head
)
291 struct lttng_ht_node_u64
*node
=
292 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
293 struct lttng_consumer_channel
*channel
=
294 caa_container_of(node
, struct lttng_consumer_channel
, node
);
296 switch (consumer_data
.type
) {
297 case LTTNG_CONSUMER_KERNEL
:
299 case LTTNG_CONSUMER32_UST
:
300 case LTTNG_CONSUMER64_UST
:
301 lttng_ustconsumer_free_channel(channel
);
304 ERR("Unknown consumer_data type");
311 * RCU protected relayd socket pair free.
313 static void free_relayd_rcu(struct rcu_head
*head
)
315 struct lttng_ht_node_u64
*node
=
316 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
317 struct consumer_relayd_sock_pair
*relayd
=
318 caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
321 * Close all sockets. This is done in the call RCU since we don't want the
322 * socket fds to be reassigned thus potentially creating bad state of the
325 * We do not have to lock the control socket mutex here since at this stage
326 * there is no one referencing to this relayd object.
328 (void) relayd_close(&relayd
->control_sock
);
329 (void) relayd_close(&relayd
->data_sock
);
331 pthread_mutex_destroy(&relayd
->ctrl_sock_mutex
);
336 * Destroy and free relayd socket pair object.
338 void consumer_destroy_relayd(struct consumer_relayd_sock_pair
*relayd
)
341 struct lttng_ht_iter iter
;
343 if (relayd
== NULL
) {
347 DBG("Consumer destroy and close relayd socket pair");
349 iter
.iter
.node
= &relayd
->node
.node
;
350 ret
= lttng_ht_del(consumer_data
.relayd_ht
, &iter
);
352 /* We assume the relayd is being or is destroyed */
356 /* RCU free() call */
357 call_rcu(&relayd
->node
.head
, free_relayd_rcu
);
361 * Remove a channel from the global list protected by a mutex. This function is
362 * also responsible for freeing its data structures.
364 void consumer_del_channel(struct lttng_consumer_channel
*channel
)
366 struct lttng_ht_iter iter
;
368 DBG("Consumer delete channel key %" PRIu64
, channel
->key
);
370 pthread_mutex_lock(&consumer_data
.lock
);
371 pthread_mutex_lock(&channel
->lock
);
373 /* Destroy streams that might have been left in the stream list. */
374 clean_channel_stream_list(channel
);
376 if (channel
->live_timer_enabled
== 1) {
377 consumer_timer_live_stop(channel
);
379 if (channel
->monitor_timer_enabled
== 1) {
380 consumer_timer_monitor_stop(channel
);
383 switch (consumer_data
.type
) {
384 case LTTNG_CONSUMER_KERNEL
:
386 case LTTNG_CONSUMER32_UST
:
387 case LTTNG_CONSUMER64_UST
:
388 lttng_ustconsumer_del_channel(channel
);
391 ERR("Unknown consumer_data type");
396 lttng_trace_chunk_put(channel
->trace_chunk
);
397 channel
->trace_chunk
= NULL
;
399 if (channel
->is_published
) {
403 iter
.iter
.node
= &channel
->node
.node
;
404 ret
= lttng_ht_del(consumer_data
.channel_ht
, &iter
);
407 iter
.iter
.node
= &channel
->channels_by_session_id_ht_node
.node
;
408 ret
= lttng_ht_del(consumer_data
.channels_by_session_id_ht
,
414 channel
->is_deleted
= true;
415 call_rcu(&channel
->node
.head
, free_channel_rcu
);
417 pthread_mutex_unlock(&channel
->lock
);
418 pthread_mutex_unlock(&consumer_data
.lock
);
422 * Iterate over the relayd hash table and destroy each element. Finally,
423 * destroy the whole hash table.
425 static void cleanup_relayd_ht(void)
427 struct lttng_ht_iter iter
;
428 struct consumer_relayd_sock_pair
*relayd
;
432 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
434 consumer_destroy_relayd(relayd
);
439 lttng_ht_destroy(consumer_data
.relayd_ht
);
443 * Update the end point status of all streams having the given network sequence
444 * index (relayd index).
446 * It's atomically set without having the stream mutex locked which is fine
447 * because we handle the write/read race with a pipe wakeup for each thread.
449 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx
,
450 enum consumer_endpoint_status status
)
452 struct lttng_ht_iter iter
;
453 struct lttng_consumer_stream
*stream
;
455 DBG("Consumer set delete flag on stream by idx %" PRIu64
, net_seq_idx
);
459 /* Let's begin with metadata */
460 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
461 if (stream
->net_seq_idx
== net_seq_idx
) {
462 uatomic_set(&stream
->endpoint_status
, status
);
463 DBG("Delete flag set to metadata stream %d", stream
->wait_fd
);
467 /* Follow up by the data streams */
468 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
469 if (stream
->net_seq_idx
== net_seq_idx
) {
470 uatomic_set(&stream
->endpoint_status
, status
);
471 DBG("Delete flag set to data stream %d", stream
->wait_fd
);
478 * Cleanup a relayd object by flagging every associated streams for deletion,
479 * destroying the object meaning removing it from the relayd hash table,
480 * closing the sockets and freeing the memory in a RCU call.
482 * If a local data context is available, notify the threads that the streams'
483 * state have changed.
485 void lttng_consumer_cleanup_relayd(struct consumer_relayd_sock_pair
*relayd
)
491 DBG("Cleaning up relayd object ID %"PRIu64
, relayd
->net_seq_idx
);
493 /* Save the net sequence index before destroying the object */
494 netidx
= relayd
->net_seq_idx
;
497 * Delete the relayd from the relayd hash table, close the sockets and free
498 * the object in a RCU call.
500 consumer_destroy_relayd(relayd
);
502 /* Set inactive endpoint to all streams */
503 update_endpoint_status_by_netidx(netidx
, CONSUMER_ENDPOINT_INACTIVE
);
506 * With a local data context, notify the threads that the streams' state
507 * have changed. The write() action on the pipe acts as an "implicit"
508 * memory barrier ordering the updates of the end point status from the
509 * read of this status which happens AFTER receiving this notify.
511 notify_thread_lttng_pipe(relayd
->ctx
->consumer_data_pipe
);
512 notify_thread_lttng_pipe(relayd
->ctx
->consumer_metadata_pipe
);
516 * Flag a relayd socket pair for destruction. Destroy it if the refcount
519 * RCU read side lock MUST be aquired before calling this function.
521 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair
*relayd
)
525 /* Set destroy flag for this object */
526 uatomic_set(&relayd
->destroy_flag
, 1);
528 /* Destroy the relayd if refcount is 0 */
529 if (uatomic_read(&relayd
->refcount
) == 0) {
530 consumer_destroy_relayd(relayd
);
535 * Completly destroy stream from every visiable data structure and the given
538 * One this call returns, the stream object is not longer usable nor visible.
540 void consumer_del_stream(struct lttng_consumer_stream
*stream
,
543 consumer_stream_destroy(stream
, ht
);
547 * XXX naming of del vs destroy is all mixed up.
549 void consumer_del_stream_for_data(struct lttng_consumer_stream
*stream
)
551 consumer_stream_destroy(stream
, data_ht
);
554 void consumer_del_stream_for_metadata(struct lttng_consumer_stream
*stream
)
556 consumer_stream_destroy(stream
, metadata_ht
);
559 void consumer_stream_update_channel_attributes(
560 struct lttng_consumer_stream
*stream
,
561 struct lttng_consumer_channel
*channel
)
563 stream
->channel_read_only_attributes
.tracefile_size
=
564 channel
->tracefile_size
;
567 struct lttng_consumer_stream
*consumer_allocate_stream(uint64_t channel_key
,
569 const char *channel_name
,
572 struct lttng_trace_chunk
*trace_chunk
,
575 enum consumer_channel_type type
,
576 unsigned int monitor
)
579 struct lttng_consumer_stream
*stream
;
581 stream
= zmalloc(sizeof(*stream
));
582 if (stream
== NULL
) {
583 PERROR("malloc struct lttng_consumer_stream");
588 if (trace_chunk
&& !lttng_trace_chunk_get(trace_chunk
)) {
589 ERR("Failed to acquire trace chunk reference during the creation of a stream");
595 stream
->key
= stream_key
;
596 stream
->trace_chunk
= trace_chunk
;
598 stream
->out_fd_offset
= 0;
599 stream
->output_written
= 0;
600 stream
->net_seq_idx
= relayd_id
;
601 stream
->session_id
= session_id
;
602 stream
->monitor
= monitor
;
603 stream
->endpoint_status
= CONSUMER_ENDPOINT_ACTIVE
;
604 stream
->index_file
= NULL
;
605 stream
->last_sequence_number
= -1ULL;
606 pthread_mutex_init(&stream
->lock
, NULL
);
607 pthread_mutex_init(&stream
->metadata_timer_lock
, NULL
);
609 /* If channel is the metadata, flag this stream as metadata. */
610 if (type
== CONSUMER_CHANNEL_TYPE_METADATA
) {
611 stream
->metadata_flag
= 1;
612 /* Metadata is flat out. */
613 strncpy(stream
->name
, DEFAULT_METADATA_NAME
, sizeof(stream
->name
));
614 /* Live rendez-vous point. */
615 pthread_cond_init(&stream
->metadata_rdv
, NULL
);
616 pthread_mutex_init(&stream
->metadata_rdv_lock
, NULL
);
618 /* Format stream name to <channel_name>_<cpu_number> */
619 ret
= snprintf(stream
->name
, sizeof(stream
->name
), "%s_%d",
622 PERROR("snprintf stream name");
627 /* Key is always the wait_fd for streams. */
628 lttng_ht_node_init_u64(&stream
->node
, stream
->key
);
630 /* Init node per channel id key */
631 lttng_ht_node_init_u64(&stream
->node_channel_id
, channel_key
);
633 /* Init session id node with the stream session id */
634 lttng_ht_node_init_u64(&stream
->node_session_id
, stream
->session_id
);
636 DBG3("Allocated stream %s (key %" PRIu64
", chan_key %" PRIu64
637 " relayd_id %" PRIu64
", session_id %" PRIu64
,
638 stream
->name
, stream
->key
, channel_key
,
639 stream
->net_seq_idx
, stream
->session_id
);
646 lttng_trace_chunk_put(stream
->trace_chunk
);
656 * Add a stream to the global list protected by a mutex.
658 void consumer_add_data_stream(struct lttng_consumer_stream
*stream
)
660 struct lttng_ht
*ht
= data_ht
;
665 DBG3("Adding consumer stream %" PRIu64
, stream
->key
);
667 pthread_mutex_lock(&consumer_data
.lock
);
668 pthread_mutex_lock(&stream
->chan
->lock
);
669 pthread_mutex_lock(&stream
->chan
->timer_lock
);
670 pthread_mutex_lock(&stream
->lock
);
673 /* Steal stream identifier to avoid having streams with the same key */
674 steal_stream_key(stream
->key
, ht
);
676 lttng_ht_add_unique_u64(ht
, &stream
->node
);
678 lttng_ht_add_u64(consumer_data
.stream_per_chan_id_ht
,
679 &stream
->node_channel_id
);
682 * Add stream to the stream_list_ht of the consumer data. No need to steal
683 * the key since the HT does not use it and we allow to add redundant keys
686 lttng_ht_add_u64(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
689 * When nb_init_stream_left reaches 0, we don't need to trigger any action
690 * in terms of destroying the associated channel, because the action that
691 * causes the count to become 0 also causes a stream to be added. The
692 * channel deletion will thus be triggered by the following removal of this
695 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
696 /* Increment refcount before decrementing nb_init_stream_left */
698 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
701 /* Update consumer data once the node is inserted. */
702 consumer_data
.stream_count
++;
703 consumer_data
.need_update
= 1;
706 pthread_mutex_unlock(&stream
->lock
);
707 pthread_mutex_unlock(&stream
->chan
->timer_lock
);
708 pthread_mutex_unlock(&stream
->chan
->lock
);
709 pthread_mutex_unlock(&consumer_data
.lock
);
713 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
714 * be acquired before calling this.
716 static int add_relayd(struct consumer_relayd_sock_pair
*relayd
)
719 struct lttng_ht_node_u64
*node
;
720 struct lttng_ht_iter iter
;
724 lttng_ht_lookup(consumer_data
.relayd_ht
,
725 &relayd
->net_seq_idx
, &iter
);
726 node
= lttng_ht_iter_get_node_u64(&iter
);
730 lttng_ht_add_unique_u64(consumer_data
.relayd_ht
, &relayd
->node
);
737 * Allocate and return a consumer relayd socket.
739 static struct consumer_relayd_sock_pair
*consumer_allocate_relayd_sock_pair(
740 uint64_t net_seq_idx
)
742 struct consumer_relayd_sock_pair
*obj
= NULL
;
744 /* net sequence index of -1 is a failure */
745 if (net_seq_idx
== (uint64_t) -1ULL) {
749 obj
= zmalloc(sizeof(struct consumer_relayd_sock_pair
));
751 PERROR("zmalloc relayd sock");
755 obj
->net_seq_idx
= net_seq_idx
;
757 obj
->destroy_flag
= 0;
758 obj
->control_sock
.sock
.fd
= -1;
759 obj
->data_sock
.sock
.fd
= -1;
760 lttng_ht_node_init_u64(&obj
->node
, obj
->net_seq_idx
);
761 pthread_mutex_init(&obj
->ctrl_sock_mutex
, NULL
);
768 * Find a relayd socket pair in the global consumer data.
770 * Return the object if found else NULL.
771 * RCU read-side lock must be held across this call and while using the
774 struct consumer_relayd_sock_pair
*consumer_find_relayd(uint64_t key
)
776 struct lttng_ht_iter iter
;
777 struct lttng_ht_node_u64
*node
;
778 struct consumer_relayd_sock_pair
*relayd
= NULL
;
780 /* Negative keys are lookup failures */
781 if (key
== (uint64_t) -1ULL) {
785 lttng_ht_lookup(consumer_data
.relayd_ht
, &key
,
787 node
= lttng_ht_iter_get_node_u64(&iter
);
789 relayd
= caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
797 * Find a relayd and send the stream
799 * Returns 0 on success, < 0 on error
801 int consumer_send_relayd_stream(struct lttng_consumer_stream
*stream
,
805 struct consumer_relayd_sock_pair
*relayd
;
808 assert(stream
->net_seq_idx
!= -1ULL);
811 /* The stream is not metadata. Get relayd reference if exists. */
813 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
814 if (relayd
!= NULL
) {
815 /* Add stream on the relayd */
816 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
817 ret
= relayd_add_stream(&relayd
->control_sock
, stream
->name
,
818 path
, &stream
->relayd_stream_id
,
819 stream
->chan
->tracefile_size
,
820 stream
->chan
->tracefile_count
,
821 stream
->trace_chunk
);
822 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
824 ERR("Relayd add stream failed. Cleaning up relayd %" PRIu64
".", relayd
->net_seq_idx
);
825 lttng_consumer_cleanup_relayd(relayd
);
829 uatomic_inc(&relayd
->refcount
);
830 stream
->sent_to_relayd
= 1;
832 ERR("Stream %" PRIu64
" relayd ID %" PRIu64
" unknown. Can't send it.",
833 stream
->key
, stream
->net_seq_idx
);
838 DBG("Stream %s with key %" PRIu64
" sent to relayd id %" PRIu64
,
839 stream
->name
, stream
->key
, stream
->net_seq_idx
);
847 * Find a relayd and send the streams sent message
849 * Returns 0 on success, < 0 on error
851 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx
)
854 struct consumer_relayd_sock_pair
*relayd
;
856 assert(net_seq_idx
!= -1ULL);
858 /* The stream is not metadata. Get relayd reference if exists. */
860 relayd
= consumer_find_relayd(net_seq_idx
);
861 if (relayd
!= NULL
) {
862 /* Add stream on the relayd */
863 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
864 ret
= relayd_streams_sent(&relayd
->control_sock
);
865 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
867 ERR("Relayd streams sent failed. Cleaning up relayd %" PRIu64
".", relayd
->net_seq_idx
);
868 lttng_consumer_cleanup_relayd(relayd
);
872 ERR("Relayd ID %" PRIu64
" unknown. Can't send streams_sent.",
879 DBG("All streams sent relayd id %" PRIu64
, net_seq_idx
);
887 * Find a relayd and close the stream
889 void close_relayd_stream(struct lttng_consumer_stream
*stream
)
891 struct consumer_relayd_sock_pair
*relayd
;
893 /* The stream is not metadata. Get relayd reference if exists. */
895 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
897 consumer_stream_relayd_close(stream
, relayd
);
903 * Handle stream for relayd transmission if the stream applies for network
904 * streaming where the net sequence index is set.
