Reinsert missing test_urcu_*.c files (missing in rename)
[userspace-rcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order.
95 * - call_rcu is used to garbage-collect the old order table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * A bit of ascii art explanation:
101 *
102 * Order index is the off-by-one compare to the actual power of 2 because
103 * we use index 0 to deal with the 0 special-case.
104 *
105 * This shows the nodes for a small table ordered by reversed bits:
106 *
107 * bits reverse
108 * 0 000 000
109 * 4 100 001
110 * 2 010 010
111 * 6 110 011
112 * 1 001 100
113 * 5 101 101
114 * 3 011 110
115 * 7 111 111
116 *
117 * This shows the nodes in order of non-reversed bits, linked by
118 * reversed-bit order.
119 *
120 * order bits reverse
121 * 0 0 000 000
122 * |
123 * 1 | 1 001 100 <- <-
124 * | | | |
125 * 2 | | 2 010 010 | |
126 * | | | 3 011 110 | <- |
127 * | | | | | | |
128 * 3 -> | | | 4 100 001 | |
129 * -> | | 5 101 101 |
130 * -> | 6 110 011
131 * -> 7 111 111
132 */
133
134 #define _LGPL_SOURCE
135 #include <stdlib.h>
136 #include <errno.h>
137 #include <assert.h>
138 #include <stdio.h>
139 #include <stdint.h>
140 #include <string.h>
141
142 #include "config.h"
143 #include <urcu.h>
144 #include <urcu-call-rcu.h>
145 #include <urcu/arch.h>
146 #include <urcu/uatomic.h>
147 #include <urcu/compiler.h>
148 #include <urcu/rculfhash.h>
149 #include <stdio.h>
150 #include <pthread.h>
151
152 #ifdef DEBUG
153 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
154 #else
155 #define dbg_printf(fmt, args...)
156 #endif
157
158 /*
159 * Per-CPU split-counters lazily update the global counter each 1024
160 * addition/removal. It automatically keeps track of resize required.
161 * We use the bucket length as indicator for need to expand for small
162 * tables and machines lacking per-cpu data suppport.
163 */
164 #define COUNT_COMMIT_ORDER 10
165 #define CHAIN_LEN_TARGET 1
166 #define CHAIN_LEN_RESIZE_THRESHOLD 3
167
168 /*
169 * Define the minimum table size.
170 */
171 #define MIN_TABLE_SIZE 1
172
173 #if (CAA_BITS_PER_LONG == 32)
174 #define MAX_TABLE_ORDER 32
175 #else
176 #define MAX_TABLE_ORDER 64
177 #endif
178
179 /*
180 * Minimum number of dummy nodes to touch per thread to parallelize grow/shrink.
181 */
182 #define MIN_PARTITION_PER_THREAD_ORDER 12
183 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
184
185 #ifndef min
186 #define min(a, b) ((a) < (b) ? (a) : (b))
187 #endif
188
189 #ifndef max
190 #define max(a, b) ((a) > (b) ? (a) : (b))
191 #endif
192
193 /*
194 * The removed flag needs to be updated atomically with the pointer.
195 * It indicates that no node must attach to the node scheduled for
196 * removal, and that node garbage collection must be performed.
197 * The dummy flag does not require to be updated atomically with the
198 * pointer, but it is added as a pointer low bit flag to save space.
199 */
200 #define REMOVED_FLAG (1UL << 0)
201 #define DUMMY_FLAG (1UL << 1)
202 #define FLAGS_MASK ((1UL << 2) - 1)
203
204 /* Value of the end pointer. Should not interact with flags. */
205 #define END_VALUE NULL
206
207 struct ht_items_count {
208 unsigned long add, del;
209 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
210
211 struct rcu_level {
212 struct rcu_head head;
213 struct _cds_lfht_node nodes[0];
214 };
215
216 struct rcu_table {
217 unsigned long size; /* always a power of 2, shared (RCU) */
218 unsigned long resize_target;
219 int resize_initiated;
220 struct rcu_level *tbl[MAX_TABLE_ORDER];
221 };
222
223 struct cds_lfht {
224 struct rcu_table t;
225 cds_lfht_hash_fct hash_fct;
226 cds_lfht_compare_fct compare_fct;
227 unsigned long hash_seed;
228 int flags;
229 /*
230 * We need to put the work threads offline (QSBR) when taking this
231 * mutex, because we use synchronize_rcu within this mutex critical
232 * section, which waits on read-side critical sections, and could
233 * therefore cause grace-period deadlock if we hold off RCU G.P.
234 * completion.
235 */
236 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
237 unsigned int in_progress_resize, in_progress_destroy;
238 void (*cds_lfht_call_rcu)(struct rcu_head *head,
239 void (*func)(struct rcu_head *head));
240 void (*cds_lfht_synchronize_rcu)(void);
241 void (*cds_lfht_rcu_read_lock)(void);
242 void (*cds_lfht_rcu_read_unlock)(void);
243 void (*cds_lfht_rcu_thread_offline)(void);
244 void (*cds_lfht_rcu_thread_online)(void);
245 void (*cds_lfht_rcu_register_thread)(void);
246 void (*cds_lfht_rcu_unregister_thread)(void);
247 pthread_attr_t *resize_attr; /* Resize threads attributes */
248 long count; /* global approximate item count */
249 struct ht_items_count *percpu_count; /* per-cpu item count */
250 };
251
252 struct rcu_resize_work {
253 struct rcu_head head;
254 struct cds_lfht *ht;
255 };
256
257 struct partition_resize_work {
258 pthread_t thread_id;
259 struct cds_lfht *ht;
260 unsigned long i, start, len;
261 void (*fct)(struct cds_lfht *ht, unsigned long i,
262 unsigned long start, unsigned long len);
263 };
264
265 enum add_mode {
266 ADD_DEFAULT = 0,
267 ADD_UNIQUE = 1,
268 ADD_REPLACE = 2,
269 };
270
271 static
272 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
273 unsigned long size,
274 struct cds_lfht_node *node,
275 enum add_mode mode, int dummy);
276
277 /*
278 * Algorithm to reverse bits in a word by lookup table, extended to
279 * 64-bit words.
280 * Source:
281 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
282 * Originally from Public Domain.
