4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
95 * - call_rcu is used to garbage-collect the old order table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
100 * A bit of ascii art explanation:
102 * Order index is the off-by-one compare to the actual power of 2 because
103 * we use index 0 to deal with the 0 special-case.
105 * This shows the nodes for a small table ordered by reversed bits:
117 * This shows the nodes in order of non-reversed bits, linked by
118 * reversed-bit order.
123 * 1 | 1 001 100 <- <-
125 * 2 | | 2 010 010 | |
126 * | | | 3 011 110 | <- |
128 * 3 -> | | | 4 100 001 | |
144 #include <urcu-call-rcu.h>
145 #include <urcu/arch.h>
146 #include <urcu/uatomic.h>
147 #include <urcu/jhash.h>
148 #include <urcu/compiler.h>
149 #include <urcu/rculfhash.h>
154 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
156 #define dbg_printf(fmt, args...)
163 * Per-CPU split-counters lazily update the global counter each 1024
164 * addition/removal. It automatically keeps track of resize required.
165 * We use the bucket length as indicator for need to expand for small
166 * tables and machines lacking per-cpu data suppport.
168 #define COUNT_COMMIT_ORDER 10
169 #define CHAIN_LEN_TARGET 1
170 #define CHAIN_LEN_RESIZE_THRESHOLD 3
173 * Define the minimum table size. Protects against hash table resize overload
174 * when too many entries are added quickly before the resize can complete.
175 * This is especially the case if the table could be shrinked to a size of 1.
176 * TODO: we might want to make the add/remove operations help the resize to
177 * add or remove dummy nodes when a resize is ongoing to ensure upper-bound on
180 #define MIN_TABLE_SIZE 128
183 #define max(a, b) ((a) > (b) ? (a) : (b))
187 * The removed flag needs to be updated atomically with the pointer.
188 * The dummy flag does not require to be updated atomically with the
189 * pointer, but it is added as a pointer low bit flag to save space.
191 #define REMOVED_FLAG (1UL << 0)
192 #define DUMMY_FLAG (1UL << 1)
193 #define FLAGS_MASK ((1UL << 2) - 1)
195 struct ht_items_count
{
196 unsigned long add
, remove
;
197 } __attribute__((aligned(CAA_CACHE_LINE_SIZE
)));
200 struct rcu_head head
;
201 struct _cds_lfht_node nodes
[0];
205 unsigned long size
; /* always a power of 2 */
206 unsigned long resize_target
;
207 int resize_initiated
;
208 struct rcu_head head
;
209 struct rcu_level
*tbl
[0];
213 struct rcu_table
*t
; /* shared */
214 cds_lfht_hash_fct hash_fct
;
215 cds_lfht_compare_fct compare_fct
;
216 unsigned long hash_seed
;
218 pthread_mutex_t resize_mutex
; /* resize mutex: add/del mutex */
219 unsigned int in_progress_resize
, in_progress_destroy
;
220 void (*cds_lfht_call_rcu
)(struct rcu_head
*head
,
221 void (*func
)(struct rcu_head
*head
));
222 void (*cds_lfht_synchronize_rcu
)(void);
223 void (*cds_lfht_rcu_read_lock
)(void);
224 void (*cds_lfht_rcu_read_unlock
)(void);
225 unsigned long count
; /* global approximate item count */
226 struct ht_items_count
*percpu_count
; /* per-cpu item count */
229 struct rcu_resize_work
{
230 struct rcu_head head
;
235 * Algorithm to reverse bits in a word by lookup table, extended to
238 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
239 * Originally from Public Domain.
242 static const uint8_t BitReverseTable256
[256] =
244 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
245 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
246 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
247 R6(0), R6(2), R6(1), R6(3)
254 uint8_t bit_reverse_u8(uint8_t v
)
256 return BitReverseTable256
[v
];
259 static __attribute__((unused
))
260 uint32_t bit_reverse_u32(uint32_t v
)
262 return ((uint32_t) bit_reverse_u8(v
) << 24) |
263 ((uint32_t) bit_reverse_u8(v
>> 8) << 16) |
264 ((uint32_t) bit_reverse_u8(v
>> 16) << 8) |
265 ((uint32_t) bit_reverse_u8(v
>> 24));
268 static __attribute__((unused
))
269 uint64_t bit_reverse_u64(uint64_t v
)
271 return ((uint64_t) bit_reverse_u8(v
) << 56) |
272 ((uint64_t) bit_reverse_u8(v
>> 8) << 48) |
273 ((uint64_t) bit_reverse_u8(v
>> 16) << 40) |
274 ((uint64_t) bit_reverse_u8(v
>> 24) << 32) |
275 ((uint64_t) bit_reverse_u8(v
>> 32) << 24) |
276 ((uint64_t) bit_reverse_u8(v
>> 40) << 16) |
277 ((uint64_t) bit_reverse_u8(v
>> 48) << 8) |
278 ((uint64_t) bit_reverse_u8(v
>> 56));
282 unsigned long bit_reverse_ulong(unsigned long v
)
284 #if (CAA_BITS_PER_LONG == 32)
285 return bit_reverse_u32(v
);
287 return bit_reverse_u64(v
);
292 * fls: returns the position of the most significant bit.