906 * Return destination file descriptor or negative value on error.
908 static int write_relayd_stream_header(struct lttng_consumer_stream
*stream
,
909 size_t data_size
, unsigned long padding
,
910 struct consumer_relayd_sock_pair
*relayd
)
913 struct lttcomm_relayd_data_hdr data_hdr
;
919 /* Reset data header */
920 memset(&data_hdr
, 0, sizeof(data_hdr
));
922 if (stream
->metadata_flag
) {
923 /* Caller MUST acquire the relayd control socket lock */
924 ret
= relayd_send_metadata(&relayd
->control_sock
, data_size
);
929 /* Metadata are always sent on the control socket. */
930 outfd
= relayd
->control_sock
.sock
.fd
;
932 /* Set header with stream information */
933 data_hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
934 data_hdr
.data_size
= htobe32(data_size
);
935 data_hdr
.padding_size
= htobe32(padding
);
938 * Note that net_seq_num below is assigned with the *current* value of
939 * next_net_seq_num and only after that the next_net_seq_num will be
940 * increment. This is why when issuing a command on the relayd using
941 * this next value, 1 should always be substracted in order to compare
942 * the last seen sequence number on the relayd side to the last sent.
944 data_hdr
.net_seq_num
= htobe64(stream
->next_net_seq_num
);
945 /* Other fields are zeroed previously */
947 ret
= relayd_send_data_hdr(&relayd
->data_sock
, &data_hdr
,
953 ++stream
->next_net_seq_num
;
955 /* Set to go on data socket */
956 outfd
= relayd
->data_sock
.sock
.fd
;
964 * Trigger a dump of the metadata content. Following/during the succesful
965 * completion of this call, the metadata poll thread will start receiving
966 * metadata packets to consume.
968 * The caller must hold the channel and stream locks.
971 int consumer_metadata_stream_dump(struct lttng_consumer_stream
*stream
)
975 ASSERT_LOCKED(stream
->chan
->lock
);
976 ASSERT_LOCKED(stream
->lock
);
977 assert(stream
->metadata_flag
);
978 assert(stream
->chan
->trace_chunk
);
980 switch (consumer_data
.type
) {
981 case LTTNG_CONSUMER_KERNEL
:
983 * Reset the position of what has been read from the
984 * metadata cache to 0 so we can dump it again.
986 ret
= kernctl_metadata_cache_dump(stream
->wait_fd
);
988 case LTTNG_CONSUMER32_UST
:
989 case LTTNG_CONSUMER64_UST
:
991 * Reset the position pushed from the metadata cache so it
992 * will write from the beginning on the next push.
994 stream
->ust_metadata_pushed
= 0;
995 ret
= consumer_metadata_wakeup_pipe(stream
->chan
);
998 ERR("Unknown consumer_data type");
1002 ERR("Failed to dump the metadata cache");
1008 int lttng_consumer_channel_set_trace_chunk(
1009 struct lttng_consumer_channel
*channel
,
1010 struct lttng_trace_chunk
*new_trace_chunk
)
1012 pthread_mutex_lock(&channel
->lock
);
1013 if (channel
->is_deleted
) {
1015 * The channel has been logically deleted and should no longer
1016 * be used. It has released its reference to its current trace
1017 * chunk and should not acquire a new one.
1019 * Return success as there is nothing for the caller to do.
1025 * The acquisition of the reference cannot fail (barring
1026 * a severe internal error) since a reference to the published
1027 * chunk is already held by the caller.
1029 if (new_trace_chunk
) {
1030 const bool acquired_reference
= lttng_trace_chunk_get(
1033 assert(acquired_reference
);
1036 lttng_trace_chunk_put(channel
->trace_chunk
);
1037 channel
->trace_chunk
= new_trace_chunk
;
1039 pthread_mutex_unlock(&channel
->lock
);
1044 * Allocate and return a new lttng_consumer_channel object using the given key
1045 * to initialize the hash table node.
1047 * On error, return NULL.
1049 struct lttng_consumer_channel
*consumer_allocate_channel(uint64_t key
,
1050 uint64_t session_id
,
1051 const uint64_t *chunk_id
,
1052 const char *pathname
,
1055 enum lttng_event_output output
,
1056 uint64_t tracefile_size
,
1057 uint64_t tracefile_count
,
1058 uint64_t session_id_per_pid
,
1059 unsigned int monitor
,
1060 unsigned int live_timer_interval
,
1061 const char *root_shm_path
,
1062 const char *shm_path
)
1064 struct lttng_consumer_channel
*channel
= NULL
;
1065 struct lttng_trace_chunk
*trace_chunk
= NULL
;
1068 trace_chunk
= lttng_trace_chunk_registry_find_chunk(
1069 consumer_data
.chunk_registry
, session_id
,
1072 ERR("Failed to find trace chunk reference during creation of channel");
1077 channel
= zmalloc(sizeof(*channel
));
1078 if (channel
== NULL
) {
1079 PERROR("malloc struct lttng_consumer_channel");
1084 channel
->refcount
= 0;
1085 channel
->session_id
= session_id
;
1086 channel
->session_id_per_pid
= session_id_per_pid
;
1087 channel
->relayd_id
= relayd_id
;
1088 channel
->tracefile_size
= tracefile_size
;
1089 channel
->tracefile_count
= tracefile_count
;
1090 channel
->monitor
= monitor
;
1091 channel
->live_timer_interval
= live_timer_interval
;
1092 pthread_mutex_init(&channel
->lock
, NULL
);
1093 pthread_mutex_init(&channel
->timer_lock
, NULL
);
1096 case LTTNG_EVENT_SPLICE
:
1097 channel
->output
= CONSUMER_CHANNEL_SPLICE
;
1099 case LTTNG_EVENT_MMAP
:
1100 channel
->output
= CONSUMER_CHANNEL_MMAP
;
1110 * In monitor mode, the streams associated with the channel will be put in
1111 * a special list ONLY owned by this channel. So, the refcount is set to 1
1112 * here meaning that the channel itself has streams that are referenced.
1114 * On a channel deletion, once the channel is no longer visible, the
1115 * refcount is decremented and checked for a zero value to delete it. With
1116 * streams in no monitor mode, it will now be safe to destroy the channel.
1118 if (!channel
->monitor
) {
1119 channel
->refcount
= 1;
1122 strncpy(channel
->pathname
, pathname
, sizeof(channel
->pathname
));
1123 channel
->pathname
[sizeof(channel
->pathname
) - 1] = '\0';
1125 strncpy(channel
->name
, name
, sizeof(channel
->name
));
1126 channel
->name
[sizeof(channel
->name
) - 1] = '\0';
1128 if (root_shm_path
) {
1129 strncpy(channel
->root_shm_path
, root_shm_path
, sizeof(channel
->root_shm_path
));
1130 channel
->root_shm_path
[sizeof(channel
->root_shm_path
) - 1] = '\0';
1133 strncpy(channel
->shm_path
, shm_path
, sizeof(channel
->shm_path
));
1134 channel
->shm_path
[sizeof(channel
->shm_path
) - 1] = '\0';
1137 lttng_ht_node_init_u64(&channel
->node
, channel
->key
);
1138 lttng_ht_node_init_u64(&channel
->channels_by_session_id_ht_node
,
1139 channel
->session_id
);
1141 channel
->wait_fd
= -1;
1142 CDS_INIT_LIST_HEAD(&channel
->streams
.head
);
1145 int ret
= lttng_consumer_channel_set_trace_chunk(channel
,
1152 DBG("Allocated channel (key %" PRIu64
")", channel
->key
);
1155 lttng_trace_chunk_put(trace_chunk
);
1158 consumer_del_channel(channel
);
1164 * Add a channel to the global list protected by a mutex.
1166 * Always return 0 indicating success.
1168 int consumer_add_channel(struct lttng_consumer_channel
*channel
,
1169 struct lttng_consumer_local_data
*ctx
)
1171 pthread_mutex_lock(&consumer_data
.lock
);
1172 pthread_mutex_lock(&channel
->lock
);
1173 pthread_mutex_lock(&channel
->timer_lock
);
1176 * This gives us a guarantee that the channel we are about to add to the
1177 * channel hash table will be unique. See this function comment on the why
1178 * we need to steel the channel key at this stage.
1180 steal_channel_key(channel
->key
);
1183 lttng_ht_add_unique_u64(consumer_data
.channel_ht
, &channel
->node
);
1184 lttng_ht_add_u64(consumer_data
.channels_by_session_id_ht
,
1185 &channel
->channels_by_session_id_ht_node
);
1187 channel
->is_published
= true;
1189 pthread_mutex_unlock(&channel
->timer_lock
);
1190 pthread_mutex_unlock(&channel
->lock
);
1191 pthread_mutex_unlock(&consumer_data
.lock
);
1193 if (channel
->wait_fd
!= -1 && channel
->type
== CONSUMER_CHANNEL_TYPE_DATA
) {
1194 notify_channel_pipe(ctx
, channel
, -1, CONSUMER_CHANNEL_ADD
);
1201 * Allocate the pollfd structure and the local view of the out fds to avoid
1202 * doing a lookup in the linked list and concurrency issues when writing is
1203 * needed. Called with consumer_data.lock held.
1205 * Returns the number of fds in the structures.
1207 static int update_poll_array(struct lttng_consumer_local_data
*ctx
,
1208 struct pollfd
**pollfd
, struct lttng_consumer_stream
**local_stream
,
1209 struct lttng_ht
*ht
, int *nb_inactive_fd
)
1212 struct lttng_ht_iter iter
;
1213 struct lttng_consumer_stream
*stream
;
1218 assert(local_stream
);
1220 DBG("Updating poll fd array");
1221 *nb_inactive_fd
= 0;
1223 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1225 * Only active streams with an active end point can be added to the
1226 * poll set and local stream storage of the thread.
1228 * There is a potential race here for endpoint_status to be updated
1229 * just after the check. However, this is OK since the stream(s) will
1230 * be deleted once the thread is notified that the end point state has
1231 * changed where this function will be called back again.
1233 * We track the number of inactive FDs because they still need to be
1234 * closed by the polling thread after a wakeup on the data_pipe or
1237 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_INACTIVE
) {
1238 (*nb_inactive_fd
)++;
1242 * This clobbers way too much the debug output. Uncomment that if you
1243 * need it for debugging purposes.
1245 (*pollfd
)[i
].fd
= stream
->wait_fd
;
1246 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1247 local_stream
[i
] = stream
;
1253 * Insert the consumer_data_pipe at the end of the array and don't
1254 * increment i so nb_fd is the number of real FD.
1256 (*pollfd
)[i
].fd
= lttng_pipe_get_readfd(ctx
->consumer_data_pipe
);
1257 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1259 (*pollfd
)[i
+ 1].fd
= lttng_pipe_get_readfd(ctx
->consumer_wakeup_pipe
);
1260 (*pollfd
)[i
+ 1].events
= POLLIN
| POLLPRI
;
1265 * Poll on the should_quit pipe and the command socket return -1 on
1266 * error, 1 if should exit, 0 if data is available on the command socket
1268 int lttng_consumer_poll_socket(struct pollfd
*consumer_sockpoll
)
1273 num_rdy
= poll(consumer_sockpoll
, 2, -1);
1274 if (num_rdy
== -1) {
1276 * Restart interrupted system call.
1278 if (errno
== EINTR
) {
1281 PERROR("Poll error");
1284 if (consumer_sockpoll
[0].revents
& (POLLIN
| POLLPRI
)) {
1285 DBG("consumer_should_quit wake up");
1292 * Set the error socket.
1294 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data
*ctx
,
1297 ctx
->consumer_error_socket
= sock
;
1301 * Set the command socket path.
1303 void lttng_consumer_set_command_sock_path(
1304 struct lttng_consumer_local_data
*ctx
, char *sock
)
1306 ctx
->consumer_command_sock_path
= sock
;
1310 * Send return code to the session daemon.
1311 * If the socket is not defined, we return 0, it is not a fatal error
1313 int lttng_consumer_send_error(struct lttng_consumer_local_data
*ctx
, int cmd
)
1315 if (ctx
->consumer_error_socket
> 0) {
1316 return lttcomm_send_unix_sock(ctx
->consumer_error_socket
, &cmd
,
1317 sizeof(enum lttcomm_sessiond_command
));
1324 * Close all the tracefiles and stream fds and MUST be called when all
1325 * instances are destroyed i.e. when all threads were joined and are ended.
1327 void lttng_consumer_cleanup(void)
1329 struct lttng_ht_iter iter
;
1330 struct lttng_consumer_channel
*channel
;
1331 unsigned int trace_chunks_left
;
1335 cds_lfht_for_each_entry(consumer_data
.channel_ht
->ht
, &iter
.iter
, channel
,
1337 consumer_del_channel(channel
);
1342 lttng_ht_destroy(consumer_data
.channel_ht
);
1343 lttng_ht_destroy(consumer_data
.channels_by_session_id_ht
);
1345 cleanup_relayd_ht();
1347 lttng_ht_destroy(consumer_data
.stream_per_chan_id_ht
);
1350 * This HT contains streams that are freed by either the metadata thread or
1351 * the data thread so we do *nothing* on the hash table and simply destroy
1354 lttng_ht_destroy(consumer_data
.stream_list_ht
);
1357 * Trace chunks in the registry may still exist if the session
1358 * daemon has encountered an internal error and could not
1359 * tear down its sessions and/or trace chunks properly.
1361 * Release the session daemon's implicit reference to any remaining
1362 * trace chunk and print an error if any trace chunk was found. Note
1363 * that there are _no_ legitimate cases for trace chunks to be left,
1364 * it is a leak. However, it can happen following a crash of the
1365 * session daemon and not emptying the registry would cause an assertion
1368 trace_chunks_left
= lttng_trace_chunk_registry_put_each_chunk(
1369 consumer_data
.chunk_registry
);
1370 if (trace_chunks_left
) {
1371 ERR("%u trace chunks are leaked by lttng-consumerd. "
1372 "This can be caused by an internal error of the session daemon.",
1375 /* Run all callbacks freeing each chunk. */
1377 lttng_trace_chunk_registry_destroy(consumer_data
.chunk_registry
);
1381 * Called from signal handler.