283 */
284
285 static const uint8_t BitReverseTable256[256] =
286 {
287 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
288 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
289 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
290 R6(0), R6(2), R6(1), R6(3)
291 };
292 #undef R2
293 #undef R4
294 #undef R6
295
296 static
297 uint8_t bit_reverse_u8(uint8_t v)
298 {
299 return BitReverseTable256[v];
300 }
301
302 static __attribute__((unused))
303 uint32_t bit_reverse_u32(uint32_t v)
304 {
305 return ((uint32_t) bit_reverse_u8(v) << 24) |
306 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
307 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
308 ((uint32_t) bit_reverse_u8(v >> 24));
309 }
310
311 static __attribute__((unused))
312 uint64_t bit_reverse_u64(uint64_t v)
313 {
314 return ((uint64_t) bit_reverse_u8(v) << 56) |
315 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
316 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
317 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
318 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
319 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
320 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
321 ((uint64_t) bit_reverse_u8(v >> 56));
322 }
323
324 static
325 unsigned long bit_reverse_ulong(unsigned long v)
326 {
327 #if (CAA_BITS_PER_LONG == 32)
328 return bit_reverse_u32(v);
329 #else
330 return bit_reverse_u64(v);
331 #endif
332 }
333
334 /*
335 * fls: returns the position of the most significant bit.
336 * Returns 0 if no bit is set, else returns the position of the most
337 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
338 */
339 #if defined(__i386) || defined(__x86_64)
340 static inline
341 unsigned int fls_u32(uint32_t x)
342 {
343 int r;
344
345 asm("bsrl %1,%0\n\t"
346 "jnz 1f\n\t"
347 "movl $-1,%0\n\t"
348 "1:\n\t"
349 : "=r" (r) : "rm" (x));
350 return r + 1;
351 }
352 #define HAS_FLS_U32
353 #endif
354
355 #if defined(__x86_64)
356 static inline
357 unsigned int fls_u64(uint64_t x)
358 {
359 long r;
360
361 asm("bsrq %1,%0\n\t"
362 "jnz 1f\n\t"
363 "movq $-1,%0\n\t"
364 "1:\n\t"
365 : "=r" (r) : "rm" (x));
366 return r + 1;
367 }
368 #define HAS_FLS_U64
369 #endif
370
371 #ifndef HAS_FLS_U64
372 static __attribute__((unused))
373 unsigned int fls_u64(uint64_t x)
374 {
375 unsigned int r = 64;
376
377 if (!x)
378 return 0;
379
380 if (!(x & 0xFFFFFFFF00000000ULL)) {
381 x <<= 32;
382 r -= 32;
383 }
384 if (!(x & 0xFFFF000000000000ULL)) {
385 x <<= 16;
386 r -= 16;
387 }
388 if (!(x & 0xFF00000000000000ULL)) {
389 x <<= 8;
390 r -= 8;
391 }
392 if (!(x & 0xF000000000000000ULL)) {
393 x <<= 4;
394 r -= 4;
395 }
396 if (!(x & 0xC000000000000000ULL)) {
397 x <<= 2;
398 r -= 2;
399 }
400 if (!(x & 0x8000000000000000ULL)) {
401 x <<= 1;
402 r -= 1;
403 }
404 return r;
405 }
406 #endif
407
408 #ifndef HAS_FLS_U32
409 static __attribute__((unused))
410 unsigned int fls_u32(uint32_t x)
411 {
412 unsigned int r = 32;
413
414 if (!x)
415 return 0;
416 if (!(x & 0xFFFF0000U)) {
417 x <<= 16;
418 r -= 16;
419 }
420 if (!(x & 0xFF000000U)) {
421 x <<= 8;
422 r -= 8;
423 }
424 if (!(x & 0xF0000000U)) {
425 x <<= 4;
426 r -= 4;
427 }
428 if (!(x & 0xC0000000U)) {
429 x <<= 2;
430 r -= 2;
431 }
432 if (!(x & 0x80000000U)) {
433 x <<= 1;
434 r -= 1;
435 }
436 return r;
437 }
438 #endif
439
440 unsigned int fls_ulong(unsigned long x)
441 {
442 #if (CAA_BITS_PER_lONG == 32)
443 return fls_u32(x);
444 #else
445 return fls_u64(x);
446 #endif
447 }
448
449 /*
450 * Return the minimum order for which x <= (1UL << order).
451 * Return -1 if x is 0.
452 */
453 int get_count_order_u32(uint32_t x)
454 {
455 if (!x)
456 return -1;
457
458 return fls_u32(x - 1);
459 }
460
461 /*
462 * Return the minimum order for which x <= (1UL << order).
463 * Return -1 if x is 0.
464 */
465 int get_count_order_ulong(unsigned long x)
466 {
467 if (!x)
468 return -1;
469
470 return fls_ulong(x - 1);
471 }
472
473 #ifdef POISON_FREE
474 #define poison_free(ptr) \
475 do { \
476 memset(ptr, 0x42, sizeof(*(ptr))); \
477 free(ptr); \
478 } while (0)
479 #else
480 #define poison_free(ptr) free(ptr)
481 #endif
482
483 static
484 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth);
485
486 /*
487 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
488 * available, then we support hash table item accounting.
489 * In the unfortunate event the number of CPUs reported would be
490 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
491 */
492 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
493
494 static
495 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
496 unsigned long count);
497
498 static long nr_cpus_mask = -1;
499
500 static
501 struct ht_items_count *alloc_per_cpu_items_count(void)
502 {
503 struct ht_items_count *count;
504
505 switch (nr_cpus_mask) {
506 case -2:
507 return NULL;
508 case -1:
509 {
510 long maxcpus;
511
512 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
513 if (maxcpus <= 0) {
514 nr_cpus_mask = -2;
515 return NULL;
516 }
517 /*
518 * round up number of CPUs to next power of two, so we
519 * can use & for modulo.