293 * Returns 0 if no bit is set, else returns the position of the most
294 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
296 #if defined(__i386) || defined(__x86_64)
298 unsigned int fls_u32(uint32_t x
)
306 : "=r" (r
) : "rm" (x
));
312 #if defined(__x86_64)
314 unsigned int fls_u64(uint64_t x
)
322 : "=r" (r
) : "rm" (x
));
329 static __attribute__((unused
))
330 unsigned int fls_u64(uint64_t x
)
337 if (!(x
& 0xFFFFFFFF00000000ULL
)) {
341 if (!(x
& 0xFFFF000000000000ULL
)) {
345 if (!(x
& 0xFF00000000000000ULL
)) {
349 if (!(x
& 0xF000000000000000ULL
)) {
353 if (!(x
& 0xC000000000000000ULL
)) {
357 if (!(x
& 0x8000000000000000ULL
)) {
366 static __attribute__((unused
))
367 unsigned int fls_u32(uint32_t x
)
373 if (!(x
& 0xFFFF0000U
)) {
377 if (!(x
& 0xFF000000U
)) {
381 if (!(x
& 0xF0000000U
)) {
385 if (!(x
& 0xC0000000U
)) {
389 if (!(x
& 0x80000000U
)) {
397 unsigned int fls_ulong(unsigned long x
)
399 #if (CAA_BITS_PER_lONG == 32)
406 int get_count_order_u32(uint32_t x
)
410 order
= fls_u32(x
) - 1;
416 int get_count_order_ulong(unsigned long x
)
420 order
= fls_ulong(x
) - 1;
427 #define poison_free(ptr) \
429 memset(ptr, 0x42, sizeof(*(ptr))); \
433 #define poison_free(ptr) free(ptr)
437 void cds_lfht_resize_lazy(struct cds_lfht
*ht
, struct rcu_table
*t
, int growth
);
440 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
441 * available, then we support hash table item accounting.
442 * In the unfortunate event the number of CPUs reported would be
443 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
445 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
448 void cds_lfht_resize_lazy_count(struct cds_lfht
*ht
, struct rcu_table
*t
,
449 unsigned long count
);
451 static long nr_cpus_mask
= -1;
454 struct ht_items_count
*alloc_per_cpu_items_count(void)
456 struct ht_items_count
*count
;
458 switch (nr_cpus_mask
) {
465 maxcpus
= sysconf(_SC_NPROCESSORS_CONF
);
471 * round up number of CPUs to next power of two, so we
472 * can use & for modulo.
474 maxcpus
= 1UL << get_count_order_ulong(maxcpus
);
475 nr_cpus_mask
= maxcpus
- 1;
479 return calloc(nr_cpus_mask
+ 1, sizeof(*count
));
484 void free_per_cpu_items_count(struct ht_items_count
*count
)
494 assert(nr_cpus_mask
>= 0);
495 cpu
= sched_getcpu();
496 if (unlikely(cpu
< 0))
499 return cpu
& nr_cpus_mask
;
503 void ht_count_add(struct cds_lfht
*ht
, struct rcu_table
*t
)
505 unsigned long percpu_count
;
508 if (unlikely(!ht
->percpu_count
))
511 if (unlikely(cpu
< 0))
513 percpu_count
= uatomic_add_return(&ht
->percpu_count
[cpu
].add
, 1);
514 if (unlikely(!(percpu_count
& ((1UL << COUNT_COMMIT_ORDER
) - 1)))) {
517 dbg_printf("add percpu %lu\n", percpu_count
);
518 count
= uatomic_add_return(&ht
->count
,
519 1UL << COUNT_COMMIT_ORDER
);
521 if (!(count
& (count
- 1))) {
522 if ((count
>> CHAIN_LEN_RESIZE_THRESHOLD
)
525 dbg_printf("add set global %lu\n", count
);
526 cds_lfht_resize_lazy_count(ht
, t
,
527 count
>> (CHAIN_LEN_TARGET
- 1));
533 void ht_count_remove(struct cds_lfht
*ht
, struct rcu_table
*t
)
535 unsigned long percpu_count
;
538 if (unlikely(!ht
->percpu_count
))
541 if (unlikely(cpu
< 0))
543 percpu_count
= uatomic_add_return(&ht
->percpu_count
[cpu
].remove
, -1);
544 if (unlikely(!(percpu_count
& ((1UL << COUNT_COMMIT_ORDER
) - 1)))) {
547 dbg_printf("remove percpu %lu\n", percpu_count
);
548 count
= uatomic_add_return(&ht
->count
,
549 -(1UL << COUNT_COMMIT_ORDER
));
551 if (!(count
& (count
- 1))) {
552 if ((count
>> CHAIN_LEN_RESIZE_THRESHOLD
)
555 dbg_printf("remove set global %lu\n", count
);
556 cds_lfht_resize_lazy_count(ht
, t
,
557 count
>> (CHAIN_LEN_TARGET
- 1));
562 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
564 static const long nr_cpus_mask
= -1;
567 struct ht_items_count
*alloc_per_cpu_items_count(void)
573 void free_per_cpu_items_count(struct ht_items_count
*count
)
578 void ht_count_add(struct cds_lfht
*ht
, struct rcu_table
*t
)
583 void ht_count_remove(struct cds_lfht
*ht
, struct rcu_table
*t
)
587 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
591 void check_resize(struct cds_lfht
*ht
, struct rcu_table
*t
,
596 if (!(ht
->flags
& CDS_LFHT_AUTO_RESIZE
))
598 count
= uatomic_read(&ht
->count
);
600 * Use bucket-local length for small table expand and for
601 * environments lacking per-cpu data support.