1383 void lttng_consumer_should_exit(struct lttng_consumer_local_data
*ctx
)
1387 CMM_STORE_SHARED(consumer_quit
, 1);
1388 ret
= lttng_write(ctx
->consumer_should_quit
[1], "4", 1);
1390 PERROR("write consumer quit");
1393 DBG("Consumer flag that it should quit");
1398 * Flush pending writes to trace output disk file.
1401 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream
*stream
,
1405 int outfd
= stream
->out_fd
;
1408 * This does a blocking write-and-wait on any page that belongs to the
1409 * subbuffer prior to the one we just wrote.
1410 * Don't care about error values, as these are just hints and ways to
1411 * limit the amount of page cache used.
1413 if (orig_offset
< stream
->max_sb_size
) {
1416 lttng_sync_file_range(outfd
, orig_offset
- stream
->max_sb_size
,
1417 stream
->max_sb_size
,
1418 SYNC_FILE_RANGE_WAIT_BEFORE
1419 | SYNC_FILE_RANGE_WRITE
1420 | SYNC_FILE_RANGE_WAIT_AFTER
);
1422 * Give hints to the kernel about how we access the file:
1423 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1426 * We need to call fadvise again after the file grows because the
1427 * kernel does not seem to apply fadvise to non-existing parts of the
1430 * Call fadvise _after_ having waited for the page writeback to
1431 * complete because the dirty page writeback semantic is not well
1432 * defined. So it can be expected to lead to lower throughput in
1435 ret
= posix_fadvise(outfd
, orig_offset
- stream
->max_sb_size
,
1436 stream
->max_sb_size
, POSIX_FADV_DONTNEED
);
1437 if (ret
&& ret
!= -ENOSYS
) {
1439 PERROR("posix_fadvise on fd %i", outfd
);
1444 * Initialise the necessary environnement :
1445 * - create a new context
1446 * - create the poll_pipe
1447 * - create the should_quit pipe (for signal handler)
1448 * - create the thread pipe (for splice)
1450 * Takes a function pointer as argument, this function is called when data is
1451 * available on a buffer. This function is responsible to do the
1452 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1453 * buffer configuration and then kernctl_put_next_subbuf at the end.
1455 * Returns a pointer to the new context or NULL on error.
1457 struct lttng_consumer_local_data
*lttng_consumer_create(
1458 enum lttng_consumer_type type
,
1459 ssize_t (*buffer_ready
)(struct lttng_consumer_stream
*stream
,
1460 struct lttng_consumer_local_data
*ctx
),
1461 int (*recv_channel
)(struct lttng_consumer_channel
*channel
),
1462 int (*recv_stream
)(struct lttng_consumer_stream
*stream
),
1463 int (*update_stream
)(uint64_t stream_key
, uint32_t state
))
1466 struct lttng_consumer_local_data
*ctx
;
1468 assert(consumer_data
.type
== LTTNG_CONSUMER_UNKNOWN
||
1469 consumer_data
.type
== type
);
1470 consumer_data
.type
= type
;
1472 ctx
= zmalloc(sizeof(struct lttng_consumer_local_data
));
1474 PERROR("allocating context");
1478 ctx
->consumer_error_socket
= -1;
1479 ctx
->consumer_metadata_socket
= -1;
1480 pthread_mutex_init(&ctx
->metadata_socket_lock
, NULL
);
1481 /* assign the callbacks */
1482 ctx
->on_buffer_ready
= buffer_ready
;
1483 ctx
->on_recv_channel
= recv_channel
;
1484 ctx
->on_recv_stream
= recv_stream
;
1485 ctx
->on_update_stream
= update_stream
;
1487 ctx
->consumer_data_pipe
= lttng_pipe_open(0);
1488 if (!ctx
->consumer_data_pipe
) {
1489 goto error_poll_pipe
;
1492 ctx
->consumer_wakeup_pipe
= lttng_pipe_open(0);
1493 if (!ctx
->consumer_wakeup_pipe
) {
1494 goto error_wakeup_pipe
;
1497 ret
= pipe(ctx
->consumer_should_quit
);
1499 PERROR("Error creating recv pipe");
1500 goto error_quit_pipe
;
1503 ret
= pipe(ctx
->consumer_channel_pipe
);
1505 PERROR("Error creating channel pipe");
1506 goto error_channel_pipe
;
1509 ctx
->consumer_metadata_pipe
= lttng_pipe_open(0);
1510 if (!ctx
->consumer_metadata_pipe
) {
1511 goto error_metadata_pipe
;
1514 ctx
->channel_monitor_pipe
= -1;
1518 error_metadata_pipe
:
1519 utils_close_pipe(ctx
->consumer_channel_pipe
);
1521 utils_close_pipe(ctx
->consumer_should_quit
);
1523 lttng_pipe_destroy(ctx
->consumer_wakeup_pipe
);
1525 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1533 * Iterate over all streams of the hashtable and free them properly.
1535 static void destroy_data_stream_ht(struct lttng_ht
*ht
)
1537 struct lttng_ht_iter iter
;
1538 struct lttng_consumer_stream
*stream
;
1545 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1547 * Ignore return value since we are currently cleaning up so any error
1550 (void) consumer_del_stream(stream
, ht
);
1554 lttng_ht_destroy(ht
);
1558 * Iterate over all streams of the metadata hashtable and free them
1561 static void destroy_metadata_stream_ht(struct lttng_ht
*ht
)
1563 struct lttng_ht_iter iter
;
1564 struct lttng_consumer_stream
*stream
;
1571 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1573 * Ignore return value since we are currently cleaning up so any error
1576 (void) consumer_del_metadata_stream(stream
, ht
);
1580 lttng_ht_destroy(ht
);
1584 * Close all fds associated with the instance and free the context.
1586 void lttng_consumer_destroy(struct lttng_consumer_local_data
*ctx
)
1590 DBG("Consumer destroying it. Closing everything.");
1596 destroy_data_stream_ht(data_ht
);
1597 destroy_metadata_stream_ht(metadata_ht
);
1599 ret
= close(ctx
->consumer_error_socket
);
1603 ret
= close(ctx
->consumer_metadata_socket
);
1607 utils_close_pipe(ctx
->consumer_channel_pipe
);
1608 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1609 lttng_pipe_destroy(ctx
->consumer_metadata_pipe
);
1610 lttng_pipe_destroy(ctx
->consumer_wakeup_pipe
);
1611 utils_close_pipe(ctx
->consumer_should_quit
);
1613 unlink(ctx
->consumer_command_sock_path
);
1618 * Write the metadata stream id on the specified file descriptor.
1620 static int write_relayd_metadata_id(int fd
,
1621 struct lttng_consumer_stream
*stream
,
1622 unsigned long padding
)
1625 struct lttcomm_relayd_metadata_payload hdr
;
1627 hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
1628 hdr
.padding_size
= htobe32(padding
);
1629 ret
= lttng_write(fd
, (void *) &hdr
, sizeof(hdr
));
1630 if (ret
< sizeof(hdr
)) {
1632 * This error means that the fd's end is closed so ignore the PERROR
1633 * not to clubber the error output since this can happen in a normal
1636 if (errno
!= EPIPE
) {
1637 PERROR("write metadata stream id");
1639 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno
);
1641 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1642 * handle writting the missing part so report that as an error and
1643 * don't lie to the caller.
1648 DBG("Metadata stream id %" PRIu64
" with padding %lu written before data",
1649 stream
->relayd_stream_id
, padding
);
1656 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1657 * core function for writing trace buffers to either the local filesystem or
1660 * It must be called with the stream and the channel lock held.
1662 * Careful review MUST be put if any changes occur!
1664 * Returns the number of bytes written
1666 ssize_t
lttng_consumer_on_read_subbuffer_mmap(
1667 struct lttng_consumer_local_data
*ctx
,
1668 struct lttng_consumer_stream
*stream
, unsigned long len
,
1669 unsigned long padding
,
1670 struct ctf_packet_index
*index
)
1672 unsigned long mmap_offset
;
1675 off_t orig_offset
= stream
->out_fd_offset
;
1676 /* Default is on the disk */
1677 int outfd
= stream
->out_fd
;
1678 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1679 unsigned int relayd_hang_up
= 0;
1681 /* RCU lock for the relayd pointer */
1683 assert(stream
->net_seq_idx
!= (uint64_t) -1ULL ||
1684 stream
->trace_chunk
);
1686 /* Flag that the current stream if set for network streaming. */
1687 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1688 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1689 if (relayd
== NULL
) {
1695 /* get the offset inside the fd to mmap */
1696 switch (consumer_data
.type
) {
1697 case LTTNG_CONSUMER_KERNEL
:
1698 mmap_base
= stream
->mmap_base
;
1699 ret
= kernctl_get_mmap_read_offset(stream
->wait_fd
, &mmap_offset
);
1701 PERROR("tracer ctl get_mmap_read_offset");
1705 case LTTNG_CONSUMER32_UST
:
1706 case LTTNG_CONSUMER64_UST
:
1707 mmap_base
= lttng_ustctl_get_mmap_base(stream
);
1709 ERR("read mmap get mmap base for stream %s", stream
->name
);
1713 ret
= lttng_ustctl_get_mmap_read_offset(stream
, &mmap_offset
);
1715 PERROR("tracer ctl get_mmap_read_offset");
1721 ERR("Unknown consumer_data type");
1725 /* Handle stream on the relayd if the output is on the network */
1727 unsigned long netlen
= len
;
1730 * Lock the control socket for the complete duration of the function
1731 * since from this point on we will use the socket.
1733 if (stream
->metadata_flag
) {
1734 /* Metadata requires the control socket. */
1735 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1736 if (stream
->reset_metadata_flag
) {
1737 ret
= relayd_reset_metadata(&relayd
->control_sock
,
1738 stream
->relayd_stream_id
,
1739 stream
->metadata_version
);
1744 stream
->reset_metadata_flag
= 0;
1746 netlen
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1749 ret
= write_relayd_stream_header(stream
, netlen
, padding
, relayd
);
1754 /* Use the returned socket. */
1757 /* Write metadata stream id before payload */
1758 if (stream
->metadata_flag
) {
1759 ret
= write_relayd_metadata_id(outfd
, stream
, padding
);
1766 /* No streaming, we have to set the len with the full padding */
1769 if (stream
->metadata_flag
&& stream
->reset_metadata_flag
) {
1770 ret
= utils_truncate_stream_file(stream
->out_fd
, 0);
1772 ERR("Reset metadata file");
1775 stream
->reset_metadata_flag
= 0;
1779 * Check if we need to change the tracefile before writing the packet.
1781 if (stream
->chan
->tracefile_size
> 0 &&
1782 (stream
->tracefile_size_current
+ len
) >
1783 stream
->chan
->tracefile_size
) {
1784 ret
= consumer_stream_rotate_output_files(stream
);
1788 outfd
= stream
->out_fd
;
1791 stream
->tracefile_size_current
+= len
;
1793 index
->offset
= htobe64(stream
->out_fd_offset
);
1798 * This call guarantee that len or less is returned. It's impossible to
1799 * receive a ret value that is bigger than len.
1801 ret
= lttng_write(outfd
, mmap_base
+ mmap_offset
, len
);
1802 DBG("Consumer mmap write() ret %zd (len %lu)", ret
, len
);
1803 if (ret
< 0 || ((size_t) ret
!= len
)) {
1805 * Report error to caller if nothing was written else at least send the
1813 /* Socket operation failed. We consider the relayd dead */
1814 if (errno
== EPIPE
) {
1816 * This is possible if the fd is closed on the other side
1817 * (outfd) or any write problem. It can be verbose a bit for a
1818 * normal execution if for instance the relayd is stopped
1819 * abruptly. This can happen so set this to a DBG statement.
1821 DBG("Consumer mmap write detected relayd hang up");
1823 /* Unhandled error, print it and stop function right now. */
1824 PERROR("Error in write mmap (ret %zd != len %lu)", ret
, len
);
1828 stream
->output_written
+= ret
;
1830 /* This call is useless on a socket so better save a syscall. */
1832 /* This won't block, but will start writeout asynchronously */
1833 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, len
,
1834 SYNC_FILE_RANGE_WRITE
);
1835 stream
->out_fd_offset
+= len
;
1836 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1841 * This is a special case that the relayd has closed its socket. Let's
1842 * cleanup the relayd object and all associated streams.
1844 if (relayd
&& relayd_hang_up
) {
1845 ERR("Relayd hangup. Cleaning up relayd %" PRIu64
".", relayd
->net_seq_idx
);
1846 lttng_consumer_cleanup_relayd(relayd
);
1850 /* Unlock only if ctrl socket used */
1851 if (relayd
&& stream
->metadata_flag
) {
1852 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1860 * Splice the data from the ring buffer to the tracefile.
1862 * It must be called with the stream lock held.
1864 * Returns the number of bytes spliced.
1866 ssize_t
lttng_consumer_on_read_subbuffer_splice(
1867 struct lttng_consumer_local_data
*ctx
,
1868 struct lttng_consumer_stream
*stream
, unsigned long len
,
1869 unsigned long padding
,
1870 struct ctf_packet_index
*index
)
1872 ssize_t ret
= 0, written
= 0, ret_splice
= 0;
1874 off_t orig_offset
= stream
->out_fd_offset
;
1875 int fd
= stream
->wait_fd
;
1876 /* Default is on the disk */
1877 int outfd
= stream
->out_fd
;
1878 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1880 unsigned int relayd_hang_up
= 0;
1882 switch (consumer_data
.type
) {
1883 case LTTNG_CONSUMER_KERNEL
:
1885 case LTTNG_CONSUMER32_UST
:
1886 case LTTNG_CONSUMER64_UST
:
1887 /* Not supported for user space tracing */
1890 ERR("Unknown consumer_data type");
1894 /* RCU lock for the relayd pointer */
1897 /* Flag that the current stream if set for network streaming. */
1898 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1899 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1900 if (relayd
== NULL
) {
1905 splice_pipe
= stream
->splice_pipe
;
1907 /* Write metadata stream id before payload */
1909 unsigned long total_len
= len
;
1911 if (stream
->metadata_flag
) {
1913 * Lock the control socket for the complete duration of the function
1914 * since from this point on we will use the socket.
1916 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1918 if (stream
->reset_metadata_flag
) {
1919 ret
= relayd_reset_metadata(&relayd
->control_sock
,
1920 stream
->relayd_stream_id
,
1921 stream
->metadata_version
);
1926 stream
->reset_metadata_flag
= 0;
1928 ret
= write_relayd_metadata_id(splice_pipe
[1], stream
,
1936 total_len
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1939 ret
= write_relayd_stream_header(stream
, total_len
, padding
, relayd
);
1945 /* Use the returned socket. */
1948 /* No streaming, we have to set the len with the full padding */
1951 if (stream
->metadata_flag
&& stream
->reset_metadata_flag
) {
1952 ret
= utils_truncate_stream_file(stream
->out_fd
, 0);
1954 ERR("Reset metadata file");
1957 stream
->reset_metadata_flag
= 0;
1960 * Check if we need to change the tracefile before writing the packet.