520 */
521 maxcpus = 1UL << get_count_order_ulong(maxcpus);
522 nr_cpus_mask = maxcpus - 1;
523 }
524 /* Fall-through */
525 default:
526 return calloc(nr_cpus_mask + 1, sizeof(*count));
527 }
528 }
529
530 static
531 void free_per_cpu_items_count(struct ht_items_count *count)
532 {
533 poison_free(count);
534 }
535
536 static
537 int ht_get_cpu(void)
538 {
539 int cpu;
540
541 assert(nr_cpus_mask >= 0);
542 cpu = sched_getcpu();
543 if (unlikely(cpu < 0))
544 return cpu;
545 else
546 return cpu & nr_cpus_mask;
547 }
548
549 static
550 void ht_count_add(struct cds_lfht *ht, unsigned long size)
551 {
552 unsigned long percpu_count;
553 int cpu;
554
555 if (unlikely(!ht->percpu_count))
556 return;
557 cpu = ht_get_cpu();
558 if (unlikely(cpu < 0))
559 return;
560 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
561 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
562 long count;
563
564 dbg_printf("add percpu %lu\n", percpu_count);
565 count = uatomic_add_return(&ht->count,
566 1UL << COUNT_COMMIT_ORDER);
567 /* If power of 2 */
568 if (!(count & (count - 1))) {
569 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
570 return;
571 dbg_printf("add set global %ld\n", count);
572 cds_lfht_resize_lazy_count(ht, size,
573 count >> (CHAIN_LEN_TARGET - 1));
574 }
575 }
576 }
577
578 static
579 void ht_count_del(struct cds_lfht *ht, unsigned long size)
580 {
581 unsigned long percpu_count;
582 int cpu;
583
584 if (unlikely(!ht->percpu_count))
585 return;
586 cpu = ht_get_cpu();
587 if (unlikely(cpu < 0))
588 return;
589 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].del, 1);
590 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
591 long count;
592
593 dbg_printf("del percpu %lu\n", percpu_count);
594 count = uatomic_add_return(&ht->count,
595 -(1UL << COUNT_COMMIT_ORDER));
596 /* If power of 2 */
597 if (!(count & (count - 1))) {
598 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
599 return;
600 dbg_printf("del set global %ld\n", count);
601 /*
602 * Don't shrink table if the number of nodes is below a
603 * certain threshold.
604 */
605 if (count < (1UL << COUNT_COMMIT_ORDER) * (nr_cpus_mask + 1))
606 return;
607 cds_lfht_resize_lazy_count(ht, size,
608 count >> (CHAIN_LEN_TARGET - 1));
609 }
610 }
611 }
612
613 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
614
615 static const long nr_cpus_mask = -2;
616
617 static
618 struct ht_items_count *alloc_per_cpu_items_count(void)
619 {
620 return NULL;
621 }
622
623 static
624 void free_per_cpu_items_count(struct ht_items_count *count)
625 {
626 }
627
628 static
629 void ht_count_add(struct cds_lfht *ht, unsigned long size)
630 {
631 }
632
633 static
634 void ht_count_del(struct cds_lfht *ht, unsigned long size)
635 {
636 }
637
638 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
639
640
641 static
642 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
643 {
644 unsigned long count;
645
646 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
647 return;
648 count = uatomic_read(&ht->count);
649 /*
650 * Use bucket-local length for small table expand and for
651 * environments lacking per-cpu data support.
652 */
653 if (count >= (1UL << COUNT_COMMIT_ORDER))
654 return;
655 if (chain_len > 100)
656 dbg_printf("WARNING: large chain length: %u.\n",
657 chain_len);
658 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
659 cds_lfht_resize_lazy(ht, size,
660 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
661 }
662
663 static
664 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
665 {
666 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
667 }
668
669 static
670 int is_removed(struct cds_lfht_node *node)
671 {
672 return ((unsigned long) node) & REMOVED_FLAG;
673 }
674
675 static
676 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
677 {
678 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
679 }
680
681 static
682 int is_dummy(struct cds_lfht_node *node)
683 {
684 return ((unsigned long) node) & DUMMY_FLAG;
685 }
686
687 static
688 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
689 {
690 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
691 }
692
693 static
694 struct cds_lfht_node *get_end(void)
695 {
696 return (struct cds_lfht_node *) END_VALUE;
697 }
698
699 static
700 int is_end(struct cds_lfht_node *node)
701 {
702 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
703 }
704
705 static
706 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
707 {
708 unsigned long old1, old2;
709
710 old1 = uatomic_read(ptr);
711 do {
712 old2 = old1;
713 if (old2 >= v)
714 return old2;
715 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
716 return v;
717 }
718
719 static
720 void cds_lfht_free_level(struct rcu_head *head)
721 {
722 struct rcu_level *l =
723 caa_container_of(head, struct rcu_level, head);
724 poison_free(l);
725 }
726
727 /*
728 * Remove all logically deleted nodes from a bucket up to a certain node key.
729 */
730 static
731 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
732 {
733 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
734
735 assert(!is_dummy(dummy));
736 assert(!is_removed(dummy));
737 assert(!is_dummy(node));
738 assert(!is_removed(node));
739 for (;;) {
740 iter_prev = dummy;
741 /* We can always skip the dummy node initially */
742 iter = rcu_dereference(iter_prev->p.next);
743 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
744 /*
745 * We should never be called with dummy (start of chain)
746 * and logically removed node (end of path compression
747 * marker) being the actual same node. This would be a
748 * bug in the algorithm implementation.
749 */
750 assert(dummy != node);
751 for (;;) {
752 if (unlikely(is_end(iter)))
753 return;
754 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
755 return;
756 next = rcu_dereference(clear_flag(iter)->p.next);
757 if (likely(is_removed(next)))
758 break;
759 iter_prev = clear_flag(iter);
760 iter = next;
761 }
762 assert(!is_removed(iter));
763 if (is_dummy(iter))
764 new_next = flag_dummy(clear_flag(next));
765 else
766 new_next = clear_flag(next);
767 if (is_removed(iter))
768 new_next = flag_removed(new_next);
769 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
770 }
771 return;
772 }
773
774 static
775 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
776 struct cds_lfht_node *old_node,
777 struct cds_lfht_node *ret_next,
778 struct cds_lfht_node *new_node)
779 {
780 struct cds_lfht_node *dummy, *old_next;
781 struct _cds_lfht_node *lookup;
782 int flagged = 0;
783 unsigned long hash, index, order;
784
785 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
786 goto end;
787
788 assert(!is_removed(old_node));
789 assert(!is_dummy(old_node));
790 assert(!is_removed(new_node));
791 assert(!is_dummy(new_node));
792 assert(new_node != old_node);
793 do {
794 /* Insert after node to be replaced */
795 old_next = ret_next;
796 if (is_removed(old_next)) {
797 /*
798 * Too late, the old node has been removed under us
799 * between lookup and replace. Fail.