603 if (count
>= (1UL << COUNT_COMMIT_ORDER
))
606 dbg_printf("WARNING: large chain length: %u.\n",
608 if (chain_len
>= CHAIN_LEN_RESIZE_THRESHOLD
)
609 cds_lfht_resize_lazy(ht
, t
,
610 get_count_order_u32(chain_len
- (CHAIN_LEN_TARGET
- 1)));
614 struct cds_lfht_node
*clear_flag(struct cds_lfht_node
*node
)
616 return (struct cds_lfht_node
*) (((unsigned long) node
) & ~FLAGS_MASK
);
620 int is_removed(struct cds_lfht_node
*node
)
622 return ((unsigned long) node
) & REMOVED_FLAG
;
626 struct cds_lfht_node
*flag_removed(struct cds_lfht_node
*node
)
628 return (struct cds_lfht_node
*) (((unsigned long) node
) | REMOVED_FLAG
);
632 int is_dummy(struct cds_lfht_node
*node
)
634 return ((unsigned long) node
) & DUMMY_FLAG
;
638 struct cds_lfht_node
*flag_dummy(struct cds_lfht_node
*node
)
640 return (struct cds_lfht_node
*) (((unsigned long) node
) | DUMMY_FLAG
);
644 unsigned long _uatomic_max(unsigned long *ptr
, unsigned long v
)
646 unsigned long old1
, old2
;
648 old1
= uatomic_read(ptr
);
653 } while ((old1
= uatomic_cmpxchg(ptr
, old2
, v
)) != old2
);
658 void cds_lfht_free_table_cb(struct rcu_head
*head
)
660 struct rcu_table
*t
=
661 caa_container_of(head
, struct rcu_table
, head
);
666 void cds_lfht_free_level(struct rcu_head
*head
)
668 struct rcu_level
*l
=
669 caa_container_of(head
, struct rcu_level
, head
);
674 * Remove all logically deleted nodes from a bucket up to a certain node key.
677 void _cds_lfht_gc_bucket(struct cds_lfht_node
*dummy
, struct cds_lfht_node
*node
)
679 struct cds_lfht_node
*iter_prev
, *iter
, *next
, *new_next
;
680 struct cds_lfht_node
*iter_trace
[64];
681 unsigned long trace_idx
= 0;
683 memset(iter_trace
, 0, sizeof(iter_trace
));
684 assert(!is_dummy(dummy
));
685 assert(!is_removed(dummy
));
686 assert(!is_dummy(node
));
687 assert(!is_removed(node
));
689 iter_trace
[trace_idx
++ & (64 - 1)] = (void *) 0x1;
691 /* We can always skip the dummy node initially */
692 iter
= rcu_dereference(iter_prev
->p
.next
);
693 iter_trace
[trace_idx
++ & (64 - 1)] = iter
;
694 assert(iter_prev
->p
.reverse_hash
<= node
->p
.reverse_hash
);
696 * We should never be called with dummy (start of chain)
697 * and logically removed node (end of path compression
698 * marker) being the actual same node. This would be a
699 * bug in the algorithm implementation.