1962 if (stream
->chan
->tracefile_size
> 0 &&
1963 (stream
->tracefile_size_current
+ len
) >
1964 stream
->chan
->tracefile_size
) {
1965 ret
= consumer_stream_rotate_output_files(stream
);
1970 outfd
= stream
->out_fd
;
1973 stream
->tracefile_size_current
+= len
;
1974 index
->offset
= htobe64(stream
->out_fd_offset
);
1978 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1979 (unsigned long)offset
, len
, fd
, splice_pipe
[1]);
1980 ret_splice
= splice(fd
, &offset
, splice_pipe
[1], NULL
, len
,
1981 SPLICE_F_MOVE
| SPLICE_F_MORE
);
1982 DBG("splice chan to pipe, ret %zd", ret_splice
);
1983 if (ret_splice
< 0) {
1986 PERROR("Error in relay splice");
1990 /* Handle stream on the relayd if the output is on the network */
1991 if (relayd
&& stream
->metadata_flag
) {
1992 size_t metadata_payload_size
=
1993 sizeof(struct lttcomm_relayd_metadata_payload
);
1995 /* Update counter to fit the spliced data */
1996 ret_splice
+= metadata_payload_size
;
1997 len
+= metadata_payload_size
;
1999 * We do this so the return value can match the len passed as
2000 * argument to this function.
2002 written
-= metadata_payload_size
;
2005 /* Splice data out */
2006 ret_splice
= splice(splice_pipe
[0], NULL
, outfd
, NULL
,
2007 ret_splice
, SPLICE_F_MOVE
| SPLICE_F_MORE
);
2008 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
2010 if (ret_splice
< 0) {
2015 } else if (ret_splice
> len
) {
2017 * We don't expect this code path to be executed but you never know
2018 * so this is an extra protection agains a buggy splice().
2021 written
+= ret_splice
;
2022 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice
,
2026 /* All good, update current len and continue. */
2030 /* This call is useless on a socket so better save a syscall. */
2032 /* This won't block, but will start writeout asynchronously */
2033 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret_splice
,
2034 SYNC_FILE_RANGE_WRITE
);
2035 stream
->out_fd_offset
+= ret_splice
;
2037 stream
->output_written
+= ret_splice
;
2038 written
+= ret_splice
;
2041 lttng_consumer_sync_trace_file(stream
, orig_offset
);
2047 * This is a special case that the relayd has closed its socket. Let's
2048 * cleanup the relayd object and all associated streams.
2050 if (relayd
&& relayd_hang_up
) {
2051 ERR("Relayd hangup. Cleaning up relayd %" PRIu64
".", relayd
->net_seq_idx
);
2052 lttng_consumer_cleanup_relayd(relayd
);
2053 /* Skip splice error so the consumer does not fail */
2058 /* send the appropriate error description to sessiond */
2061 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_EINVAL
);
2064 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ENOMEM
);
2067 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ESPIPE
);
2072 if (relayd
&& stream
->metadata_flag
) {
2073 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
2081 * Sample the snapshot positions for a specific fd
2083 * Returns 0 on success, < 0 on error
2085 int lttng_consumer_sample_snapshot_positions(struct lttng_consumer_stream
*stream
)
2087 switch (consumer_data
.type
) {
2088 case LTTNG_CONSUMER_KERNEL
:
2089 return lttng_kconsumer_sample_snapshot_positions(stream
);
2090 case LTTNG_CONSUMER32_UST
:
2091 case LTTNG_CONSUMER64_UST
:
2092 return lttng_ustconsumer_sample_snapshot_positions(stream
);
2094 ERR("Unknown consumer_data type");
2100 * Take a snapshot for a specific fd
2102 * Returns 0 on success, < 0 on error
2104 int lttng_consumer_take_snapshot(struct lttng_consumer_stream
*stream
)
2106 switch (consumer_data
.type
) {
2107 case LTTNG_CONSUMER_KERNEL
:
2108 return lttng_kconsumer_take_snapshot(stream
);
2109 case LTTNG_CONSUMER32_UST
:
2110 case LTTNG_CONSUMER64_UST
:
2111 return lttng_ustconsumer_take_snapshot(stream
);
2113 ERR("Unknown consumer_data type");
2120 * Get the produced position
2122 * Returns 0 on success, < 0 on error
2124 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream
*stream
,
2127 switch (consumer_data
.type
) {
2128 case LTTNG_CONSUMER_KERNEL
:
2129 return lttng_kconsumer_get_produced_snapshot(stream
, pos
);
2130 case LTTNG_CONSUMER32_UST
:
2131 case LTTNG_CONSUMER64_UST
:
2132 return lttng_ustconsumer_get_produced_snapshot(stream
, pos
);
2134 ERR("Unknown consumer_data type");
2141 * Get the consumed position (free-running counter position in bytes).
2143 * Returns 0 on success, < 0 on error
2145 int lttng_consumer_get_consumed_snapshot(struct lttng_consumer_stream
*stream
,
2148 switch (consumer_data
.type
) {
2149 case LTTNG_CONSUMER_KERNEL
:
2150 return lttng_kconsumer_get_consumed_snapshot(stream
, pos
);
2151 case LTTNG_CONSUMER32_UST
:
2152 case LTTNG_CONSUMER64_UST
:
2153 return lttng_ustconsumer_get_consumed_snapshot(stream
, pos
);
2155 ERR("Unknown consumer_data type");
2161 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data
*ctx
,
2162 int sock
, struct pollfd
*consumer_sockpoll
)
2164 switch (consumer_data
.type
) {
2165 case LTTNG_CONSUMER_KERNEL
:
2166 return lttng_kconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
2167 case LTTNG_CONSUMER32_UST
:
2168 case LTTNG_CONSUMER64_UST
:
2169 return lttng_ustconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
2171 ERR("Unknown consumer_data type");
2177 void lttng_consumer_close_all_metadata(void)
2179 switch (consumer_data
.type
) {
2180 case LTTNG_CONSUMER_KERNEL
:
2182 * The Kernel consumer has a different metadata scheme so we don't
2183 * close anything because the stream will be closed by the session
2187 case LTTNG_CONSUMER32_UST
:
2188 case LTTNG_CONSUMER64_UST
:
2190 * Close all metadata streams. The metadata hash table is passed and
2191 * this call iterates over it by closing all wakeup fd. This is safe
2192 * because at this point we are sure that the metadata producer is
2193 * either dead or blocked.
2195 lttng_ustconsumer_close_all_metadata(metadata_ht
);
2198 ERR("Unknown consumer_data type");
2204 * Clean up a metadata stream and free its memory.
2206 void consumer_del_metadata_stream(struct lttng_consumer_stream
*stream
,
2207 struct lttng_ht
*ht
)
2209 struct lttng_consumer_channel
*channel
= NULL
;
2210 bool free_channel
= false;
2214 * This call should NEVER receive regular stream. It must always be
2215 * metadata stream and this is crucial for data structure synchronization.
2217 assert(stream
->metadata_flag
);
2219 DBG3("Consumer delete metadata stream %d", stream
->wait_fd
);
2221 pthread_mutex_lock(&consumer_data
.lock
);
2223 * Note that this assumes that a stream's channel is never changed and
2224 * that the stream's lock doesn't need to be taken to sample its
2227 channel
= stream
->chan
;
2228 pthread_mutex_lock(&channel
->lock
);
2229 pthread_mutex_lock(&stream
->lock
);
2230 if (channel
->metadata_cache
) {
2231 /* Only applicable to userspace consumers. */
2232 pthread_mutex_lock(&channel
->metadata_cache
->lock
);
2235 /* Remove any reference to that stream. */
2236 consumer_stream_delete(stream
, ht
);
2238 /* Close down everything including the relayd if one. */
2239 consumer_stream_close(stream
);
2240 /* Destroy tracer buffers of the stream. */
2241 consumer_stream_destroy_buffers(stream
);
2243 /* Atomically decrement channel refcount since other threads can use it. */
2244 if (!uatomic_sub_return(&channel
->refcount
, 1)
2245 && !uatomic_read(&channel
->nb_init_stream_left
)) {
2246 /* Go for channel deletion! */
2247 free_channel
= true;
2249 stream
->chan
= NULL
;
2252 * Nullify the stream reference so it is not used after deletion. The
2253 * channel lock MUST be acquired before being able to check for a NULL
2256 channel
->metadata_stream
= NULL
;
2258 if (channel
->metadata_cache
) {
2259 pthread_mutex_unlock(&channel
->metadata_cache
->lock
);
2261 pthread_mutex_unlock(&stream
->lock
);
2262 pthread_mutex_unlock(&channel
->lock
);
2263 pthread_mutex_unlock(&consumer_data
.lock
);
2266 consumer_del_channel(channel
);
2269 lttng_trace_chunk_put(stream
->trace_chunk
);
2270 stream
->trace_chunk
= NULL
;
2271 consumer_stream_free(stream
);
2275 * Action done with the metadata stream when adding it to the consumer internal
2276 * data structures to handle it.
2278 void consumer_add_metadata_stream(struct lttng_consumer_stream
*stream
)
2280 struct lttng_ht
*ht
= metadata_ht
;
2281 struct lttng_ht_iter iter
;
2282 struct lttng_ht_node_u64
*node
;
2287 DBG3("Adding metadata stream %" PRIu64
" to hash table", stream
->key
);
2289 pthread_mutex_lock(&consumer_data
.lock
);
2290 pthread_mutex_lock(&stream
->chan
->lock
);
2291 pthread_mutex_lock(&stream
->chan
->timer_lock
);
2292 pthread_mutex_lock(&stream
->lock
);
2295 * From here, refcounts are updated so be _careful_ when returning an error
2302 * Lookup the stream just to make sure it does not exist in our internal
2303 * state. This should NEVER happen.
2305 lttng_ht_lookup(ht
, &stream
->key
, &iter
);
2306 node
= lttng_ht_iter_get_node_u64(&iter
);
2310 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2311 * in terms of destroying the associated channel, because the action that
2312 * causes the count to become 0 also causes a stream to be added. The
2313 * channel deletion will thus be triggered by the following removal of this
2316 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
2317 /* Increment refcount before decrementing nb_init_stream_left */
2319 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
2322 lttng_ht_add_unique_u64(ht
, &stream
->node
);
2324 lttng_ht_add_u64(consumer_data
.stream_per_chan_id_ht
,
2325 &stream
->node_channel_id
);
2328 * Add stream to the stream_list_ht of the consumer data. No need to steal
2329 * the key since the HT does not use it and we allow to add redundant keys
2332 lttng_ht_add_u64(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
2336 pthread_mutex_unlock(&stream
->lock
);
2337 pthread_mutex_unlock(&stream
->chan
->lock
);
2338 pthread_mutex_unlock(&stream
->chan
->timer_lock
);
2339 pthread_mutex_unlock(&consumer_data
.lock
);
2343 * Delete data stream that are flagged for deletion (endpoint_status).
2345 static void validate_endpoint_status_data_stream(void)
2347 struct lttng_ht_iter iter
;
2348 struct lttng_consumer_stream
*stream
;
2350 DBG("Consumer delete flagged data stream");
2353 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2354 /* Validate delete flag of the stream */
2355 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2358 /* Delete it right now */
2359 consumer_del_stream(stream
, data_ht
);
2365 * Delete metadata stream that are flagged for deletion (endpoint_status).
2367 static void validate_endpoint_status_metadata_stream(
2368 struct lttng_poll_event
*pollset
)
2370 struct lttng_ht_iter iter
;
2371 struct lttng_consumer_stream
*stream
;
2373 DBG("Consumer delete flagged metadata stream");
2378 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2379 /* Validate delete flag of the stream */
2380 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2384 * Remove from pollset so the metadata thread can continue without
2385 * blocking on a deleted stream.
2387 lttng_poll_del(pollset
, stream
->wait_fd
);
2389 /* Delete it right now */
2390 consumer_del_metadata_stream(stream
, metadata_ht
);
2396 * Thread polls on metadata file descriptor and write them on disk or on the
2399 void *consumer_thread_metadata_poll(void *data
)
2401 int ret
, i
, pollfd
, err
= -1;
2402 uint32_t revents
, nb_fd
;
2403 struct lttng_consumer_stream
*stream
= NULL
;
2404 struct lttng_ht_iter iter
;
2405 struct lttng_ht_node_u64
*node
;
2406 struct lttng_poll_event events
;
2407 struct lttng_consumer_local_data
*ctx
= data
;
2410 rcu_register_thread();
2412 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_METADATA
);
2414 if (testpoint(consumerd_thread_metadata
)) {
2415 goto error_testpoint
;
2418 health_code_update();
2420 DBG("Thread metadata poll started");
2422 /* Size is set to 1 for the consumer_metadata pipe */
2423 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2425 ERR("Poll set creation failed");
2429 ret
= lttng_poll_add(&events
,
2430 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
), LPOLLIN
);
2436 DBG("Metadata main loop started");
2440 health_code_update();
2441 health_poll_entry();
2442 DBG("Metadata poll wait");
2443 ret
= lttng_poll_wait(&events
, -1);
2444 DBG("Metadata poll return from wait with %d fd(s)",
2445 LTTNG_POLL_GETNB(&events
));
2447 DBG("Metadata event caught in thread");
2449 if (errno
== EINTR
) {
2450 ERR("Poll EINTR caught");
2453 if (LTTNG_POLL_GETNB(&events
) == 0) {
2454 err
= 0; /* All is OK */
2461 /* From here, the event is a metadata wait fd */
2462 for (i
= 0; i
< nb_fd
; i
++) {
2463 health_code_update();
2465 revents
= LTTNG_POLL_GETEV(&events
, i
);
2466 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2468 if (pollfd
== lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
)) {
2469 if (revents
& LPOLLIN
) {
2472 pipe_len
= lttng_pipe_read(ctx
->consumer_metadata_pipe
,
2473 &stream
, sizeof(stream
));
2474 if (pipe_len
< sizeof(stream
)) {
2476 PERROR("read metadata stream");
2479 * Remove the pipe from the poll set and continue the loop
2480 * since their might be data to consume.
2482 lttng_poll_del(&events
,
2483 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
));
2484 lttng_pipe_read_close(ctx
->consumer_metadata_pipe
);
2488 /* A NULL stream means that the state has changed. */
2489 if (stream
== NULL
) {
2490 /* Check for deleted streams. */
2491 validate_endpoint_status_metadata_stream(&events
);
2495 DBG("Adding metadata stream %d to poll set",
2498 /* Add metadata stream to the global poll events list */
2499 lttng_poll_add(&events
, stream
->wait_fd
,
2500 LPOLLIN
| LPOLLPRI
| LPOLLHUP
);
2501 } else if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2502 DBG("Metadata thread pipe hung up");
2504 * Remove the pipe from the poll set and continue the loop
2505 * since their might be data to consume.
2507 lttng_poll_del(&events
,
2508 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
));
2509 lttng_pipe_read_close(ctx
->consumer_metadata_pipe
);
2512 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
2516 /* Handle other stream */
2522 uint64_t tmp_id
= (uint64_t) pollfd
;
2524 lttng_ht_lookup(metadata_ht
, &tmp_id
, &iter
);
2526 node
= lttng_ht_iter_get_node_u64(&iter
);
2529 stream
= caa_container_of(node
, struct lttng_consumer_stream
,
2532 if (revents
& (LPOLLIN
| LPOLLPRI
)) {
2533 /* Get the data out of the metadata file descriptor */
2534 DBG("Metadata available on fd %d", pollfd
);
2535 assert(stream
->wait_fd
== pollfd
);
2538 health_code_update();
2540 len
= ctx
->on_buffer_ready(stream
, ctx
);
2542 * We don't check the return value here since if we get
2543 * a negative len, it means an error occurred thus we
2544 * simply remove it from the poll set and free the
2549 /* It's ok to have an unavailable sub-buffer */
2550 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2551 /* Clean up stream from consumer and free it. */
2552 lttng_poll_del(&events
, stream
->wait_fd
);
2553 consumer_del_metadata_stream(stream
, metadata_ht
);
2555 } else if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2556 DBG("Metadata fd %d is hup|err.", pollfd
);
2557 if (!stream
->hangup_flush_done
2558 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2559 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2560 DBG("Attempting to flush and consume the UST buffers");
2561 lttng_ustconsumer_on_stream_hangup(stream
);
2563 /* We just flushed the stream now read it. */
2565 health_code_update();
2567 len
= ctx
->on_buffer_ready(stream
, ctx
);
2569 * We don't check the return value here since if we get
2570 * a negative len, it means an error occurred thus we
2571 * simply remove it from the poll set and free the
2577 lttng_poll_del(&events
, stream
->wait_fd
);
2579 * This call update the channel states, closes file descriptors
2580 * and securely free the stream.