800 */
801 goto end;
802 }
803 assert(!is_dummy(old_next));
804 assert(new_node != clear_flag(old_next));
805 new_node->p.next = clear_flag(old_next);
806 /*
807 * Here is the whole trick for lock-free replace: we add
808 * the replacement node _after_ the node we want to
809 * replace by atomically setting its next pointer at the
810 * same time we set its removal flag. Given that
811 * the lookups/get next use an iterator aware of the
812 * next pointer, they will either skip the old node due
813 * to the removal flag and see the new node, or use
814 * the old node, but will not see the new one.
815 */
816 ret_next = uatomic_cmpxchg(&old_node->p.next,
817 old_next, flag_removed(new_node));
818 } while (ret_next != old_next);
819
820 /* We performed the replacement. */
821 flagged = 1;
822
823 /*
824 * Ensure that the old node is not visible to readers anymore:
825 * lookup for the node, and remove it (along with any other
826 * logically removed node) if found.
827 */
828 hash = bit_reverse_ulong(old_node->p.reverse_hash);
829 assert(size > 0);
830 index = hash & (size - 1);
831 order = get_count_order_ulong(index + 1);
832 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
833 dummy = (struct cds_lfht_node *) lookup;
834 _cds_lfht_gc_bucket(dummy, new_node);
835 end:
836 /*
837 * Only the flagging action indicated that we (and no other)
838 * replaced the node from the hash table.
839 */
840 if (flagged) {
841 assert(is_removed(rcu_dereference(old_node->p.next)));
842 return 0;
843 } else {
844 return -ENOENT;
845 }
846 }
847
848 static
849 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
850 unsigned long size,
851 struct cds_lfht_node *node,
852 enum add_mode mode, int dummy)
853 {
854 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
855 *dummy_node, *return_node;
856 struct _cds_lfht_node *lookup;
857 unsigned long hash, index, order;
858
859 assert(!is_dummy(node));
860 assert(!is_removed(node));
861 if (!size) {
862 assert(dummy);
863 node->p.next = flag_dummy(get_end());
864 return node; /* Initial first add (head) */
865 }
866 hash = bit_reverse_ulong(node->p.reverse_hash);
867 for (;;) {
868 uint32_t chain_len = 0;
869
870 /*
871 * iter_prev points to the non-removed node prior to the
872 * insert location.
873 */
874 index = hash & (size - 1);
875 order = get_count_order_ulong(index + 1);
876 lookup = &ht->t.tbl[order]->nodes[index & ((!order ? 0 : (1UL << (order - 1))) - 1)];
877 iter_prev = (struct cds_lfht_node *) lookup;
878 /* We can always skip the dummy node initially */
879 iter = rcu_dereference(iter_prev->p.next);
880 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
881 for (;;) {
882 if (unlikely(is_end(iter)))
883 goto insert;
884 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
885 goto insert;
886 next = rcu_dereference(clear_flag(iter)->p.next);
887 if (unlikely(is_removed(next)))
888 goto gc_node;
889 if ((mode == ADD_UNIQUE || mode == ADD_REPLACE)
890 && !is_dummy(next)
891 && !ht->compare_fct(node->key, node->key_len,
892 clear_flag(iter)->key,
893 clear_flag(iter)->key_len)) {
894 if (mode == ADD_UNIQUE)
895 return clear_flag(iter);
896 else /* mode == ADD_REPLACE */
897 goto replace;
898 }
899 /* Only account for identical reverse hash once */
900 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
901 && !is_dummy(next))
902 check_resize(ht, size, ++chain_len);
903 iter_prev = clear_flag(iter);
904 iter = next;
905 }
906
907 insert:
908 assert(node != clear_flag(iter));
909 assert(!is_removed(iter_prev));
910 assert(!is_removed(iter));
911 assert(iter_prev != node);
912 if (!dummy)
913 node->p.next = clear_flag(iter);
914 else
915 node->p.next = flag_dummy(clear_flag(iter));
916 if (is_dummy(iter))
917 new_node = flag_dummy(node);
918 else
919 new_node = node;
920 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
921 new_node) != iter) {
922 continue; /* retry */
923 } else {
924 if (mode == ADD_REPLACE)
925 return_node = NULL;
926 else /* ADD_DEFAULT and ADD_UNIQUE */
927 return_node = node;
928 goto gc_end;
929 }
930
931 replace:
932
933 if (!_cds_lfht_replace(ht, size, clear_flag(iter), next,
934 node)) {
935 return_node = clear_flag(iter);
936 goto end; /* gc already done */
937 } else {
938 continue; /* retry */
939 }
940
941 gc_node:
942 assert(!is_removed(iter));
943 if (is_dummy(iter))
944 new_next = flag_dummy(clear_flag(next));
945 else
946 new_next = clear_flag(next);
947 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
948 /* retry */
949 }
950 gc_end:
951 /* Garbage collect logically removed nodes in the bucket */
952 index = hash & (size - 1);
953 order = get_count_order_ulong(index + 1);
954 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
955 dummy_node = (struct cds_lfht_node *) lookup;
956 _cds_lfht_gc_bucket(dummy_node, node);
957 end:
958 return return_node;
959 }
960
961 static
962 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
963 struct cds_lfht_node *node,
964 int dummy_removal)
965 {
966 struct cds_lfht_node *dummy, *next, *old;
967 struct _cds_lfht_node *lookup;
968 int flagged = 0;
969 unsigned long hash, index, order;
970
971 if (!node) /* Return -ENOENT if asked to delete NULL node */
972 goto end;
973
974 /* logically delete the node */
975 assert(!is_dummy(node));
976 assert(!is_removed(node));
977 old = rcu_dereference(node->p.next);
978 do {
979 struct cds_lfht_node *new_next;
980
981 next = old;
982 if (unlikely(is_removed(next)))
983 goto end;
984 if (dummy_removal)
985 assert(is_dummy(next));
986 else
987 assert(!is_dummy(next));
988 new_next = flag_removed(next);
989 old = uatomic_cmpxchg(&node->p.next, next, new_next);
990 } while (old != next);
991
992 /* We performed the (logical) deletion. */
993 flagged = 1;
994
995 /*
996 * Ensure that the node is not visible to readers anymore: lookup for
997 * the node, and remove it (along with any other logically removed node)
998 * if found.
999 */
1000 hash = bit_reverse_ulong(node->p.reverse_hash);
1001 assert(size > 0);
1002 index = hash & (size - 1);
1003 order = get_count_order_ulong(index + 1);
1004 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
1005 dummy = (struct cds_lfht_node *) lookup;
1006 _cds_lfht_gc_bucket(dummy, node);
1007 end:
1008 /*
1009 * Only the flagging action indicated that we (and no other)
1010 * removed the node from the hash.