701 assert(dummy
!= node
);
703 if (unlikely(!clear_flag(iter
)))
705 if (likely(clear_flag(iter
)->p
.reverse_hash
> node
->p
.reverse_hash
))
707 next
= rcu_dereference(clear_flag(iter
)->p
.next
);
708 if (likely(is_removed(next
)))
710 iter_prev
= clear_flag(iter
);
712 iter_trace
[trace_idx
++ & (64 - 1)] = iter
;
714 assert(!is_removed(iter
));
716 new_next
= flag_dummy(clear_flag(next
));
718 new_next
= clear_flag(next
);
719 (void) uatomic_cmpxchg(&iter_prev
->p
.next
, iter
, new_next
);
720 iter_trace
[trace_idx
++ & (64 - 1)] = (void *) 0x2;
725 struct cds_lfht_node
*_cds_lfht_add(struct cds_lfht
*ht
, struct rcu_table
*t
,
726 struct cds_lfht_node
*node
, int unique
, int dummy
)
728 struct cds_lfht_node
*iter_prev
, *iter
, *next
, *new_node
, *new_next
,
730 struct _cds_lfht_node
*lookup
;
731 unsigned long hash
, index
, order
;
733 assert(!is_dummy(node
));
734 assert(!is_removed(node
));
737 node
->p
.next
= flag_dummy(NULL
);
738 return node
; /* Initial first add (head) */
740 hash
= bit_reverse_ulong(node
->p
.reverse_hash
);
742 uint32_t chain_len
= 0;
745 * iter_prev points to the non-removed node prior to the
748 index
= hash
& (t
->size
- 1);
749 order
= get_count_order_ulong(index
+ 1);
750 lookup
= &t
->tbl
[order
]->nodes
[index
& ((!order
? 0 : (1UL << (order
- 1))) - 1)];
751 iter_prev
= (struct cds_lfht_node
*) lookup
;
752 /* We can always skip the dummy node initially */
753 iter
= rcu_dereference(iter_prev
->p
.next
);
754 assert(iter_prev
->p
.reverse_hash
<= node
->p
.reverse_hash
);
756 /* TODO: check if removed */
757 if (unlikely(!clear_flag(iter
)))
759 /* TODO: check if removed */
760 if (likely(clear_flag(iter
)->p
.reverse_hash
> node
->p
.reverse_hash
))
762 next
= rcu_dereference(clear_flag(iter
)->p
.next
);
763 if (unlikely(is_removed(next
)))
767 && !ht
->compare_fct(node
->key
, node
->key_len
,
768 clear_flag(iter
)->key
,
769 clear_flag(iter
)->key_len
))
770 return clear_flag(iter
);
771 /* Only account for identical reverse hash once */
772 if (iter_prev
->p
.reverse_hash
!= clear_flag(iter
)->p
.reverse_hash
774 check_resize(ht
, t
, ++chain_len
);
775 iter_prev
= clear_flag(iter
);
779 assert(node
!= clear_flag(iter
));
780 assert(!is_removed(iter_prev
));
781 assert(!is_removed(iter
));
782 assert(iter_prev
!= node
);
784 node
->p
.next
= clear_flag(iter
);
786 node
->p
.next
= flag_dummy(clear_flag(iter
));
788 new_node
= flag_dummy(node
);
791 if (uatomic_cmpxchg(&iter_prev
->p
.next
, iter
,
793 continue; /* retry */
797 assert(!is_removed(iter
));
799 new_next
= flag_dummy(clear_flag(next
));
801 new_next
= clear_flag(next
);
802 (void) uatomic_cmpxchg(&iter_prev
->p
.next
, iter
, new_next
);
806 /* Garbage collect logically removed nodes in the bucket */
807 index
= hash
& (t
->size
- 1);
808 order
= get_count_order_ulong(index
+ 1);
809 lookup
= &t
->tbl
[order
]->nodes
[index
& (!order
? 0 : ((1UL << (order
- 1)) - 1))];
810 dummy_node
= (struct cds_lfht_node
*) lookup
;
811 _cds_lfht_gc_bucket(dummy_node
, node
);
816 int _cds_lfht_remove(struct cds_lfht
*ht
, struct rcu_table
*t
,
817 struct cds_lfht_node
*node
, int dummy_removal
)
819 struct cds_lfht_node
*dummy
, *next
, *old
;
820 struct _cds_lfht_node
*lookup
;
822 unsigned long hash
, index
, order
;
824 /* logically delete the node */
825 assert(!is_dummy(node
));
826 assert(!is_removed(node
));
827 old
= rcu_dereference(node
->p
.next
);
830 if (unlikely(is_removed(next
)))
833 assert(is_dummy(next
));
835 assert(!is_dummy(next
));
836 old
= uatomic_cmpxchg(&node
->p
.next
, next
,
838 } while (old
!= next
);
840 /* We performed the (logical) deletion. */
844 * Ensure that the node is not visible to readers anymore: lookup for
845 * the node, and remove it (along with any other logically removed node)
848 hash
= bit_reverse_ulong(node
->p
.reverse_hash
);
850 index
= hash
& (t
->size
- 1);
851 order
= get_count_order_ulong(index
+ 1);
852 lookup
= &t
->tbl
[order
]->nodes
[index
& (!order
? 0 : ((1UL << (order
- 1)) - 1))];
853 dummy
= (struct cds_lfht_node
*) lookup
;
854 _cds_lfht_gc_bucket(dummy
, node
);
857 * Only the flagging action indicated that we (and no other)
858 * removed the node from the hash.