2582 consumer_del_metadata_stream(stream
, metadata_ht
);
2584 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
2588 /* Release RCU lock for the stream looked up */
2596 DBG("Metadata poll thread exiting");
2598 lttng_poll_clean(&events
);
2603 ERR("Health error occurred in %s", __func__
);
2605 health_unregister(health_consumerd
);
2606 rcu_unregister_thread();
2611 * This thread polls the fds in the set to consume the data and write
2612 * it to tracefile if necessary.
2614 void *consumer_thread_data_poll(void *data
)
2616 int num_rdy
, num_hup
, high_prio
, ret
, i
, err
= -1;
2617 struct pollfd
*pollfd
= NULL
;
2618 /* local view of the streams */
2619 struct lttng_consumer_stream
**local_stream
= NULL
, *new_stream
= NULL
;
2620 /* local view of consumer_data.fds_count */
2622 /* 2 for the consumer_data_pipe and wake up pipe */
2623 const int nb_pipes_fd
= 2;
2624 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2625 int nb_inactive_fd
= 0;
2626 struct lttng_consumer_local_data
*ctx
= data
;
2629 rcu_register_thread();
2631 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_DATA
);
2633 if (testpoint(consumerd_thread_data
)) {
2634 goto error_testpoint
;
2637 health_code_update();
2639 local_stream
= zmalloc(sizeof(struct lttng_consumer_stream
*));
2640 if (local_stream
== NULL
) {
2641 PERROR("local_stream malloc");
2646 health_code_update();
2652 * the fds set has been updated, we need to update our
2653 * local array as well
2655 pthread_mutex_lock(&consumer_data
.lock
);
2656 if (consumer_data
.need_update
) {
2661 local_stream
= NULL
;
2663 /* Allocate for all fds */
2664 pollfd
= zmalloc((consumer_data
.stream_count
+ nb_pipes_fd
) * sizeof(struct pollfd
));
2665 if (pollfd
== NULL
) {
2666 PERROR("pollfd malloc");
2667 pthread_mutex_unlock(&consumer_data
.lock
);
2671 local_stream
= zmalloc((consumer_data
.stream_count
+ nb_pipes_fd
) *
2672 sizeof(struct lttng_consumer_stream
*));
2673 if (local_stream
== NULL
) {
2674 PERROR("local_stream malloc");
2675 pthread_mutex_unlock(&consumer_data
.lock
);
2678 ret
= update_poll_array(ctx
, &pollfd
, local_stream
,
2679 data_ht
, &nb_inactive_fd
);
2681 ERR("Error in allocating pollfd or local_outfds");
2682 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2683 pthread_mutex_unlock(&consumer_data
.lock
);
2687 consumer_data
.need_update
= 0;
2689 pthread_mutex_unlock(&consumer_data
.lock
);
2691 /* No FDs and consumer_quit, consumer_cleanup the thread */
2692 if (nb_fd
== 0 && nb_inactive_fd
== 0 &&
2693 CMM_LOAD_SHARED(consumer_quit
) == 1) {
2694 err
= 0; /* All is OK */
2697 /* poll on the array of fds */
2699 DBG("polling on %d fd", nb_fd
+ nb_pipes_fd
);
2700 if (testpoint(consumerd_thread_data_poll
)) {
2703 health_poll_entry();
2704 num_rdy
= poll(pollfd
, nb_fd
+ nb_pipes_fd
, -1);
2706 DBG("poll num_rdy : %d", num_rdy
);
2707 if (num_rdy
== -1) {
2709 * Restart interrupted system call.
2711 if (errno
== EINTR
) {
2714 PERROR("Poll error");
2715 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2717 } else if (num_rdy
== 0) {
2718 DBG("Polling thread timed out");
2722 if (caa_unlikely(data_consumption_paused
)) {
2723 DBG("Data consumption paused, sleeping...");
2729 * If the consumer_data_pipe triggered poll go directly to the
2730 * beginning of the loop to update the array. We want to prioritize
2731 * array update over low-priority reads.
2733 if (pollfd
[nb_fd
].revents
& (POLLIN
| POLLPRI
)) {
2734 ssize_t pipe_readlen
;
2736 DBG("consumer_data_pipe wake up");
2737 pipe_readlen
= lttng_pipe_read(ctx
->consumer_data_pipe
,
2738 &new_stream
, sizeof(new_stream
));
2739 if (pipe_readlen
< sizeof(new_stream
)) {
2740 PERROR("Consumer data pipe");
2741 /* Continue so we can at least handle the current stream(s). */
2746 * If the stream is NULL, just ignore it. It's also possible that
2747 * the sessiond poll thread changed the consumer_quit state and is
2748 * waking us up to test it.
2750 if (new_stream
== NULL
) {
2751 validate_endpoint_status_data_stream();
2755 /* Continue to update the local streams and handle prio ones */
2759 /* Handle wakeup pipe. */
2760 if (pollfd
[nb_fd
+ 1].revents
& (POLLIN
| POLLPRI
)) {
2762 ssize_t pipe_readlen
;
2764 pipe_readlen
= lttng_pipe_read(ctx
->consumer_wakeup_pipe
, &dummy
,
2766 if (pipe_readlen
< 0) {
2767 PERROR("Consumer data wakeup pipe");
2769 /* We've been awakened to handle stream(s). */
2770 ctx
->has_wakeup
= 0;
2773 /* Take care of high priority channels first. */
2774 for (i
= 0; i
< nb_fd
; i
++) {
2775 health_code_update();
2777 if (local_stream
[i
] == NULL
) {
2780 if (pollfd
[i
].revents
& POLLPRI
) {
2781 DBG("Urgent read on fd %d", pollfd
[i
].fd
);
2783 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2784 /* it's ok to have an unavailable sub-buffer */
2785 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2786 /* Clean the stream and free it. */
2787 consumer_del_stream(local_stream
[i
], data_ht
);
2788 local_stream
[i
] = NULL
;
2789 } else if (len
> 0) {
2790 local_stream
[i
]->data_read
= 1;
2796 * If we read high prio channel in this loop, try again
2797 * for more high prio data.
2803 /* Take care of low priority channels. */
2804 for (i
= 0; i
< nb_fd
; i
++) {
2805 health_code_update();
2807 if (local_stream
[i
] == NULL
) {
2810 if ((pollfd
[i
].revents
& POLLIN
) ||
2811 local_stream
[i
]->hangup_flush_done
||
2812 local_stream
[i
]->has_data
) {
2813 DBG("Normal read on fd %d", pollfd
[i
].fd
);
2814 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2815 /* it's ok to have an unavailable sub-buffer */
2816 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2817 /* Clean the stream and free it. */
2818 consumer_del_stream(local_stream
[i
], data_ht
);
2819 local_stream
[i
] = NULL
;
2820 } else if (len
> 0) {
2821 local_stream
[i
]->data_read
= 1;
2826 /* Handle hangup and errors */
2827 for (i
= 0; i
< nb_fd
; i
++) {
2828 health_code_update();
2830 if (local_stream
[i
] == NULL
) {
2833 if (!local_stream
[i
]->hangup_flush_done
2834 && (pollfd
[i
].revents
& (POLLHUP
| POLLERR
| POLLNVAL
))
2835 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2836 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2837 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2839 lttng_ustconsumer_on_stream_hangup(local_stream
[i
]);
2840 /* Attempt read again, for the data we just flushed. */
2841 local_stream
[i
]->data_read
= 1;
2844 * If the poll flag is HUP/ERR/NVAL and we have
2845 * read no data in this pass, we can remove the
2846 * stream from its hash table.
2848 if ((pollfd
[i
].revents
& POLLHUP
)) {
2849 DBG("Polling fd %d tells it has hung up.", pollfd
[i
].fd
);
2850 if (!local_stream
[i
]->data_read
) {
2851 consumer_del_stream(local_stream
[i
], data_ht
);
2852 local_stream
[i
] = NULL
;
2855 } else if (pollfd
[i
].revents
& POLLERR
) {
2856 ERR("Error returned in polling fd %d.", pollfd
[i
].fd
);
2857 if (!local_stream
[i
]->data_read
) {
2858 consumer_del_stream(local_stream
[i
], data_ht
);
2859 local_stream
[i
] = NULL
;
2862 } else if (pollfd
[i
].revents
& POLLNVAL
) {
2863 ERR("Polling fd %d tells fd is not open.", pollfd
[i
].fd
);
2864 if (!local_stream
[i
]->data_read
) {
2865 consumer_del_stream(local_stream
[i
], data_ht
);
2866 local_stream
[i
] = NULL
;
2870 if (local_stream
[i
] != NULL
) {
2871 local_stream
[i
]->data_read
= 0;
2878 DBG("polling thread exiting");
2883 * Close the write side of the pipe so epoll_wait() in
2884 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2885 * read side of the pipe. If we close them both, epoll_wait strangely does
2886 * not return and could create a endless wait period if the pipe is the
2887 * only tracked fd in the poll set. The thread will take care of closing
2890 (void) lttng_pipe_write_close(ctx
->consumer_metadata_pipe
);
2895 ERR("Health error occurred in %s", __func__
);
2897 health_unregister(health_consumerd
);
2899 rcu_unregister_thread();
2904 * Close wake-up end of each stream belonging to the channel. This will
2905 * allow the poll() on the stream read-side to detect when the
2906 * write-side (application) finally closes them.
2909 void consumer_close_channel_streams(struct lttng_consumer_channel
*channel
)
2911 struct lttng_ht
*ht
;
2912 struct lttng_consumer_stream
*stream
;
2913 struct lttng_ht_iter iter
;
2915 ht
= consumer_data
.stream_per_chan_id_ht
;
2918 cds_lfht_for_each_entry_duplicate(ht
->ht
,
2919 ht
->hash_fct(&channel
->key
, lttng_ht_seed
),
2920 ht
->match_fct
, &channel
->key
,
2921 &iter
.iter
, stream
, node_channel_id
.node
) {
2923 * Protect against teardown with mutex.
2925 pthread_mutex_lock(&stream
->lock
);
2926 if (cds_lfht_is_node_deleted(&stream
->node
.node
)) {
2929 switch (consumer_data
.type
) {
2930 case LTTNG_CONSUMER_KERNEL
:
2932 case LTTNG_CONSUMER32_UST
:
2933 case LTTNG_CONSUMER64_UST
:
2934 if (stream
->metadata_flag
) {
2935 /* Safe and protected by the stream lock. */
2936 lttng_ustconsumer_close_metadata(stream
->chan
);
2939 * Note: a mutex is taken internally within
2940 * liblttng-ust-ctl to protect timer wakeup_fd
2941 * use from concurrent close.
2943 lttng_ustconsumer_close_stream_wakeup(stream
);
2947 ERR("Unknown consumer_data type");
2951 pthread_mutex_unlock(&stream
->lock
);
2956 static void destroy_channel_ht(struct lttng_ht
*ht
)
2958 struct lttng_ht_iter iter
;
2959 struct lttng_consumer_channel
*channel
;
2967 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, channel
, wait_fd_node
.node
) {
2968 ret
= lttng_ht_del(ht
, &iter
);
2973 lttng_ht_destroy(ht
);
2977 * This thread polls the channel fds to detect when they are being
2978 * closed. It closes all related streams if the channel is detected as
2979 * closed. It is currently only used as a shim layer for UST because the
2980 * consumerd needs to keep the per-stream wakeup end of pipes open for
2983 void *consumer_thread_channel_poll(void *data
)
2985 int ret
, i
, pollfd
, err
= -1;
2986 uint32_t revents
, nb_fd
;
2987 struct lttng_consumer_channel
*chan
= NULL
;
2988 struct lttng_ht_iter iter
;
2989 struct lttng_ht_node_u64
*node
;
2990 struct lttng_poll_event events
;
2991 struct lttng_consumer_local_data
*ctx
= data
;
2992 struct lttng_ht
*channel_ht
;
2994 rcu_register_thread();
2996 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_CHANNEL
);
2998 if (testpoint(consumerd_thread_channel
)) {
2999 goto error_testpoint
;
3002 health_code_update();
3004 channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3006 /* ENOMEM at this point. Better to bail out. */
3010 DBG("Thread channel poll started");
3012 /* Size is set to 1 for the consumer_channel pipe */
3013 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
3015 ERR("Poll set creation failed");
3019 ret
= lttng_poll_add(&events
, ctx
->consumer_channel_pipe
[0], LPOLLIN
);
3025 DBG("Channel main loop started");
3029 health_code_update();
3030 DBG("Channel poll wait");
3031 health_poll_entry();
3032 ret
= lttng_poll_wait(&events
, -1);
3033 DBG("Channel poll return from wait with %d fd(s)",
3034 LTTNG_POLL_GETNB(&events
));
3036 DBG("Channel event caught in thread");
3038 if (errno
== EINTR
) {
3039 ERR("Poll EINTR caught");
3042 if (LTTNG_POLL_GETNB(&events
) == 0) {
3043 err
= 0; /* All is OK */
3050 /* From here, the event is a channel wait fd */
3051 for (i
= 0; i
< nb_fd
; i
++) {
3052 health_code_update();
3054 revents
= LTTNG_POLL_GETEV(&events
, i
);
3055 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
3057 if (pollfd
== ctx
->consumer_channel_pipe
[0]) {
3058 if (revents
& LPOLLIN
) {
3059 enum consumer_channel_action action
;
3062 ret
= read_channel_pipe(ctx
, &chan
, &key
, &action
);
3065 ERR("Error reading channel pipe");
3067 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
3072 case CONSUMER_CHANNEL_ADD
:
3073 DBG("Adding channel %d to poll set",
3076 lttng_ht_node_init_u64(&chan
->wait_fd_node
,
3079 lttng_ht_add_unique_u64(channel_ht
,
3080 &chan
->wait_fd_node
);
3082 /* Add channel to the global poll events list */
3083 lttng_poll_add(&events
, chan
->wait_fd
,
3084 LPOLLERR
| LPOLLHUP
);
3086 case CONSUMER_CHANNEL_DEL
:
3089 * This command should never be called if the channel
3090 * has streams monitored by either the data or metadata
3091 * thread. The consumer only notify this thread with a
3092 * channel del. command if it receives a destroy
3093 * channel command from the session daemon that send it
3094 * if a command prior to the GET_CHANNEL failed.
3098 chan
= consumer_find_channel(key
);
3101 ERR("UST consumer get channel key %" PRIu64
" not found for del channel", key
);
3104 lttng_poll_del(&events
, chan
->wait_fd
);
3105 iter
.iter
.node
= &chan
->wait_fd_node
.node
;
3106 ret
= lttng_ht_del(channel_ht
, &iter
);
3109 switch (consumer_data
.type
) {
3110 case LTTNG_CONSUMER_KERNEL
:
3112 case LTTNG_CONSUMER32_UST
:
3113 case LTTNG_CONSUMER64_UST
:
3114 health_code_update();
3115 /* Destroy streams that might have been left in the stream list. */
3116 clean_channel_stream_list(chan
);
3119 ERR("Unknown consumer_data type");
3124 * Release our own refcount. Force channel deletion even if
3125 * streams were not initialized.