1011 */
1012 if (flagged) {
1013 assert(is_removed(rcu_dereference(node->p.next)));
1014 return 0;
1015 } else {
1016 return -ENOENT;
1017 }
1018 }
1019
1020 static
1021 void *partition_resize_thread(void *arg)
1022 {
1023 struct partition_resize_work *work = arg;
1024
1025 work->ht->cds_lfht_rcu_register_thread();
1026 work->fct(work->ht, work->i, work->start, work->len);
1027 work->ht->cds_lfht_rcu_unregister_thread();
1028 return NULL;
1029 }
1030
1031 static
1032 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1033 unsigned long len,
1034 void (*fct)(struct cds_lfht *ht, unsigned long i,
1035 unsigned long start, unsigned long len))
1036 {
1037 unsigned long partition_len;
1038 struct partition_resize_work *work;
1039 int thread, ret;
1040 unsigned long nr_threads;
1041
1042 /*
1043 * Note: nr_cpus_mask + 1 is always power of 2.
1044 * We spawn just the number of threads we need to satisfy the minimum
1045 * partition size, up to the number of CPUs in the system.
1046 */
1047 if (nr_cpus_mask > 0) {
1048 nr_threads = min(nr_cpus_mask + 1,
1049 len >> MIN_PARTITION_PER_THREAD_ORDER);
1050 } else {
1051 nr_threads = 1;
1052 }
1053 partition_len = len >> get_count_order_ulong(nr_threads);
1054 work = calloc(nr_threads, sizeof(*work));
1055 assert(work);
1056 for (thread = 0; thread < nr_threads; thread++) {
1057 work[thread].ht = ht;
1058 work[thread].i = i;
1059 work[thread].len = partition_len;
1060 work[thread].start = thread * partition_len;
1061 work[thread].fct = fct;
1062 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1063 partition_resize_thread, &work[thread]);
1064 assert(!ret);
1065 }
1066 for (thread = 0; thread < nr_threads; thread++) {
1067 ret = pthread_join(work[thread].thread_id, NULL);
1068 assert(!ret);
1069 }
1070 free(work);
1071 }
1072
1073 /*
1074 * Holding RCU read lock to protect _cds_lfht_add against memory
1075 * reclaim that could be performed by other call_rcu worker threads (ABA
1076 * problem).
1077 *
1078 * When we reach a certain length, we can split this population phase over
1079 * many worker threads, based on the number of CPUs available in the system.
1080 * This should therefore take care of not having the expand lagging behind too
1081 * many concurrent insertion threads by using the scheduler's ability to
1082 * schedule dummy node population fairly with insertions.
1083 */
1084 static
1085 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1086 unsigned long start, unsigned long len)
1087 {
1088 unsigned long j;
1089
1090 ht->cds_lfht_rcu_read_lock();
1091 for (j = start; j < start + len; j++) {
1092 struct cds_lfht_node *new_node =
1093 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1094
1095 dbg_printf("init populate: i %lu j %lu hash %lu\n",
1096 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1097 new_node->p.reverse_hash =
1098 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1099 (void) _cds_lfht_add(ht, !i ? 0 : (1UL << (i - 1)),
1100 new_node, ADD_DEFAULT, 1);
1101 }
1102 ht->cds_lfht_rcu_read_unlock();
1103 }
1104
1105 static
1106 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1107 unsigned long len)
1108 {
1109 assert(nr_cpus_mask != -1);
1110 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1111 ht->cds_lfht_rcu_thread_online();
1112 init_table_populate_partition(ht, i, 0, len);
1113 ht->cds_lfht_rcu_thread_offline();
1114 return;
1115 }
1116 partition_resize_helper(ht, i, len, init_table_populate_partition);
1117 }
1118
1119 static
1120 void init_table(struct cds_lfht *ht,
1121 unsigned long first_order, unsigned long len_order)
1122 {
1123 unsigned long i, end_order;
1124
1125 dbg_printf("init table: first_order %lu end_order %lu\n",
1126 first_order, first_order + len_order);
1127 end_order = first_order + len_order;
1128 for (i = first_order; i < end_order; i++) {
1129 unsigned long len;
1130
1131 len = !i ? 1 : 1UL << (i - 1);
1132 dbg_printf("init order %lu len: %lu\n", i, len);
1133
1134 /* Stop expand if the resize target changes under us */
1135 if (CMM_LOAD_SHARED(ht->t.resize_target) < (!i ? 1 : (1UL << i)))
1136 break;
1137
1138 ht->t.tbl[i] = calloc(1, sizeof(struct rcu_level)
1139 + (len * sizeof(struct _cds_lfht_node)));
1140 assert(ht->t.tbl[i]);
1141
1142 /*
1143 * Set all dummy nodes reverse hash values for a level and
1144 * link all dummy nodes into the table.
1145 */
1146 init_table_populate(ht, i, len);
1147
1148 /*
1149 * Update table size.
1150 */
1151 cmm_smp_wmb(); /* populate data before RCU size */
1152 CMM_STORE_SHARED(ht->t.size, !i ? 1 : (1UL << i));
1153
1154 dbg_printf("init new size: %lu\n", !i ? 1 : (1UL << i));
1155 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1156 break;
1157 }
1158 }
1159
1160 /*
1161 * Holding RCU read lock to protect _cds_lfht_remove against memory
1162 * reclaim that could be performed by other call_rcu worker threads (ABA
1163 * problem).
1164 * For a single level, we logically remove and garbage collect each node.
1165 *
1166 * As a design choice, we perform logical removal and garbage collection on a
1167 * node-per-node basis to simplify this algorithm. We also assume keeping good
1168 * cache locality of the operation would overweight possible performance gain
1169 * that could be achieved by batching garbage collection for multiple levels.
1170 * However, this would have to be justified by benchmarks.
1171 *
1172 * Concurrent removal and add operations are helping us perform garbage
1173 * collection of logically removed nodes. We guarantee that all logically
1174 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1175 * invoked to free a hole level of dummy nodes (after a grace period).
1176 *
1177 * Logical removal and garbage collection can therefore be done in batch or on a
1178 * node-per-node basis, as long as the guarantee above holds.