861 assert(is_removed(rcu_dereference(node
->p
.next
)));
868 * Holding RCU read lock to protect _cds_lfht_add against memory
869 * reclaim that could be performed by other call_rcu worker threads (ABA
873 void init_table(struct cds_lfht
*ht
, struct rcu_table
*t
,
874 unsigned long first_order
, unsigned long len_order
)
876 unsigned long i
, end_order
;
878 dbg_printf("init table: first_order %lu end_order %lu\n",
879 first_order
, first_order
+ len_order
);
880 end_order
= first_order
+ len_order
;
881 t
->size
= !first_order
? 0 : (1UL << (first_order
- 1));
882 for (i
= first_order
; i
< end_order
; i
++) {
883 unsigned long j
, len
;
885 len
= !i
? 1 : 1UL << (i
- 1);
886 dbg_printf("init order %lu len: %lu\n", i
, len
);
887 t
->tbl
[i
] = calloc(1, sizeof(struct rcu_level
)
888 + (len
* sizeof(struct _cds_lfht_node
)));
889 ht
->cds_lfht_rcu_read_lock();
890 for (j
= 0; j
< len
; j
++) {
891 struct cds_lfht_node
*new_node
=
892 (struct cds_lfht_node
*) &t
->tbl
[i
]->nodes
[j
];
894 dbg_printf("init entry: i %lu j %lu hash %lu\n",
895 i
, j
, !i
? 0 : (1UL << (i
- 1)) + j
);
896 new_node
->p
.reverse_hash
=
897 bit_reverse_ulong(!i
? 0 : (1UL << (i
- 1)) + j
);
898 (void) _cds_lfht_add(ht
, t
, new_node
, 0, 1);
899 if (CMM_LOAD_SHARED(ht
->in_progress_destroy
))
902 ht
->cds_lfht_rcu_read_unlock();
903 /* Update table size */
904 t
->size
= !i
? 1 : (1UL << i
);
905 dbg_printf("init new size: %lu\n", t
->size
);
906 if (CMM_LOAD_SHARED(ht
->in_progress_destroy
))
909 t
->resize_target
= t
->size
;
910 t
->resize_initiated
= 0;
914 * Holding RCU read lock to protect _cds_lfht_remove against memory
915 * reclaim that could be performed by other call_rcu worker threads (ABA
919 void fini_table(struct cds_lfht
*ht
, struct rcu_table
*t
,
920 unsigned long first_order
, unsigned long len_order
)
924 dbg_printf("fini table: first_order %lu end_order %lu\n",
925 first_order
, first_order
+ len_order
);
926 end_order
= first_order
+ len_order
;
927 assert(first_order
> 0);
928 assert(t
->size
== (1UL << (end_order
- 1)));
929 for (i
= end_order
- 1; i
>= first_order
; i
--) {
930 unsigned long j
, len
;
932 len
= !i
? 1 : 1UL << (i
- 1);
933 dbg_printf("fini order %lu len: %lu\n", i
, len
);
935 * Update table size. Need to shrink this table prior to
936 * removal so gc lookups use non-logically-removed dummy
939 t
->size
= 1UL << (i
- 1);
941 ht
->cds_lfht_rcu_read_lock();
942 for (j
= 0; j
< len
; j
++) {
943 struct cds_lfht_node
*fini_node
=
944 (struct cds_lfht_node
*) &t
->tbl
[i
]->nodes
[j
];
946 dbg_printf("fini entry: i %lu j %lu hash %lu\n",
947 i
, j
, !i
? 0 : (1UL << (i
- 1)) + j
);
948 fini_node
->p
.reverse_hash
=
949 bit_reverse_ulong(!i
? 0 : (1UL << (i
- 1)) + j
);
950 (void) _cds_lfht_remove(ht
, t
, fini_node
, 1);
951 if (CMM_LOAD_SHARED(ht
->in_progress_destroy
))
954 ht
->cds_lfht_rcu_read_unlock();
955 ht
->cds_lfht_call_rcu(&t
->tbl
[i
]->head
, cds_lfht_free_level
);
956 dbg_printf("fini new size: %lu\n", t
->size
);
957 if (CMM_LOAD_SHARED(ht
->in_progress_destroy
))
960 t
->resize_target
= t
->size
;
961 t
->resize_initiated
= 0;
964 struct cds_lfht
*cds_lfht_new(cds_lfht_hash_fct hash_fct
,
965 cds_lfht_compare_fct compare_fct
,
966 unsigned long hash_seed
,
967 unsigned long init_size
,
969 void (*cds_lfht_call_rcu
)(struct rcu_head
*head
,
970 void (*func
)(struct rcu_head
*head
)),
971 void (*cds_lfht_synchronize_rcu
)(void),
972 void (*cds_lfht_rcu_read_lock
)(void),
973 void (*cds_lfht_rcu_read_unlock
)(void))
978 /* init_size must be power of two */
979 if (init_size
&& (init_size
& (init_size
- 1)))
981 ht
= calloc(1, sizeof(struct cds_lfht
));
982 ht
->hash_fct
= hash_fct
;
983 ht
->compare_fct
= compare_fct
;
984 ht
->hash_seed
= hash_seed
;
985 ht
->cds_lfht_call_rcu
= cds_lfht_call_rcu
;
986 ht