3127 if (!uatomic_sub_return(&chan
->refcount
, 1)) {
3128 consumer_del_channel(chan
);
3133 case CONSUMER_CHANNEL_QUIT
:
3135 * Remove the pipe from the poll set and continue the loop
3136 * since their might be data to consume.
3138 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
3141 ERR("Unknown action");
3144 } else if (revents
& (LPOLLERR
| LPOLLHUP
)) {
3145 DBG("Channel thread pipe hung up");
3147 * Remove the pipe from the poll set and continue the loop
3148 * since their might be data to consume.
3150 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
3153 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
3157 /* Handle other stream */
3163 uint64_t tmp_id
= (uint64_t) pollfd
;
3165 lttng_ht_lookup(channel_ht
, &tmp_id
, &iter
);
3167 node
= lttng_ht_iter_get_node_u64(&iter
);
3170 chan
= caa_container_of(node
, struct lttng_consumer_channel
,
3173 /* Check for error event */
3174 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
3175 DBG("Channel fd %d is hup|err.", pollfd
);
3177 lttng_poll_del(&events
, chan
->wait_fd
);
3178 ret
= lttng_ht_del(channel_ht
, &iter
);
3182 * This will close the wait fd for each stream associated to
3183 * this channel AND monitored by the data/metadata thread thus
3184 * will be clean by the right thread.
3186 consumer_close_channel_streams(chan
);
3188 /* Release our own refcount */
3189 if (!uatomic_sub_return(&chan
->refcount
, 1)
3190 && !uatomic_read(&chan
->nb_init_stream_left
)) {
3191 consumer_del_channel(chan
);
3194 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
3199 /* Release RCU lock for the channel looked up */
3207 lttng_poll_clean(&events
);
3209 destroy_channel_ht(channel_ht
);
3212 DBG("Channel poll thread exiting");
3215 ERR("Health error occurred in %s", __func__
);
3217 health_unregister(health_consumerd
);
3218 rcu_unregister_thread();
3222 static int set_metadata_socket(struct lttng_consumer_local_data
*ctx
,
3223 struct pollfd
*sockpoll
, int client_socket
)
3230 ret
= lttng_consumer_poll_socket(sockpoll
);
3234 DBG("Metadata connection on client_socket");
3236 /* Blocking call, waiting for transmission */
3237 ctx
->consumer_metadata_socket
= lttcomm_accept_unix_sock(client_socket
);
3238 if (ctx
->consumer_metadata_socket
< 0) {
3239 WARN("On accept metadata");
3250 * This thread listens on the consumerd socket and receives the file
3251 * descriptors from the session daemon.
3253 void *consumer_thread_sessiond_poll(void *data
)
3255 int sock
= -1, client_socket
, ret
, err
= -1;
3257 * structure to poll for incoming data on communication socket avoids
3258 * making blocking sockets.
3260 struct pollfd consumer_sockpoll
[2];
3261 struct lttng_consumer_local_data
*ctx
= data
;
3263 rcu_register_thread();
3265 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_SESSIOND
);
3267 if (testpoint(consumerd_thread_sessiond
)) {
3268 goto error_testpoint
;
3271 health_code_update();
3273 DBG("Creating command socket %s", ctx
->consumer_command_sock_path
);
3274 unlink(ctx
->consumer_command_sock_path
);
3275 client_socket
= lttcomm_create_unix_sock(ctx
->consumer_command_sock_path
);
3276 if (client_socket
< 0) {
3277 ERR("Cannot create command socket");
3281 ret
= lttcomm_listen_unix_sock(client_socket
);
3286 DBG("Sending ready command to lttng-sessiond");
3287 ret
= lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY
);
3288 /* return < 0 on error, but == 0 is not fatal */
3290 ERR("Error sending ready command to lttng-sessiond");
3294 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3295 consumer_sockpoll
[0].fd
= ctx
->consumer_should_quit
[0];
3296 consumer_sockpoll
[0].events
= POLLIN
| POLLPRI
;
3297 consumer_sockpoll
[1].fd
= client_socket
;
3298 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
3300 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3308 DBG("Connection on client_socket");
3310 /* Blocking call, waiting for transmission */
3311 sock
= lttcomm_accept_unix_sock(client_socket
);
3318 * Setup metadata socket which is the second socket connection on the
3319 * command unix socket.
3321 ret
= set_metadata_socket(ctx
, consumer_sockpoll
, client_socket
);
3330 /* This socket is not useful anymore. */
3331 ret
= close(client_socket
);
3333 PERROR("close client_socket");
3337 /* update the polling structure to poll on the established socket */
3338 consumer_sockpoll
[1].fd
= sock
;
3339 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
3342 health_code_update();
3344 health_poll_entry();
3345 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3354 DBG("Incoming command on sock");
3355 ret
= lttng_consumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
3358 * This could simply be a session daemon quitting. Don't output
3361 DBG("Communication interrupted on command socket");
3365 if (CMM_LOAD_SHARED(consumer_quit
)) {
3366 DBG("consumer_thread_receive_fds received quit from signal");
3367 err
= 0; /* All is OK */
3370 DBG("received command on sock");
3376 DBG("Consumer thread sessiond poll exiting");
3379 * Close metadata streams since the producer is the session daemon which
3382 * NOTE: for now, this only applies to the UST tracer.
3384 lttng_consumer_close_all_metadata();
3387 * when all fds have hung up, the polling thread
3390 CMM_STORE_SHARED(consumer_quit
, 1);
3393 * Notify the data poll thread to poll back again and test the
3394 * consumer_quit state that we just set so to quit gracefully.
3396 notify_thread_lttng_pipe(ctx
->consumer_data_pipe
);
3398 notify_channel_pipe(ctx
, NULL
, -1, CONSUMER_CHANNEL_QUIT
);
3400 notify_health_quit_pipe(health_quit_pipe
);
3402 /* Cleaning up possibly open sockets. */
3406 PERROR("close sock sessiond poll");
3409 if (client_socket
>= 0) {
3410 ret
= close(client_socket
);
3412 PERROR("close client_socket sessiond poll");
3419 ERR("Health error occurred in %s", __func__
);
3421 health_unregister(health_consumerd
);
3423 rcu_unregister_thread();
3427 ssize_t
lttng_consumer_read_subbuffer(struct lttng_consumer_stream
*stream
,
3428 struct lttng_consumer_local_data
*ctx
)
3432 pthread_mutex_lock(&stream
->chan
->lock
);
3433 pthread_mutex_lock(&stream
->lock
);
3434 if (stream
->metadata_flag
) {
3435 pthread_mutex_lock(&stream
->metadata_rdv_lock
);
3438 switch (consumer_data
.type
) {
3439 case LTTNG_CONSUMER_KERNEL
:
3440 ret
= lttng_kconsumer_read_subbuffer(stream
, ctx
);
3442 case LTTNG_CONSUMER32_UST
:
3443 case LTTNG_CONSUMER64_UST
:
3444 ret
= lttng_ustconsumer_read_subbuffer(stream
, ctx
);
3447 ERR("Unknown consumer_data type");
3453 if (stream
->metadata_flag
) {
3454 pthread_cond_broadcast(&stream
->metadata_rdv
);
3455 pthread_mutex_unlock(&stream
->metadata_rdv_lock
);
3457 pthread_mutex_unlock(&stream
->lock
);
3458 pthread_mutex_unlock(&stream
->chan
->lock
);
3463 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream
*stream
)
3465 switch (consumer_data
.type
) {
3466 case LTTNG_CONSUMER_KERNEL
:
3467 return lttng_kconsumer_on_recv_stream(stream
);
3468 case LTTNG_CONSUMER32_UST
:
3469 case LTTNG_CONSUMER64_UST
:
3470 return lttng_ustconsumer_on_recv_stream(stream
);
3472 ERR("Unknown consumer_data type");
3479 * Allocate and set consumer data hash tables.
3481 int lttng_consumer_init(void)
3483 consumer_data
.channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3484 if (!consumer_data
.channel_ht
) {
3488 consumer_data
.channels_by_session_id_ht
=
3489 lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3490 if (!consumer_data
.channels_by_session_id_ht
) {
3494 consumer_data
.relayd_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3495 if (!consumer_data
.relayd_ht
) {
3499 consumer_data
.stream_list_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3500 if (!consumer_data
.stream_list_ht
) {
3504 consumer_data
.stream_per_chan_id_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3505 if (!consumer_data
.stream_per_chan_id_ht
) {
3509 data_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3514 metadata_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3519 consumer_data
.chunk_registry
= lttng_trace_chunk_registry_create();
3520 if (!consumer_data
.chunk_registry
) {
3531 * Process the ADD_RELAYD command receive by a consumer.
3533 * This will create a relayd socket pair and add it to the relayd hash table.
3534 * The caller MUST acquire a RCU read side lock before calling it.
3536 void consumer_add_relayd_socket(uint64_t net_seq_idx
, int sock_type
,
3537 struct lttng_consumer_local_data
*ctx
, int sock
,
3538 struct pollfd
*consumer_sockpoll
,
3539 struct lttcomm_relayd_sock
*relayd_sock
, uint64_t sessiond_id
,
3540 uint64_t relayd_session_id
)
3542 int fd
= -1, ret
= -1, relayd_created
= 0;
3543 enum lttcomm_return_code ret_code
= LTTCOMM_CONSUMERD_SUCCESS
;
3544 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3547 assert(relayd_sock
);
3549 DBG("Consumer adding relayd socket (idx: %" PRIu64
")", net_seq_idx
);
3551 /* Get relayd reference if exists. */
3552 relayd
= consumer_find_relayd(net_seq_idx
);
3553 if (relayd
== NULL
) {
3554 assert(sock_type
== LTTNG_STREAM_CONTROL
);
3555 /* Not found. Allocate one. */
3556 relayd
= consumer_allocate_relayd_sock_pair(net_seq_idx
);
3557 if (relayd
== NULL
) {
3558 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3561 relayd
->sessiond_session_id
= sessiond_id
;
3566 * This code path MUST continue to the consumer send status message to
3567 * we can notify the session daemon and continue our work without
3568 * killing everything.
3572 * relayd key should never be found for control socket.
3574 assert(sock_type
!= LTTNG_STREAM_CONTROL
);
3577 /* First send a status message before receiving the fds. */
3578 ret
= consumer_send_status_msg(sock
, LTTCOMM_CONSUMERD_SUCCESS
);
3580 /* Somehow, the session daemon is not responding anymore. */
3581 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3582 goto error_nosignal
;
3585 /* Poll on consumer socket. */
3586 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3588 /* Needing to exit in the middle of a command: error. */
3589 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
3590 goto error_nosignal
;
3593 /* Get relayd socket from session daemon */
3594 ret
= lttcomm_recv_fds_unix_sock(sock
, &fd
, 1);
3595 if (ret
!= sizeof(fd
)) {
3596 fd
= -1; /* Just in case it gets set with an invalid value. */
3599 * Failing to receive FDs might indicate a major problem such as
3600 * reaching a fd limit during the receive where the kernel returns a
3601 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3602 * don't take any chances and stop everything.
3604 * XXX: Feature request #558 will fix that and avoid this possible
3605 * issue when reaching the fd limit.
3607 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_ERROR_RECV_FD
);
3608 ret_code
= LTTCOMM_CONSUMERD_ERROR_RECV_FD
;
3612 /* Copy socket information and received FD */
3613 switch (sock_type
) {
3614 case LTTNG_STREAM_CONTROL
:
3615 /* Copy received lttcomm socket */
3616 lttcomm_copy_sock(&relayd
->control_sock
.sock
, &relayd_sock
->sock
);
3617 ret
= lttcomm_create_sock(&relayd
->control_sock
.sock
);
3618 /* Handle create_sock error. */
3620 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3624 * Close the socket created internally by
3625 * lttcomm_create_sock, so we can replace it by the one
3626 * received from sessiond.
3628 if (close(relayd
->control_sock
.sock
.fd
)) {
3632 /* Assign new file descriptor */
3633 relayd
->control_sock
.sock
.fd
= fd
;
3634 /* Assign version values. */
3635 relayd
->control_sock
.major
= relayd_sock
->major
;
3636 relayd
->control_sock
.minor
= relayd_sock
->minor
;
3638 relayd
->relayd_session_id
= relayd_session_id
;
3641 case LTTNG_STREAM_DATA
:
3642 /* Copy received lttcomm socket */
3643 lttcomm_copy_sock(&relayd
->data_sock
.sock
, &relayd_sock
->sock
);
3644 ret
= lttcomm_create_sock(&relayd
->data_sock
.sock
);
3645 /* Handle create_sock error. */
3647 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3651 * Close the socket created internally by
3652 * lttcomm_create_sock, so we can replace it by the one
3653 * received from sessiond.
3655 if (close(relayd
->data_sock
.sock
.fd
)) {
3659 /* Assign new file descriptor */
3660 relayd
->data_sock
.sock
.fd
= fd
;
3661 /* Assign version values. */
3662 relayd
->data_sock
.major
= relayd_sock
->major
;
3663 relayd
->data_sock
.minor
= relayd_sock
->minor
;
3666 ERR("Unknown relayd socket type (%d)", sock_type
);
3667 ret_code
= LTTCOMM_CONSUMERD_FATAL
;
3671 DBG("Consumer %s socket created successfully with net idx %" PRIu64
" (fd: %d)",
3672 sock_type
== LTTNG_STREAM_CONTROL
? "control" : "data",
3673 relayd
->net_seq_idx
, fd
);
3675 * We gave the ownership of the fd to the relayd structure. Set the
3676 * fd to -1 so we don't call close() on it in the error path below.
3680 /* We successfully added the socket. Send status back. */
3681 ret
= consumer_send_status_msg(sock
, ret_code
);
3683 /* Somehow, the session daemon is not responding anymore. */
3684 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3685 goto error_nosignal
;
3689 * Add relayd socket pair to consumer data hashtable. If object already
3690 * exists or on error, the function gracefully returns.
3699 if (consumer_send_status_msg(sock
, ret_code
) < 0) {
3700 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3704 /* Close received socket if valid. */
3707 PERROR("close received socket");
3711 if (relayd_created
) {
3717 * Search for a relayd associated to the session id and return the reference.
3719 * A rcu read side lock MUST be acquire before calling this function and locked
3720 * until the relayd object is no longer necessary.
3722 static struct consumer_relayd_sock_pair
*find_relayd_by_session_id(uint64_t id
)
3724 struct lttng_ht_iter iter
;
3725 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3727 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3728 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
3731 * Check by sessiond id which is unique here where the relayd session
3732 * id might not be when having multiple relayd.
3734 if (relayd
->sessiond_session_id
== id
) {
3735 /* Found the relayd. There can be only one per id. */
3747 * Check if for a given session id there is still data needed to be extract
3750 * Return 1 if data is pending or else 0 meaning ready to be read.