1179 *
1180 * When we reach a certain length, we can split this removal over many worker
1181 * threads, based on the number of CPUs available in the system. This should
1182 * take care of not letting resize process lag behind too many concurrent
1183 * updater threads actively inserting into the hash table.
1184 */
1185 static
1186 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1187 unsigned long start, unsigned long len)
1188 {
1189 unsigned long j;
1190
1191 ht->cds_lfht_rcu_read_lock();
1192 for (j = start; j < start + len; j++) {
1193 struct cds_lfht_node *fini_node =
1194 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1195
1196 dbg_printf("remove entry: i %lu j %lu hash %lu\n",
1197 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1198 fini_node->p.reverse_hash =
1199 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1200 (void) _cds_lfht_del(ht, !i ? 0 : (1UL << (i - 1)),
1201 fini_node, 1);
1202 }
1203 ht->cds_lfht_rcu_read_unlock();
1204 }
1205
1206 static
1207 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1208 {
1209
1210 assert(nr_cpus_mask != -1);
1211 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1212 ht->cds_lfht_rcu_thread_online();
1213 remove_table_partition(ht, i, 0, len);
1214 ht->cds_lfht_rcu_thread_offline();
1215 return;
1216 }
1217 partition_resize_helper(ht, i, len, remove_table_partition);
1218 }
1219
1220 static
1221 void fini_table(struct cds_lfht *ht,
1222 unsigned long first_order, unsigned long len_order)
1223 {
1224 long i, end_order;
1225
1226 dbg_printf("fini table: first_order %lu end_order %lu\n",
1227 first_order, first_order + len_order);
1228 end_order = first_order + len_order;
1229 assert(first_order > 0);
1230 for (i = end_order - 1; i >= first_order; i--) {
1231 unsigned long len;
1232
1233 len = !i ? 1 : 1UL << (i - 1);
1234 dbg_printf("fini order %lu len: %lu\n", i, len);
1235
1236 /* Stop shrink if the resize target changes under us */
1237 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1238 break;
1239
1240 cmm_smp_wmb(); /* populate data before RCU size */
1241 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1242
1243 /*
1244 * We need to wait for all add operations to reach Q.S. (and
1245 * thus use the new table for lookups) before we can start
1246 * releasing the old dummy nodes. Otherwise their lookup will
1247 * return a logically removed node as insert position.
1248 */
1249 ht->cds_lfht_synchronize_rcu();
1250
1251 /*
1252 * Set "removed" flag in dummy nodes about to be removed.
1253 * Unlink all now-logically-removed dummy node pointers.
1254 * Concurrent add/remove operation are helping us doing
1255 * the gc.
1256 */
1257 remove_table(ht, i, len);
1258
1259 ht->cds_lfht_call_rcu(&ht->t.tbl[i]->head, cds_lfht_free_level);
1260
1261 dbg_printf("fini new size: %lu\n", 1UL << i);
1262 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1263 break;
1264 }
1265 }
1266
1267 struct cds_lfht *_cds_lfht_new(cds_lfht_hash_fct hash_fct,
1268 cds_lfht_compare_fct compare_fct,
1269 unsigned long hash_seed,
1270 unsigned long init_size,
1271 int flags,
1272 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1273 void (*func)(struct rcu_head *head)),
1274 void (*cds_lfht_synchronize_rcu)(void),
1275 void (*cds_lfht_rcu_read_lock)(void),
1276 void (*cds_lfht_rcu_read_unlock)(void),
1277 void (*cds_lfht_rcu_thread_offline)(void),
1278 void (*cds_lfht_rcu_thread_online)(void),
1279 void (*cds_lfht_rcu_register_thread)(void),
1280 void (*cds_lfht_rcu_unregister_thread)(void),
1281 pthread_attr_t *attr)
1282 {
1283 struct cds_lfht *ht;
1284 unsigned long order;
1285
1286 /* init_size must be power of two */
1287 if (init_size && (init_size & (init_size - 1)))
1288 return NULL;
1289 ht = calloc(1, sizeof(struct cds_lfht));
1290 assert(ht);
1291 ht->hash_fct = hash_fct;
1292 ht->compare_fct = compare_fct;
1293 ht->hash_seed = hash_seed;
1294 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1295 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1296 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1297 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1298 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1299 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1300 ht->cds_lfht_rcu_register_thread = cds_lfht_rcu_register_thread;
1301 ht->cds_lfht_rcu_unregister_thread = cds_lfht_rcu_unregister_thread;
1302 ht->resize_attr = attr;
1303 ht->percpu_count = alloc_per_cpu_items_count();
1304 /* this mutex should not nest in read-side C.S. */
1305 pthread_mutex_init(&ht->resize_mutex, NULL);
1306 order = get_count_order_ulong(max(init_size, MIN_TABLE_SIZE)) + 1;
1307 ht->flags = flags;
1308 ht->cds_lfht_rcu_thread_offline();
1309 pthread_mutex_lock(&ht->resize_mutex);
1310 ht->t.resize_target = 1UL << (order - 1);
1311 init_table(ht, 0, order);
1312 pthread_mutex_unlock(&ht->resize_mutex);
1313 ht->cds_lfht_rcu_thread_online();
1314 return ht;
1315 }
1316
1317 void cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len,
1318 struct cds_lfht_iter *iter)
1319 {
1320 struct cds_lfht_node *node, *next, *dummy_node;
1321 struct _cds_lfht_node *lookup;
1322 unsigned long hash, reverse_hash, index, order, size;
1323
1324 hash = ht->hash_fct(key, key_len, ht->hash_seed);
1325 reverse_hash = bit_reverse_ulong(hash);
1326
1327 size = rcu_dereference(ht->t.size);
1328 index = hash & (size - 1);
1329 order = get_count_order_ulong(index + 1);
1330 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1))) - 1)];
1331 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
1332 hash, index, order, index & (!order ? 0 : ((1UL << (order - 1)) - 1)));
1333 dummy_node = (struct cds_lfht_node *) lookup;
1334 /* We can always skip the dummy node initially */
1335 node = rcu_dereference(dummy_node->p.next);
1336 node = clear_flag(node);
1337 for (;;) {
1338 if (unlikely(is_end(node))) {
1339 node = next = NULL;
1340 break;
1341 }
1342 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1343 node = next = NULL;
1344 break;
1345 }
1346 next = rcu_dereference(node->p.next);
1347 if (likely(!is_removed(next))
1348 && !is_dummy(next)
1349 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1350 break;
1351 }
1352 node = clear_flag(next);
1353 }
1354 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1355 iter->node = node;
1356 iter->next = next;
1357 }
1358
1359 void cds_lfht_next_duplicate(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1360 {
1361 struct cds_lfht_node *node, *next;
1362 unsigned long reverse_hash;
1363 void *key;
1364 size_t key_len;
1365
1366 node = iter->node;
1367 reverse_hash = node->p.reverse_hash;
1368 key = node->key;
1369 key_len = node->key_len;
1370 next = iter->next;
1371 node = clear_flag(next);
1372
1373 for (;;) {
1374 if (unlikely(is_end(node))) {
1375 node = next = NULL;
1376 break;
1377 }
1378 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1379 node = next = NULL;
1380 break;
1381 }
1382 next = rcu_dereference(node->p.next);
1383 if (likely(!is_removed(next))
1384 && !is_dummy(next)
1385 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1386 break;
1387 }
1388 node = clear_flag(next);
1389 }
1390 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1391 iter->node = node;
1392 iter->next = next;
1393 }
1394
1395 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1396 {
1397 struct cds_lfht_node *node, *next;
1398
1399 node = clear_flag(iter->next);
1400 for (;;) {
1401 if (unlikely(is_end(node))) {
1402 node = next = NULL;
1403 break;
1404 }
1405 next = rcu_dereference(node->p.next);
1406 if (likely(!is_removed(next))
1407 && !is_dummy(next)) {
1408 break;
1409 }
1410 node = clear_flag(next);
1411 }
1412 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1413 iter->node = node;
1414 iter->next = next;
1415 }
1416
1417 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1418 {
1419 struct _cds_lfht_node *lookup;
1420
1421 /*
1422 * Get next after first dummy node. The first dummy node is the
1423 * first node of the linked list.