->cds_lfht_synchronize_rcu
= cds_lfht_synchronize_rcu
;
987 ht
->cds_lfht_rcu_read_lock
= cds_lfht_rcu_read_lock
;
988 ht
->cds_lfht_rcu_read_unlock
= cds_lfht_rcu_read_unlock
;
989 ht
->in_progress_resize
= 0;
990 ht
->percpu_count
= alloc_per_cpu_items_count();
991 /* this mutex should not nest in read-side C.S. */
992 pthread_mutex_init(&ht
->resize_mutex
, NULL
);
993 order
= get_count_order_ulong(max(init_size
, MIN_TABLE_SIZE
)) + 1;
994 ht
->t
= calloc(1, sizeof(struct cds_lfht
)
995 + (order
* sizeof(struct rcu_level
*)));
998 pthread_mutex_lock(&ht
->resize_mutex
);
999 init_table(ht
, ht
->t
, 0, order
);
1000 pthread_mutex_unlock(&ht
->resize_mutex
);
1004 struct cds_lfht_node
*cds_lfht_lookup(struct cds_lfht
*ht
, void *key
, size_t key_len
)
1006 struct rcu_table
*t
;
1007 struct cds_lfht_node
*node
, *next
;
1008 struct _cds_lfht_node
*lookup
;
1009 unsigned long hash
, reverse_hash
, index
, order
;
1011 hash
= ht
->hash_fct(key
, key_len
, ht
->hash_seed
);
1012 reverse_hash
= bit_reverse_ulong(hash
);
1014 t
= rcu_dereference(ht
->t
);
1015 index
= hash
& (t
->size
- 1);
1016 order
= get_count_order_ulong(index
+ 1);
1017 lookup
= &t
->tbl
[order
]->nodes
[index
& (!order
? 0 : ((1UL << (order
- 1))) - 1)];
1018 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
1019 hash
, index
, order
, index
& (!order
? 0 : ((1UL << (order
- 1)) - 1)));
1020 node
= (struct cds_lfht_node
*) lookup
;
1022 if (unlikely(!node
))
1024 if (unlikely(node
->p
.reverse_hash
> reverse_hash
)) {
1028 next
= rcu_dereference(node
->p
.next
);
1029 if (likely(!is_removed(next
))
1031 && likely(!ht
->compare_fct(node
->key
, node
->key_len
, key
, key_len
))) {
1034 node
= clear_flag(next
);
1036 assert(!node
|| !is_dummy(rcu_dereference(node
->p
.next
)));
1040 struct cds_lfht_node
*cds_lfht_next(struct cds_lfht
*ht
,
1041 struct cds_lfht_node
*node
)
1043 struct cds_lfht_node
*next
;
1044 unsigned long reverse_hash
;
1048 reverse_hash
= node
->p
.reverse_hash
;
1050 key_len
= node
->key_len
;
1051 next
= rcu_dereference(node
->p
.next
);
1052 node
= clear_flag(next
);
1055 if (unlikely(!node
))
1057 if (unlikely(node
->p
.reverse_hash
> reverse_hash
)) {
1061 next
= rcu_dereference(node
->p
.next
);
1062 if (likely(!is_removed(next
))
1064 && likely(!ht
->compare_fct(node
->key
, node
->key_len
, key
, key_len
))) {
1067 node
= clear_flag(next
);
1069 assert(!node
|| !is_dummy(rcu_dereference(node
->p
.next
)));
1073 void cds_lfht_add(struct cds_lfht
*ht
, struct cds_lfht_node
*node
)
1075 struct rcu_table
*t
;
1078 hash
= ht
->hash_fct(node
->key
, node
->key_len
, ht
->hash_seed
);
1079 node
->p
.reverse_hash
= bit_reverse_ulong((unsigned long) hash
);
1081 t
= rcu_dereference(ht
->t
);
1082 (void) _cds_lfht_add(ht
, t
, node
, 0, 0);
1083 ht_count_add(ht
, t
);
1086 struct cds_lfht_node
*cds_lfht_add_unique(struct cds_lfht
*ht
,
1087 struct cds_lfht_node
*node
)
1089 struct rcu_table
*t
;
1091 struct cds_lfht_node
*ret
;
1093 hash
= ht
->hash_fct(node
->key
, node
->key_len
, ht
->hash_seed
);
1094 node
->p
.reverse_hash
= bit_reverse_ulong((unsigned long) hash
);
1096 t
= rcu_dereference(ht
->t
);
1097 ret
= _cds_lfht_add(ht
, t
, node
, 1, 0);
1099 ht_count_add(ht
, t
);
1103 int cds_lfht_remove(struct cds_lfht
*ht
, struct cds_lfht_node
*node
)
1105 struct rcu_table
*t
;
1108 t
= rcu_dereference(ht
->t
);
1109 ret
= _cds_lfht_remove(ht
, t
, node
, 0);
1111 ht_count_remove(ht
, t
);
1116 int cds_lfht_delete_dummy(struct cds_lfht
*ht
)
1118 struct rcu_table
*t
;
1119 struct cds_lfht_node
*node
;
1120 struct _cds_lfht_node
*lookup
;
1121 unsigned long order
, i
;
1124 /* Check that the table is empty */
1125 lookup
= &t
->tbl
[0]->nodes
[0];
1126 node
= (struct cds_lfht_node
*) lookup
;
1128 node
= clear_flag(node
)->p
.next
;
1129 if (!is_dummy(node
