rculfhash: Make auto resize selectable with flag
[userspace-rcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order.
95 * - call_rcu is used to garbage-collect the old order table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * A bit of ascii art explanation:
101 *
102 * Order index is the off-by-one compare to the actual power of 2 because
103 * we use index 0 to deal with the 0 special-case.
104 *
105 * This shows the nodes for a small table ordered by reversed bits:
106 *
107 * bits reverse
108 * 0 000 000
109 * 4 100 001
110 * 2 010 010
111 * 6 110 011
112 * 1 001 100
113 * 5 101 101
114 * 3 011 110
115 * 7 111 111
116 *
117 * This shows the nodes in order of non-reversed bits, linked by
118 * reversed-bit order.
119 *
120 * order bits reverse
121 * 0 0 000 000
122 * |
123 * 1 | 1 001 100 <- <-
124 * | | | |
125 * 2 | | 2 010 010 | |
126 * | | | 3 011 110 | <- |
127 * | | | | | | |
128 * 3 -> | | | 4 100 001 | |
129 * -> | | 5 101 101 |
130 * -> | 6 110 011
131 * -> 7 111 111
132 */
133
134 #define _LGPL_SOURCE
135 #include <stdlib.h>
136 #include <errno.h>
137 #include <assert.h>
138 #include <stdio.h>
139 #include <stdint.h>
140 #include <string.h>
141
142 #include "config.h"
143 #include <urcu.h>
144 #include <urcu-call-rcu.h>
145 #include <urcu/arch.h>
146 #include <urcu/uatomic.h>
147 #include <urcu/jhash.h>
148 #include <urcu/compiler.h>
149 #include <urcu/rculfhash.h>
150 #include <stdio.h>
151 #include <pthread.h>
152
153 #ifdef DEBUG
154 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
155 #else
156 #define dbg_printf(fmt, args...)
157 #endif
158
159 /*
160 * Per-CPU split-counters lazily update the global counter each 1024
161 * addition/removal. It automatically keeps track of resize required.
162 * We use the bucket length as indicator for need to expand for small
163 * tables and machines lacking per-cpu data suppport.
164 */
165 #define COUNT_COMMIT_ORDER 10
166 #define CHAIN_LEN_TARGET 1
167 #define CHAIN_LEN_RESIZE_THRESHOLD 3
168
169 /*
170 * Define the minimum table size. Protects against hash table resize overload
171 * when too many entries are added quickly before the resize can complete.
172 * This is especially the case if the table could be shrinked to a size of 1.
173 * TODO: we might want to make the add/remove operations help the resize to
174 * add or remove dummy nodes when a resize is ongoing to ensure upper-bound on
175 * chain length.
176 */
177 #define MIN_TABLE_SIZE 128
178
179 #ifndef max
180 #define max(a, b) ((a) > (b) ? (a) : (b))
181 #endif
182
183 /*
184 * The removed flag needs to be updated atomically with the pointer.
185 * The dummy flag does not require to be updated atomically with the
186 * pointer, but it is added as a pointer low bit flag to save space.
187 */
188 #define REMOVED_FLAG (1UL << 0)
189 #define DUMMY_FLAG (1UL << 1)
190 #define FLAGS_MASK ((1UL << 2) - 1)
191
192 struct ht_items_count {
193 unsigned long add, remove;
194 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
195
196 struct rcu_level {
197 struct rcu_head head;
198 struct _cds_lfht_node nodes[0];
199 };
200
201 struct rcu_table {
202 unsigned long size; /* always a power of 2 */
203 unsigned long resize_target;
204 int resize_initiated;
205 struct rcu_head head;
206 struct rcu_level *tbl[0];
207 };
208
209 struct cds_lfht {
210 struct rcu_table *t; /* shared */
211 cds_lfht_hash_fct hash_fct;
212 cds_lfht_compare_fct compare_fct;
213 unsigned long hash_seed;
214 int flags;
215 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
216 unsigned int in_progress_resize, in_progress_destroy;
217 void (*cds_lfht_call_rcu)(struct rcu_head *head,
218 void (*func)(struct rcu_head *head));
219 void (*cds_lfht_synchronize_rcu)(void);
220 unsigned long count; /* global approximate item count */
221 struct ht_items_count *percpu_count; /* per-cpu item count */
222 };
223
224 struct rcu_resize_work {
225 struct rcu_head head;
226 struct cds_lfht *ht;
227 };
228
229 /*
230 * Algorithm to reverse bits in a word by lookup table, extended to
231 * 64-bit words.
232 * Source:
233 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
234 * Originally from Public Domain.