1424 */
1425 lookup = &ht->t.tbl[0]->nodes[0];
1426 iter->next = lookup->next;
1427 cds_lfht_next(ht, iter);
1428 }
1429
1430 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1431 {
1432 unsigned long hash, size;
1433
1434 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1435 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1436
1437 size = rcu_dereference(ht->t.size);
1438 (void) _cds_lfht_add(ht, size, node, ADD_DEFAULT, 0);
1439 ht_count_add(ht, size);
1440 }
1441
1442 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1443 struct cds_lfht_node *node)
1444 {
1445 unsigned long hash, size;
1446 struct cds_lfht_node *ret;
1447
1448 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1449 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1450
1451 size = rcu_dereference(ht->t.size);
1452 ret = _cds_lfht_add(ht, size, node, ADD_UNIQUE, 0);
1453 if (ret == node)
1454 ht_count_add(ht, size);
1455 return ret;
1456 }
1457
1458 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1459 struct cds_lfht_node *node)
1460 {
1461 unsigned long hash, size;
1462 struct cds_lfht_node *ret;
1463
1464 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1465 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1466
1467 size = rcu_dereference(ht->t.size);
1468 ret = _cds_lfht_add(ht, size, node, ADD_REPLACE, 0);
1469 if (ret == NULL)
1470 ht_count_add(ht, size);
1471 return ret;
1472 }
1473
1474 int cds_lfht_replace(struct cds_lfht *ht, struct cds_lfht_iter *old_iter,
1475 struct cds_lfht_node *new_node)
1476 {
1477 unsigned long size;
1478
1479 size = rcu_dereference(ht->t.size);
1480 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1481 new_node);
1482 }
1483
1484 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1485 {
1486 unsigned long size;
1487 int ret;
1488
1489 size = rcu_dereference(ht->t.size);
1490 ret = _cds_lfht_del(ht, size, iter->node, 0);
1491 if (!ret)
1492 ht_count_del(ht, size);
1493 return ret;
1494 }
1495
1496 static
1497 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1498 {
1499 struct cds_lfht_node *node;
1500 struct _cds_lfht_node *lookup;
1501 unsigned long order, i, size;
1502
1503 /* Check that the table is empty */
1504 lookup = &ht->t.tbl[0]->nodes[0];
1505 node = (struct cds_lfht_node *) lookup;
1506 do {
1507 node = clear_flag(node)->p.next;
1508 if (!is_dummy(node))
1509 return -EPERM;
1510 assert(!is_removed(node));
1511 } while (!is_end(node));
1512 /*
1513 * size accessed without rcu_dereference because hash table is
1514 * being destroyed.
1515 */
1516 size = ht->t.size;
1517 /* Internal sanity check: all nodes left should be dummy */
1518 for (order = 0; order < get_count_order_ulong(size) + 1; order++) {
1519 unsigned long len;
1520
1521 len = !order ? 1 : 1UL << (order - 1);
1522 for (i = 0; i < len; i++) {
1523 dbg_printf("delete order %lu i %lu hash %lu\n",
1524 order, i,
1525 bit_reverse_ulong(ht->t.tbl[order]->nodes[i].reverse_hash));
1526 assert(is_dummy(ht->t.tbl[order]->nodes[i].next));
1527 }
1528 poison_free(ht->t.tbl[order]);
1529 }
1530 return 0;
1531 }
1532
1533 /*
1534 * Should only be called when no more concurrent readers nor writers can
1535 * possibly access the table.