3752 int consumer_data_pending(uint64_t id
)
3755 struct lttng_ht_iter iter
;
3756 struct lttng_ht
*ht
;
3757 struct lttng_consumer_stream
*stream
;
3758 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3759 int (*data_pending
)(struct lttng_consumer_stream
*);
3761 DBG("Consumer data pending command on session id %" PRIu64
, id
);
3764 pthread_mutex_lock(&consumer_data
.lock
);
3766 switch (consumer_data
.type
) {
3767 case LTTNG_CONSUMER_KERNEL
:
3768 data_pending
= lttng_kconsumer_data_pending
;
3770 case LTTNG_CONSUMER32_UST
:
3771 case LTTNG_CONSUMER64_UST
:
3772 data_pending
= lttng_ustconsumer_data_pending
;
3775 ERR("Unknown consumer data type");
3779 /* Ease our life a bit */
3780 ht
= consumer_data
.stream_list_ht
;
3782 cds_lfht_for_each_entry_duplicate(ht
->ht
,
3783 ht
->hash_fct(&id
, lttng_ht_seed
),
3785 &iter
.iter
, stream
, node_session_id
.node
) {
3786 pthread_mutex_lock(&stream
->lock
);
3789 * A removed node from the hash table indicates that the stream has
3790 * been deleted thus having a guarantee that the buffers are closed
3791 * on the consumer side. However, data can still be transmitted
3792 * over the network so don't skip the relayd check.
3794 ret
= cds_lfht_is_node_deleted(&stream
->node
.node
);
3796 /* Check the stream if there is data in the buffers. */
3797 ret
= data_pending(stream
);
3799 pthread_mutex_unlock(&stream
->lock
);
3804 pthread_mutex_unlock(&stream
->lock
);
3807 relayd
= find_relayd_by_session_id(id
);
3809 unsigned int is_data_inflight
= 0;
3811 /* Send init command for data pending. */
3812 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3813 ret
= relayd_begin_data_pending(&relayd
->control_sock
,
3814 relayd
->relayd_session_id
);
3816 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3817 /* Communication error thus the relayd so no data pending. */
3818 goto data_not_pending
;
3821 cds_lfht_for_each_entry_duplicate(ht
->ht
,
3822 ht
->hash_fct(&id
, lttng_ht_seed
),
3824 &iter
.iter
, stream
, node_session_id
.node
) {
3825 if (stream
->metadata_flag
) {
3826 ret
= relayd_quiescent_control(&relayd
->control_sock
,
3827 stream
->relayd_stream_id
);
3829 ret
= relayd_data_pending(&relayd
->control_sock
,
3830 stream
->relayd_stream_id
,
3831 stream
->next_net_seq_num
- 1);
3835 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3837 } else if (ret
< 0) {
3838 ERR("Relayd data pending failed. Cleaning up relayd %" PRIu64
".", relayd
->net_seq_idx
);
3839 lttng_consumer_cleanup_relayd(relayd
);
3840 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3841 goto data_not_pending
;
3845 /* Send end command for data pending. */
3846 ret
= relayd_end_data_pending(&relayd
->control_sock
,
3847 relayd
->relayd_session_id
, &is_data_inflight
);
3848 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3850 ERR("Relayd end data pending failed. Cleaning up relayd %" PRIu64
".", relayd
->net_seq_idx
);
3851 lttng_consumer_cleanup_relayd(relayd
);
3852 goto data_not_pending
;
3854 if (is_data_inflight
) {
3860 * Finding _no_ node in the hash table and no inflight data means that the
3861 * stream(s) have been removed thus data is guaranteed to be available for
3862 * analysis from the trace files.
3866 /* Data is available to be read by a viewer. */
3867 pthread_mutex_unlock(&consumer_data
.lock
);
3872 /* Data is still being extracted from buffers. */
3873 pthread_mutex_unlock(&consumer_data
.lock
);
3879 * Send a ret code status message to the sessiond daemon.
3881 * Return the sendmsg() return value.
3883 int consumer_send_status_msg(int sock
, int ret_code
)
3885 struct lttcomm_consumer_status_msg msg
;
3887 memset(&msg
, 0, sizeof(msg
));
3888 msg
.ret_code
= ret_code
;
3890 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));
3894 * Send a channel status message to the sessiond daemon.
3896 * Return the sendmsg() return value.
3898 int consumer_send_status_channel(int sock
,
3899 struct lttng_consumer_channel
*channel
)
3901 struct lttcomm_consumer_status_channel msg
;
3905 memset(&msg
, 0, sizeof(msg
));
3907 msg
.ret_code
= LTTCOMM_CONSUMERD_CHANNEL_FAIL
;
3909 msg
.ret_code
= LTTCOMM_CONSUMERD_SUCCESS
;
3910 msg
.key
= channel
->key
;
3911 msg
.stream_count
= channel
->streams
.count
;
3914 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));
3917 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos
,
3918 unsigned long produced_pos
, uint64_t nb_packets_per_stream
,
3919 uint64_t max_sb_size
)
3921 unsigned long start_pos
;
3923 if (!nb_packets_per_stream
) {
3924 return consumed_pos
; /* Grab everything */
3926 start_pos
= produced_pos
- offset_align_floor(produced_pos
, max_sb_size
);
3927 start_pos
-= max_sb_size
* nb_packets_per_stream
;
3928 if ((long) (start_pos
- consumed_pos
) < 0) {
3929 return consumed_pos
; /* Grab everything */
3935 int consumer_flush_buffer(struct lttng_consumer_stream
*stream
, int producer_active
)
3939 switch (consumer_data
.type
) {
3940 case LTTNG_CONSUMER_KERNEL
:
3941 ret
= kernctl_buffer_flush(stream
->wait_fd
);
3943 ERR("Failed to flush kernel stream");
3947 case LTTNG_CONSUMER32_UST
:
3948 case LTTNG_CONSUMER64_UST
:
3949 lttng_ustctl_flush_buffer(stream
, producer_active
);
3952 ERR("Unknown consumer_data type");
3961 * Sample the rotate position for all the streams of a channel. If a stream
3962 * is already at the rotate position (produced == consumed), we flag it as
3963 * ready for rotation. The rotation of ready streams occurs after we have
3964 * replied to the session daemon that we have finished sampling the positions.
3965 * Must be called with RCU read-side lock held to ensure existence of channel.
3967 * Returns 0 on success, < 0 on error
3969 int lttng_consumer_rotate_channel(struct lttng_consumer_channel
*channel
,
3970 uint64_t key
, uint64_t relayd_id
, uint32_t metadata
,
3971 struct lttng_consumer_local_data
*ctx
)
3974 struct lttng_consumer_stream
*stream
;
3975 struct lttng_ht_iter iter
;
3976 struct lttng_ht
*ht
= consumer_data
.stream_per_chan_id_ht
;
3977 struct lttng_dynamic_array stream_rotation_positions
;
3978 uint64_t next_chunk_id
, stream_count
= 0;
3979 enum lttng_trace_chunk_status chunk_status
;
3980 const bool is_local_trace
= relayd_id
== -1ULL;
3981 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3982 bool rotating_to_new_chunk
= true;
3984 DBG("Consumer sample rotate position for channel %" PRIu64
, key
);
3986 lttng_dynamic_array_init(&stream_rotation_positions
,
3987 sizeof(struct relayd_stream_rotation_position
), NULL
);
3991 pthread_mutex_lock(&channel
->lock
);
3992 assert(channel
->trace_chunk
);
3993 chunk_status
= lttng_trace_chunk_get_id(channel
->trace_chunk
,
3995 if (chunk_status
!= LTTNG_TRACE_CHUNK_STATUS_OK
) {
3997 goto end_unlock_channel
;
4000 cds_lfht_for_each_entry_duplicate(ht
->ht
,
4001 ht
->hash_fct(&channel
->key
, lttng_ht_seed
),
4002 ht
->match_fct
, &channel
->key
, &iter
.iter
,
4003 stream
, node_channel_id
.node
) {
4004 unsigned long consumed_pos
;
4006 health_code_update();
4009 * Lock stream because we are about to change its state.
4011 pthread_mutex_lock(&stream
->lock
);
4013 if (stream
->trace_chunk
== stream
->chan
->trace_chunk
) {
4014 rotating_to_new_chunk
= false;
4017 ret
= lttng_consumer_sample_snapshot_positions(stream
);
4019 ERR("Failed to sample snapshot position during channel rotation");
4020 goto end_unlock_stream
;
4023 ret
= lttng_consumer_get_produced_snapshot(stream
,
4024 &stream
->rotate_position
);
4026 ERR("Failed to sample produced position during channel rotation");
4027 goto end_unlock_stream
;
4030 lttng_consumer_get_consumed_snapshot(stream
,
4032 if (consumed_pos
== stream
->rotate_position
) {
4033 stream
->rotate_ready
= true;
4037 * Active flush; has no effect if the production position
4038 * is at a packet boundary.
4040 ret
= consumer_flush_buffer(stream
, 1);
4042 ERR("Failed to flush stream %" PRIu64
" during channel rotation",
4044 goto end_unlock_stream
;
4047 if (!is_local_trace
) {
4049 * The relay daemon control protocol expects a rotation
4050 * position as "the sequence number of the first packet
4051 * _after_ the current trace chunk.
4053 * At the moment when the positions of the buffers are
4054 * sampled, the production position does not necessarily
4055 * sit at a packet boundary. The 'active' flush
4056 * operation above will push the production position to
4057 * the next packet boundary _if_ it is not already
4058 * sitting at such a boundary.
4060 * Assuming a current production position that is not
4061 * on the bound of a packet, the 'target' sequence
4063 * (consumed_pos / subbuffer_size) + 1
4064 * Note the '+ 1' to ensure the current packet is
4065 * part of the current trace chunk.
4067 * However, if the production position is already at
4068 * a packet boundary, the '+ 1' is not necessary as the
4069 * last packet of the current chunk is already
4072 const struct relayd_stream_rotation_position position
= {
4073 .stream_id
= stream
->relayd_stream_id
,
4074 .rotate_at_seq_num
= (stream
->rotate_position
/ stream
->max_sb_size
) +
4075 !!(stream
->rotate_position
% stream
->max_sb_size
),
4078 ret
= lttng_dynamic_array_add_element(
4079 &stream_rotation_positions
,
4082 ERR("Failed to allocate stream rotation position");
4083 goto end_unlock_stream
;
4087 pthread_mutex_unlock(&stream
->lock
);
4090 pthread_mutex_unlock(&channel
->lock
);
4092 if (is_local_trace
) {
4097 relayd
= consumer_find_relayd(relayd_id
);
4099 ERR("Failed to find relayd %" PRIu64
, relayd_id
);
4104 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
4105 ret
= relayd_rotate_streams(&relayd
->control_sock
, stream_count
,
4106 rotating_to_new_chunk
? &next_chunk_id
: NULL
,
4107 (const struct relayd_stream_rotation_position
*)
4108 stream_rotation_positions
.buffer
.data
);
4109 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
4111 ERR("Relayd rotate stream failed. Cleaning up relayd %" PRIu64
,
4112 relayd
->net_seq_idx
);
4113 lttng_consumer_cleanup_relayd(relayd
);
4121 pthread_mutex_unlock(&stream
->lock
);
4123 pthread_mutex_unlock(&channel
->lock
);
4126 lttng_dynamic_array_reset(&stream_rotation_positions
);
4131 * Check if a stream is ready to be rotated after extracting it.
4133 * Return 1 if it is ready for rotation, 0 if it is not, a negative value on
4134 * error. Stream lock must be held.
4136 int lttng_consumer_stream_is_rotate_ready(struct lttng_consumer_stream
*stream
)
4139 unsigned long consumed_pos
;
4141 if (!stream
->rotate_position
&& !stream
->rotate_ready
) {
4146 if (stream
->rotate_ready
) {
4152 * If we don't have the rotate_ready flag, check the consumed position
4153 * to determine if we need to rotate.
4155 ret
= lttng_consumer_sample_snapshot_positions(stream
);
4157 ERR("Taking snapshot positions");
4161 ret
= lttng_consumer_get_consumed_snapshot(stream
, &consumed_pos
);
4163 ERR("Consumed snapshot position");
4167 /* Rotate position not reached yet (with check for overflow). */
4168 if ((long) (consumed_pos
- stream
->rotate_position
) < 0) {
4179 * Reset the state for a stream after a rotation occurred.
4181 void lttng_consumer_reset_stream_rotate_state(struct lttng_consumer_stream
*stream
)
4183 stream
->rotate_position
= 0;
4184 stream
->rotate_ready
= false;
4188 * Perform the rotation a local stream file.
4191 int rotate_local_stream(struct lttng_consumer_local_data
*ctx
,
4192 struct lttng_consumer_stream
*stream
)
4196 DBG("Rotate local stream: stream key %" PRIu64
", channel key %" PRIu64
,
4199 stream
->tracefile_size_current
= 0;
4200 stream
->tracefile_count_current
= 0;
4202 if (stream
->out_fd
>= 0) {
4203 ret
= close(stream
->out_fd
);
4205 PERROR("Failed to close stream out_fd of channel \"%s\"",
4206 stream
->chan
->name
);
4208 stream
->out_fd
= -1;
4211 if (stream
->index_file
) {
4212 lttng_index_file_put(stream
->index_file
);
4213 stream
->index_file
= NULL
;
4216 if (!stream
->trace_chunk
) {
4220 ret
= consumer_stream_create_output_files(stream
, true);
4226 * Performs the stream rotation for the rotate session feature if needed.
4227 * It must be called with the channel and stream locks held.
4229 * Return 0 on success, a negative number of error.
4231 int lttng_consumer_rotate_stream(struct lttng_consumer_local_data
*ctx
,
4232 struct lttng_consumer_stream
*stream
)
4236 DBG("Consumer rotate stream %" PRIu64
, stream
->key
);
4239 * Update the stream's 'current' chunk to the session's (channel)
4240 * now-current chunk.
4242 lttng_trace_chunk_put(stream
->trace_chunk
);
4243 if (stream
->chan
->trace_chunk
== stream
->trace_chunk
) {
4245 * A channel can be rotated and not have a "next" chunk
4246 * to transition to. In that case, the channel's "current chunk"
4247 * has not been closed yet, but it has not been updated to
4248 * a "next" trace chunk either. Hence, the stream, like its
4249 * parent channel, becomes part of no chunk and can't output
4250 * anything until a new trace chunk is created.
4252 stream
->trace_chunk
= NULL
;
4253 } else if (stream
->chan
->trace_chunk
&&
4254 !lttng_trace_chunk_get(stream
->chan
->trace_chunk
)) {
4255 ERR("Failed to acquire a reference to channel's trace chunk during stream rotation");
4260 * Update the stream's trace chunk to its parent channel's
4261 * current trace chunk.
4263 stream
->trace_chunk
= stream
->chan
->trace_chunk
;
4266 if (stream
->net_seq_idx
== (uint64_t) -1ULL) {
4267 ret
= rotate_local_stream(ctx
, stream
);
4269 ERR("Failed to rotate stream, ret = %i", ret
);
4274 if (stream
->metadata_flag
&& stream
->trace_chunk
) {
4276 * If the stream has transitioned to a new trace
4277 * chunk, the metadata should be re-dumped to the
4280 * However, it is possible for a stream to transition to
4281 * a "no-chunk" state. This can happen if a rotation
4282 * occurs on an inactive session. In such cases, the metadata
4283 * regeneration will happen when the next trace chunk is
4286 ret
= consumer_metadata_stream_dump(stream
);
4291 lttng_consumer_reset_stream_rotate_state(stream
);
4300 * Rotate all the ready streams now.