))
1131 assert(!is_removed(node
));
1132 } while (clear_flag(node
));
1133 /* Internal sanity check: all nodes left should be dummy */
1134 for (order
= 0; order
< get_count_order_ulong(t
->size
) + 1; order
++) {
1137 len
= !order
? 1 : 1UL << (order
- 1);
1138 for (i
= 0; i
< len
; i
++) {
1139 dbg_printf("delete order %lu i %lu hash %lu\n",
1141 bit_reverse_ulong(t
->tbl
[order
]->nodes
[i
].reverse_hash
));
1142 assert(is_dummy(t
->tbl
[order
]->nodes
[i
].next
));
1144 poison_free(t
->tbl
[order
]);
1150 * Should only be called when no more concurrent readers nor writers can
1151 * possibly access the table.
1153 int cds_lfht_destroy(struct cds_lfht
*ht
)
1157 /* Wait for in-flight resize operations to complete */
1158 CMM_STORE_SHARED(ht
->in_progress_destroy
, 1);
1159 while (uatomic_read(&ht
->in_progress_resize
))
1160 poll(NULL
, 0, 100); /* wait for 100ms */
1161 ret
= cds_lfht_delete_dummy(ht
);
1165 free_per_cpu_items_count(ht
->percpu_count
);
1170 void cds_lfht_count_nodes(struct cds_lfht
*ht
,
1171 unsigned long *count
,
1172 unsigned long *removed
)
1174 struct rcu_table
*t
;
1175 struct cds_lfht_node
*node
, *next
;
1176 struct _cds_lfht_node
*lookup
;
1177 unsigned long nr_dummy
= 0;
1182 t
= rcu_dereference(ht
->t
);
1183 /* Count non-dummy nodes in the table */
1184 lookup
= &t
->tbl
[0]->nodes
[0];
1185 node
= (struct cds_lfht_node
*) lookup
;
1187 next
= rcu_dereference(node
->p
.next
);
1188 if (is_removed(next
)) {
1189 assert(!is_dummy(next
));
1191 } else if (!is_dummy(next
))
1195 node
= clear_flag(next
);
1197 dbg_printf("number of dummy nodes: %lu\n", nr_dummy
);
1200 /* called with resize mutex held */
1202 void _do_cds_lfht_grow(struct cds_lfht
*ht
, struct rcu_table
*old_t
,
1203 unsigned long old_size
, unsigned long new_size
)
1205 unsigned long old_order
, new_order
;
1206 struct rcu_table
*new_t
;
1208 old_order
= get_count_order_ulong(old_size
) + 1;
1209 new_order
= get_count_order_ulong(new_size
) + 1;
1210 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1211 old_size
, old_order
, new_size
, new_order
);
1212 new_t
= malloc(sizeof(struct cds_lfht
)
1213 + (new_order
* sizeof(struct rcu_level
*)));
1214 assert(new_size
> old_size
);
1215 memcpy(&new_t
->tbl
, &old_t
->tbl
,
1216 old_order
* sizeof(struct rcu_level
*));
1217 init_table(ht
, new_t
, old_order
, new_order
- old_order
);
1218 /* Changing table and size atomically wrt lookups */
1219 rcu_assign_pointer(ht
->t
, new_t
);
1220 ht
->cds_lfht_call_rcu(&old_t
->head
, cds_lfht_free_table_cb
);
1223 /* called with resize mutex held */
1225 void _do_cds_lfht_shrink(struct cds_lfht
*ht
, struct rcu_table
*old_t
,
1226 unsigned long old_size
, unsigned long new_size
)
1228 unsigned long old_order
, new_order
;
1229 struct rcu_table
*new_t
;
1231 new_size
= max(new_size
, MIN_TABLE_SIZE
);
1232 old_order
= get_count_order_ulong(old_size
) + 1;
1233 new_order
= get_count_order_ulong(new_size
) + 1;
1234 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1235 old_size
, old_order
, new_size
, new_order
);
1236 new_t
= malloc(sizeof(struct cds_lfht
)
1237 + (new_order
* sizeof(struct rcu_level
*)));
1238 assert(new_size
< old_size
);
1239 memcpy(&new_t
->tbl
, &old_t
->tbl
,
1240 new_order
* sizeof(struct rcu_level
*));
1241 new_t
->size
= !new_order
? 1 : (1UL << (new_order
- 1));
1242 assert(new_t
->size
== new_size
);
1243 new_t
->resize_target
= new_t
->size
;
1244 new_t
->resize_initiated
= 0;
1246 /* Changing table and size atomically wrt lookups */
1247 rcu_assign_pointer(ht
->t
, new_t
);
1250 * We need to wait for all add operations to reach Q.S. (and
1251 * thus use the new table for lookups) before we can start
1252 * releasing the old dummy nodes. Otherwise their lookup will
1253 * return a logically removed node as insert position.