1536 */
1537 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1538 {
1539 int ret;
1540
1541 /* Wait for in-flight resize operations to complete */
1542 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1543 cmm_smp_mb(); /* Store destroy before load resize */
1544 while (uatomic_read(&ht->in_progress_resize))
1545 poll(NULL, 0, 100); /* wait for 100ms */
1546 ret = cds_lfht_delete_dummy(ht);
1547 if (ret)
1548 return ret;
1549 free_per_cpu_items_count(ht->percpu_count);
1550 if (attr)
1551 *attr = ht->resize_attr;
1552 poison_free(ht);
1553 return ret;
1554 }
1555
1556 void cds_lfht_count_nodes(struct cds_lfht *ht,
1557 long *approx_before,
1558 unsigned long *count,
1559 unsigned long *removed,
1560 long *approx_after)
1561 {
1562 struct cds_lfht_node *node, *next;
1563 struct _cds_lfht_node *lookup;
1564 unsigned long nr_dummy = 0;
1565
1566 *approx_before = 0;
1567 if (nr_cpus_mask >= 0) {
1568 int i;
1569
1570 for (i = 0; i < nr_cpus_mask + 1; i++) {
1571 *approx_before += uatomic_read(&ht->percpu_count[i].add);
1572 *approx_before -= uatomic_read(&ht->percpu_count[i].del);
1573 }
1574 }
1575
1576 *count = 0;
1577 *removed = 0;
1578
1579 /* Count non-dummy nodes in the table */
1580 lookup = &ht->t.tbl[0]->nodes[0];
1581 node = (struct cds_lfht_node *) lookup;
1582 do {
1583 next = rcu_dereference(node->p.next);
1584 if (is_removed(next)) {
1585 if (!is_dummy(next))
1586 (*removed)++;
1587 else
1588 (nr_dummy)++;
1589 } else if (!is_dummy(next))
1590 (*count)++;
1591 else
1592 (nr_dummy)++;
1593 node = clear_flag(next);
1594 } while (!is_end(node));
1595 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1596 *approx_after = 0;
1597 if (nr_cpus_mask >= 0) {
1598 int i;
1599
1600 for (i = 0; i < nr_cpus_mask + 1; i++) {
1601 *approx_after += uatomic_read(&ht->percpu_count[i].add);
1602 *approx_after -= uatomic_read(&ht->percpu_count[i].del);
1603 }
1604 }
1605 }
1606
1607 /* called with resize mutex held */
1608 static
1609 void _do_cds_lfht_grow(struct cds_lfht *ht,
1610 unsigned long old_size, unsigned long new_size)
1611 {
1612 unsigned long old_order, new_order;
1613
1614 old_order = get_count_order_ulong(old_size) + 1;
1615 new_order = get_count_order_ulong(new_size) + 1;
1616 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1617 old_size, old_order, new_size, new_order);
1618 assert(new_size > old_size);
1619 init_table(ht, old_order, new_order - old_order);
1620 }
1621
1622 /* called with resize mutex held */
1623 static
1624 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1625 unsigned long old_size, unsigned long new_size)
1626 {
1627 unsigned long old_order, new_order;
1628
1629 new_size = max(new_size, MIN_TABLE_SIZE);
1630 old_order = get_count_order_ulong(old_size) + 1;
1631 new_order = get_count_order_ulong(new_size) + 1;
1632 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1633 old_size, old_order, new_size, new_order);
1634 assert(new_size < old_size);
1635
1636 /* Remove and unlink all dummy nodes to remove. */
1637 fini_table(ht, new_order, old_order - new_order);
1638 }
1639
1640
1641 /* called with resize mutex held */
1642 static
1643 void _do_cds_lfht_resize(struct cds_lfht *ht)
1644 {
1645 unsigned long new_size, old_size;
1646
1647 /*
1648 * Resize table, re-do if the target size has changed under us.
1649 */
1650 do {
1651 assert(uatomic_read(&ht->in_progress_resize));
1652 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1653 break;
1654 ht->t.resize_initiated = 1;
1655 old_size = ht->t.size;
1656 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1657 if (old_size < new_size)
1658 _do_cds_lfht_grow(ht, old_size, new_size);
1659 else if (old_size > new_size)
1660 _do_cds_lfht_shrink(ht, old_size, new_size);
1661 ht->t.resize_initiated = 0;
1662 /* write resize_initiated before read resize_target */
1663 cmm_smp_mb();
1664 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1665 }
1666
1667 static
1668 unsigned long resize_target_update(struct cds_lfht *ht, unsigned long size,
1669 int growth_order)
1670 {
1671 return _uatomic_max(&ht->t.resize_target,
1672 size << growth_order);
1673 }
1674
1675 static
1676 void resize_target_update_count(struct cds_lfht *ht,
1677 unsigned long count)
1678 {
1679 count = max(count, MIN_TABLE_SIZE);
1680 uatomic_set(&ht->t.resize_target, count);
1681 }
1682
1683 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1684 {
1685 resize_target_update_count(ht, new_size);
1686 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1687 ht->cds_lfht_rcu_thread_offline();
1688 pthread_mutex_lock(&ht->resize_mutex);
1689 _do_cds_lfht_resize(ht);
1690 pthread_mutex_unlock(&ht->resize_mutex);
1691 ht->cds_lfht_rcu_thread_online();
1692 }
1693
1694 static
1695 void do_resize_cb(struct rcu_head *head)
1696 {
1697 struct rcu_resize_work *work =
1698 caa_container_of(head, struct rcu_resize_work, head);
1699 struct cds_lfht *ht = work->ht;
1700
1701 ht->cds_lfht_rcu_thread_offline();
1702 pthread_mutex_lock(&ht->resize_mutex);
1703 _do_cds_lfht_resize(ht);
1704 pthread_mutex_unlock(&ht->resize_mutex);
1705 ht->cds_lfht_rcu_thread_online();
1706 poison_free(work);
1707 cmm_smp_mb(); /* finish resize before decrement */
1708 uatomic_dec(&ht->in_progress_resize);
1709 }
1710
1711 static
1712 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth)
1713 {
1714 struct rcu_resize_work *work;
1715 unsigned long target_size;
1716
1717 target_size = resize_target_update(ht, size, growth);
1718 /* Store resize_target before read resize_initiated */
1719 cmm_smp_mb();
1720 if (!CMM_LOAD_SHARED(ht->t.resize_initiated) && size < target_size) {
1721 uatomic_inc(&ht->in_progress_resize);
1722 cmm_smp_mb(); /* increment resize count before load destroy */
1723 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1724 uatomic_dec(&ht->in_progress_resize);
1725 return;
1726 }
1727 work = malloc(sizeof(*work));
1728 work->ht = ht;
1729 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1730 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1731 }
1732 }
1733
1734 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1735
1736 static
1737 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1738 unsigned long count)
1739 {
1740 struct rcu_resize_work *work;
1741
1742 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1743 return;
1744 resize_target_update_count(ht, count);
1745 /* Store resize_target before read resize_initiated */
1746 cmm_smp_mb();
1747 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1748 uatomic_inc(&ht->in_progress_resize);
1749 cmm_smp_mb(); /* increment resize count before load destroy */
1750 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1751 uatomic_dec(&ht->in_progress_resize);
1752 return;
1753 }
1754 work = malloc(sizeof(*work));
1755 work->ht = ht;
1756 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1757 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1758 }
1759 }
1760
1761 #endif
This page took 0.069727 seconds and 4 git commands to generate.