4302 * This is especially important for low throughput streams that have already
4303 * been consumed, we cannot wait for their next packet to perform the
4305 * Need to be called with RCU read-side lock held to ensure existence of
4308 * Returns 0 on success, < 0 on error
4310 int lttng_consumer_rotate_ready_streams(struct lttng_consumer_channel
*channel
,
4311 uint64_t key
, struct lttng_consumer_local_data
*ctx
)
4314 struct lttng_consumer_stream
*stream
;
4315 struct lttng_ht_iter iter
;
4316 struct lttng_ht
*ht
= consumer_data
.stream_per_chan_id_ht
;
4320 DBG("Consumer rotate ready streams in channel %" PRIu64
, key
);
4322 cds_lfht_for_each_entry_duplicate(ht
->ht
,
4323 ht
->hash_fct(&channel
->key
, lttng_ht_seed
),
4324 ht
->match_fct
, &channel
->key
, &iter
.iter
,
4325 stream
, node_channel_id
.node
) {
4326 health_code_update();
4328 pthread_mutex_lock(&stream
->chan
->lock
);
4329 pthread_mutex_lock(&stream
->lock
);
4331 if (!stream
->rotate_ready
) {
4332 pthread_mutex_unlock(&stream
->lock
);
4333 pthread_mutex_unlock(&stream
->chan
->lock
);
4336 DBG("Consumer rotate ready stream %" PRIu64
, stream
->key
);
4338 ret
= lttng_consumer_rotate_stream(ctx
, stream
);
4339 pthread_mutex_unlock(&stream
->lock
);
4340 pthread_mutex_unlock(&stream
->chan
->lock
);
4353 enum lttcomm_return_code
lttng_consumer_init_command(
4354 struct lttng_consumer_local_data
*ctx
,
4355 const lttng_uuid sessiond_uuid
)
4357 enum lttcomm_return_code ret
;
4358 char uuid_str
[UUID_STR_LEN
];
4360 if (ctx
->sessiond_uuid
.is_set
) {
4361 ret
= LTTCOMM_CONSUMERD_ALREADY_SET
;
4365 ctx
->sessiond_uuid
.is_set
= true;
4366 memcpy(ctx
->sessiond_uuid
.value
, sessiond_uuid
, sizeof(lttng_uuid
));
4367 ret
= LTTCOMM_CONSUMERD_SUCCESS
;
4368 lttng_uuid_to_str(sessiond_uuid
, uuid_str
);
4369 DBG("Received session daemon UUID: %s", uuid_str
);
4374 enum lttcomm_return_code
lttng_consumer_create_trace_chunk(
4375 const uint64_t *relayd_id
, uint64_t session_id
,
4377 time_t chunk_creation_timestamp
,
4378 const char *chunk_override_name
,
4379 const struct lttng_credentials
*credentials
,
4380 struct lttng_directory_handle
*chunk_directory_handle
)
4383 enum lttcomm_return_code ret_code
= LTTCOMM_CONSUMERD_SUCCESS
;
4384 struct lttng_trace_chunk
*created_chunk
= NULL
, *published_chunk
= NULL
;
4385 enum lttng_trace_chunk_status chunk_status
;
4386 char relayd_id_buffer
[MAX_INT_DEC_LEN(*relayd_id
)];
4387 char creation_timestamp_buffer
[ISO8601_STR_LEN
];
4388 const char *relayd_id_str
= "(none)";
4389 const char *creation_timestamp_str
;
4390 struct lttng_ht_iter iter
;
4391 struct lttng_consumer_channel
*channel
;
4394 /* Only used for logging purposes. */
4395 ret
= snprintf(relayd_id_buffer
, sizeof(relayd_id_buffer
),
4396 "%" PRIu64
, *relayd_id
);
4397 if (ret
> 0 && ret
< sizeof(relayd_id_buffer
)) {
4398 relayd_id_str
= relayd_id_buffer
;
4400 relayd_id_str
= "(formatting error)";
4404 /* Local protocol error. */
4405 assert(chunk_creation_timestamp
);
4406 ret
= time_to_iso8601_str(chunk_creation_timestamp
,
4407 creation_timestamp_buffer
,
4408 sizeof(creation_timestamp_buffer
));
4409 creation_timestamp_str
= !ret
? creation_timestamp_buffer
:
4410 "(formatting error)";
4412 DBG("Consumer create trace chunk command: relay_id = %s"
4413 ", session_id = %" PRIu64
", chunk_id = %" PRIu64
4414 ", chunk_override_name = %s"
4415 ", chunk_creation_timestamp = %s",
4416 relayd_id_str
, session_id
, chunk_id
,
4417 chunk_override_name
? : "(none)",
4418 creation_timestamp_str
);
4421 * The trace chunk registry, as used by the consumer daemon, implicitly
4422 * owns the trace chunks. This is only needed in the consumer since
4423 * the consumer has no notion of a session beyond session IDs being
4424 * used to identify other objects.
4426 * The lttng_trace_chunk_registry_publish() call below provides a
4427 * reference which is not released; it implicitly becomes the session
4428 * daemon's reference to the chunk in the consumer daemon.
4430 * The lifetime of trace chunks in the consumer daemon is managed by
4431 * the session daemon through the LTTNG_CONSUMER_CREATE_TRACE_CHUNK
4432 * and LTTNG_CONSUMER_DESTROY_TRACE_CHUNK commands.
4434 created_chunk
= lttng_trace_chunk_create(chunk_id
,
4435 chunk_creation_timestamp
);
4436 if (!created_chunk
) {
4437 ERR("Failed to create trace chunk");
4438 ret_code
= LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED
;
4442 if (chunk_override_name
) {
4443 chunk_status
= lttng_trace_chunk_override_name(created_chunk
,
4444 chunk_override_name
);
4445 if (chunk_status
!= LTTNG_TRACE_CHUNK_STATUS_OK
) {
4446 ret_code
= LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED
;
4451 if (chunk_directory_handle
) {
4452 chunk_status
= lttng_trace_chunk_set_credentials(created_chunk
,
4454 if (chunk_status
!= LTTNG_TRACE_CHUNK_STATUS_OK
) {
4455 ERR("Failed to set trace chunk credentials");
4456 ret_code
= LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED
;
4460 * The consumer daemon has no ownership of the chunk output
4463 chunk_status
= lttng_trace_chunk_set_as_user(created_chunk
,
4464 chunk_directory_handle
);
4465 if (chunk_status
!= LTTNG_TRACE_CHUNK_STATUS_OK
) {
4466 ERR("Failed to set trace chunk's directory handle");
4467 ret_code
= LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED
;
4472 published_chunk
= lttng_trace_chunk_registry_publish_chunk(
4473 consumer_data
.chunk_registry
, session_id
,
4475 lttng_trace_chunk_put(created_chunk
);
4476 created_chunk
= NULL
;
4477 if (!published_chunk
) {
4478 ERR("Failed to publish trace chunk");
4479 ret_code
= LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED
;
4484 cds_lfht_for_each_entry_duplicate(consumer_data
.channels_by_session_id_ht
->ht
,
4485 consumer_data
.channels_by_session_id_ht
->hash_fct(
4486 &session_id
, lttng_ht_seed
),
4487 consumer_data
.channels_by_session_id_ht
->match_fct
,
4488 &session_id
, &iter
.iter
, channel
,
4489 channels_by_session_id_ht_node
.node
) {
4490 ret
= lttng_consumer_channel_set_trace_chunk(channel
,
4494 * Roll-back the creation of this chunk.
4496 * This is important since the session daemon will
4497 * assume that the creation of this chunk failed and
4498 * will never ask for it to be closed, resulting
4499 * in a leak and an inconsistent state for some
4502 enum lttcomm_return_code close_ret
;
4503 char path
[LTTNG_PATH_MAX
];
4505 DBG("Failed to set new trace chunk on existing channels, rolling back");
4506 close_ret
= lttng_consumer_close_trace_chunk(relayd_id
,
4507 session_id
, chunk_id
,
4508 chunk_creation_timestamp
, NULL
,
4510 if (close_ret
!= LTTCOMM_CONSUMERD_SUCCESS
) {
4511 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64
", chunk_id = %" PRIu64
,
4512 session_id
, chunk_id
);
4515 ret_code
= LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED
;
4521 struct consumer_relayd_sock_pair
*relayd
;
4523 relayd
= consumer_find_relayd(*relayd_id
);
4525 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
4526 ret
= relayd_create_trace_chunk(
4527 &relayd
->control_sock
, published_chunk
);
4528 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
4530 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64
, *relayd_id
);
4533 if (!relayd
|| ret
) {
4534 enum lttcomm_return_code close_ret
;
4535 char path
[LTTNG_PATH_MAX
];
4537 close_ret
= lttng_consumer_close_trace_chunk(relayd_id
,
4540 chunk_creation_timestamp
,
4542 if (close_ret
!= LTTCOMM_CONSUMERD_SUCCESS
) {
4543 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64
", chunk_id = %" PRIu64
,
4548 ret_code
= LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED
;
4555 /* Release the reference returned by the "publish" operation. */
4556 lttng_trace_chunk_put(published_chunk
);
4557 lttng_trace_chunk_put(created_chunk
);
4561 enum lttcomm_return_code
lttng_consumer_close_trace_chunk(
4562 const uint64_t *relayd_id
, uint64_t session_id
,
4563 uint64_t chunk_id
, time_t chunk_close_timestamp
,
4564 const enum lttng_trace_chunk_command_type
*close_command
,
4567 enum lttcomm_return_code ret_code
= LTTCOMM_CONSUMERD_SUCCESS
;
4568 struct lttng_trace_chunk
*chunk
;
4569 char relayd_id_buffer
[MAX_INT_DEC_LEN(*relayd_id
)];
4570 const char *relayd_id_str
= "(none)";
4571 const char *close_command_name
= "none";
4572 struct lttng_ht_iter iter
;
4573 struct lttng_consumer_channel
*channel
;
4574 enum lttng_trace_chunk_status chunk_status
;
4579 /* Only used for logging purposes. */
4580 ret
= snprintf(relayd_id_buffer
, sizeof(relayd_id_buffer
),
4581 "%" PRIu64
, *relayd_id
);
4582 if (ret
> 0 && ret
< sizeof(relayd_id_buffer
)) {
4583 relayd_id_str
= relayd_id_buffer
;
4585 relayd_id_str
= "(formatting error)";
4588 if (close_command
) {
4589 close_command_name
= lttng_trace_chunk_command_type_get_name(
4593 DBG("Consumer close trace chunk command: relayd_id = %s"
4594 ", session_id = %" PRIu64
", chunk_id = %" PRIu64
4595 ", close command = %s",
4596 relayd_id_str
, session_id
, chunk_id
,
4597 close_command_name
);
4599 chunk
= lttng_trace_chunk_registry_find_chunk(
4600 consumer_data
.chunk_registry
, session_id
, chunk_id
);
4602 ERR("Failed to find chunk: session_id = %" PRIu64
4603 ", chunk_id = %" PRIu64
,
4604 session_id
, chunk_id
);
4605 ret_code
= LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK
;
4609 chunk_status
= lttng_trace_chunk_set_close_timestamp(chunk
,
4610 chunk_close_timestamp
);
4611 if (chunk_status
!= LTTNG_TRACE_CHUNK_STATUS_OK
) {
4612 ret_code
= LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED
;
4616 if (close_command
) {
4617 chunk_status
= lttng_trace_chunk_set_close_command(
4618 chunk
, *close_command
);
4619 if (chunk_status
!= LTTNG_TRACE_CHUNK_STATUS_OK
) {
4620 ret_code
= LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED
;
4626 * chunk is now invalid to access as we no longer hold a reference to
4627 * it; it is only kept around to compare it (by address) to the
4628 * current chunk found in the session's channels.
4631 cds_lfht_for_each_entry(consumer_data
.channel_ht
->ht
, &iter
.iter
,
4632 channel
, node
.node
) {
4636 * Only change the channel's chunk to NULL if it still
4637 * references the chunk being closed. The channel may
4638 * reference a newer channel in the case of a session
4639 * rotation. When a session rotation occurs, the "next"
4640 * chunk is created before the "current" chunk is closed.
4642 if (channel
->trace_chunk
!= chunk
) {
4645 ret
= lttng_consumer_channel_set_trace_chunk(channel
, NULL
);
4648 * Attempt to close the chunk on as many channels as
4651 ret_code
= LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED
;
4657 struct consumer_relayd_sock_pair
*relayd
;
4659 relayd
= consumer_find_relayd(*relayd_id
);
4661 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
4662 ret
= relayd_close_trace_chunk(
4663 &relayd
->control_sock
, chunk
,
4665 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
4667 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64
,
4671 if (!relayd
|| ret
) {
4672 ret_code
= LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED
;
4680 * Release the reference returned by the "find" operation and
4681 * the session daemon's implicit reference to the chunk.
4683 lttng_trace_chunk_put(chunk
);
4684 lttng_trace_chunk_put(chunk
);
4689 enum lttcomm_return_code
lttng_consumer_trace_chunk_exists(
4690 const uint64_t *relayd_id
, uint64_t session_id
,
4694 enum lttcomm_return_code ret_code
;
4695 char relayd_id_buffer
[MAX_INT_DEC_LEN(*relayd_id
)];
4696 const char *relayd_id_str
= "(none)";
4697 const bool is_local_trace
= !relayd_id
;
4698 struct consumer_relayd_sock_pair
*relayd
= NULL
;
4699 bool chunk_exists_local
, chunk_exists_remote
;
4704 /* Only used for logging purposes. */
4705 ret
= snprintf(relayd_id_buffer
, sizeof(relayd_id_buffer
),
4706 "%" PRIu64
, *relayd_id
);
4707 if (ret
> 0 && ret
< sizeof(relayd_id_buffer
)) {
4708 relayd_id_str
= relayd_id_buffer
;
4710 relayd_id_str
= "(formatting error)";
4714 DBG("Consumer trace chunk exists command: relayd_id = %s"
4715 ", chunk_id = %" PRIu64
, relayd_id_str
,
4717 ret
= lttng_trace_chunk_registry_chunk_exists(
4718 consumer_data
.chunk_registry
, session_id
,
4719 chunk_id
, &chunk_exists_local
);
4721 /* Internal error. */
4722 ERR("Failed to query the existence of a trace chunk");
4723 ret_code
= LTTCOMM_CONSUMERD_FATAL
;
4726 DBG("Trace chunk %s locally",
4727 chunk_exists_local
? "exists" : "does not exist");
4728 if (chunk_exists_local
) {
4729 ret_code
= LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_LOCAL
;
4731 } else if (is_local_trace
) {
4732 ret_code
= LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK
;
4737 relayd
= consumer_find_relayd(*relayd_id
);
4739 ERR("Failed to find relayd %" PRIu64
, *relayd_id
);
4740 ret_code
= LTTCOMM_CONSUMERD_INVALID_PARAMETERS
;
4741 goto end_rcu_unlock
;
4743 DBG("Looking up existence of trace chunk on relay daemon");
4744 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
4745 ret
= relayd_trace_chunk_exists(&relayd
->control_sock
, chunk_id
,
4746 &chunk_exists_remote
);
4747 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
4749 ERR("Failed to look-up the existence of trace chunk on relay daemon");
4750 ret_code
= LTTCOMM_CONSUMERD_RELAYD_FAIL
;
4751 goto end_rcu_unlock
;
4754 ret_code
= chunk_exists_remote
?
4755 LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_REMOTE
:
4756 LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK
;
4757 DBG("Trace chunk %s on relay daemon",
4758 chunk_exists_remote
? "exists" : "does not exist");