1255 ht
->cds_lfht_synchronize_rcu();
1257 /* Unlink and remove all now-unused dummy node pointers. */
1258 fini_table(ht
, old_t
, new_order
, old_order
- new_order
);
1259 ht
->cds_lfht_call_rcu(&old_t
->head
, cds_lfht_free_table_cb
);
1263 /* called with resize mutex held */
1265 void _do_cds_lfht_resize(struct cds_lfht
*ht
)
1267 unsigned long new_size
, old_size
;
1268 struct rcu_table
*old_t
;
1271 old_size
= old_t
->size
;
1272 new_size
= CMM_LOAD_SHARED(old_t
->resize_target
);
1273 if (old_size
< new_size
)
1274 _do_cds_lfht_grow(ht
, old_t
, old_size
, new_size
);
1275 else if (old_size
> new_size
)
1276 _do_cds_lfht_shrink(ht
, old_t
, old_size
, new_size
);
1278 CMM_STORE_SHARED(old_t
->resize_initiated
, 0);
1282 unsigned long resize_target_update(struct rcu_table
*t
,
1285 return _uatomic_max(&t
->resize_target
,
1286 t
->size
<< growth_order
);
1290 void resize_target_update_count(struct rcu_table
*t
,
1291 unsigned long count
)
1293 count
= max(count
, MIN_TABLE_SIZE
);
1294 uatomic_set(&t
->resize_target
, count
);
1297 void cds_lfht_resize(struct cds_lfht
*ht
, unsigned long new_size
)
1299 struct rcu_table
*t
= rcu_dereference(ht
->t
);
1301 resize_target_update_count(t
, new_size
);
1302 CMM_STORE_SHARED(t
->resize_initiated
, 1);
1303 pthread_mutex_lock(&ht
->resize_mutex
);
1304 _do_cds_lfht_resize(ht
);
1305 pthread_mutex_unlock(&ht
->resize_mutex
);
1309 void do_resize_cb(struct rcu_head
*head
)
1311 struct rcu_resize_work
*work
=
1312 caa_container_of(head
, struct rcu_resize_work
, head
);
1313 struct cds_lfht
*ht
= work
->ht
;
1315 pthread_mutex_lock(&ht
->resize_mutex
);
1316 _do_cds_lfht_resize(ht
);
1317 pthread_mutex_unlock(&ht
->resize_mutex
);
1319 cmm_smp_mb(); /* finish resize before decrement */
1320 uatomic_dec(&ht
->in_progress_resize
);
1324 void cds_lfht_resize_lazy(struct cds_lfht
*ht
, struct rcu_table
*t
, int growth
)
1326 struct rcu_resize_work
*work
;
1327 unsigned long target_size
;
1329 target_size
= resize_target_update(t
, growth
);
1330 if (!CMM_LOAD_SHARED(t
->resize_initiated
) && t
->size
< target_size
) {
1331 uatomic_inc(&ht
->in_progress_resize
);
1332 cmm_smp_mb(); /* increment resize count before calling it */
1333 work
= malloc(sizeof(*work
));
1335 ht
->cds_lfht_call_rcu(&work
->head
, do_resize_cb
);
1336 CMM_STORE_SHARED(t
->resize_initiated
, 1);
1340 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1343 void cds_lfht_resize_lazy_count(struct cds_lfht
*ht
, struct rcu_table
*t
,
1344 unsigned long count
)
1346 struct rcu_resize_work
*work
;
1348 if (!(ht
->flags
& CDS_LFHT_AUTO_RESIZE
))
1350 resize_target_update_count(t
, count
);
1351 if (!CMM_LOAD_SHARED(t
->resize_initiated
)) {
1352 uatomic_inc(&ht
->in_progress_resize
);
1353 cmm_smp_mb(); /* increment resize count before calling it */
1354 work
= malloc(sizeof(*work
));
1356 ht
->cds_lfht_call_rcu(&work
->head
, do_resize_cb
);
1357 CMM_STORE_SHARED(t
->resize_initiated
, 1);