235 */
236
237 static const uint8_t BitReverseTable256[256] =
238 {
239 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
240 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
241 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
242 R6(0), R6(2), R6(1), R6(3)
243 };
244 #undef R2
245 #undef R4
246 #undef R6
247
248 static
249 uint8_t bit_reverse_u8(uint8_t v)
250 {
251 return BitReverseTable256[v];
252 }
253
254 static __attribute__((unused))
255 uint32_t bit_reverse_u32(uint32_t v)
256 {
257 return ((uint32_t) bit_reverse_u8(v) << 24) |
258 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
259 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
260 ((uint32_t) bit_reverse_u8(v >> 24));
261 }
262
263 static __attribute__((unused))
264 uint64_t bit_reverse_u64(uint64_t v)
265 {
266 return ((uint64_t) bit_reverse_u8(v) << 56) |
267 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
268 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
269 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
270 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
271 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
272 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
273 ((uint64_t) bit_reverse_u8(v >> 56));
274 }
275
276 static
277 unsigned long bit_reverse_ulong(unsigned long v)
278 {
279 #if (CAA_BITS_PER_LONG == 32)
280 return bit_reverse_u32(v);
281 #else
282 return bit_reverse_u64(v);
283 #endif
284 }
285
286 /*
287 * fls: returns the position of the most significant bit.
288 * Returns 0 if no bit is set, else returns the position of the most
289 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
290 */
291 #if defined(__i386) || defined(__x86_64)
292 static inline
293 unsigned int fls_u32(uint32_t x)
294 {
295 int r;
296
297 asm("bsrl %1,%0\n\t"
298 "jnz 1f\n\t"
299 "movl $-1,%0\n\t"
300 "1:\n\t"
301 : "=r" (r) : "rm" (x));
302 return r + 1;
303 }
304 #define HAS_FLS_U32
305 #endif
306
307 #if defined(__x86_64)
308 static inline
309 unsigned int fls_u64(uint64_t x)
310 {
311 long r;
312
313 asm("bsrq %1,%0\n\t"
314 "jnz 1f\n\t"
315 "movq $-1,%0\n\t"
316 "1:\n\t"
317 : "=r" (r) : "rm" (x));
318 return r + 1;
319 }
320 #define HAS_FLS_U64
321 #endif
322
323 #ifndef HAS_FLS_U64
324 static __attribute__((unused))
325 unsigned int fls_u64(uint64_t x)
326 {
327 unsigned int r = 64;
328
329 if (!x)
330 return 0;
331
332 if (!(x & 0xFFFFFFFF00000000ULL)) {
333 x <<= 32;
334 r -= 32;
335 }
336 if (!(x & 0xFFFF000000000000ULL)) {
337 x <<= 16;
338 r -= 16;
339 }
340 if (!(x & 0xFF00000000000000ULL)) {
341 x <<= 8;
342 r -= 8;
343 }
344 if (!(x & 0xF000000000000000ULL)) {
345 x <<= 4;
346 r -= 4;
347 }
348 if (!(x & 0xC000000000000000ULL)) {
349 x <<= 2;
350 r -= 2;
351 }
352 if (!(x & 0x8000000000000000ULL)) {
353 x <<= 1;
354 r -= 1;
355 }
356 return r;
357 }
358 #endif
359
360 #ifndef HAS_FLS_U32
361 static __attribute__((unused))
362 unsigned int fls_u32(uint32_t x)
363 {
364 unsigned int r = 32;
365
366 if (!x)
367 return 0;
368 if (!(x & 0xFFFF0000U)) {
369 x <<= 16;
370 r -= 16;
371 }
372 if (!(x & 0xFF000000U)) {
373 x <<= 8;
374 r -= 8;
375 }
376 if (!(x & 0xF0000000U)) {
377 x <<= 4;
378 r -= 4;
379 }
380 if (!(x & 0xC0000000U)) {
381 x <<= 2;
382 r -= 2;
383 }
384 if (!(x & 0x80000000U)) {
385 x <<= 1;
386 r -= 1;
387 }
388 return r;
389 }
390 #endif
391
392 unsigned int fls_ulong(unsigned long x)
393 {
394 #if (CAA_BITS_PER_lONG == 32)
395 return fls_u32(x);
396 #else
397 return fls_u64(x);
398 #endif
399 }
400
401 int get_count_order_u32(uint32_t x)
402 {
403 int order;
404
405 order = fls_u32(x) - 1;
406 if (x & (x - 1))
407 order++;
408 return order;
409 }
410
411 int get_count_order_ulong(unsigned long x)
412 {
413 int order;
414
415 order = fls_ulong(x) - 1;
416 if (x & (x - 1))
417 order++;
418 return order;
419 }
420
421 static
422 void cds_lfht_resize_lazy(struct cds_lfht *ht, struct rcu_table *t, int growth);
423
424 /*
425 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
426 * available, then we support hash table item accounting.
427 * In the unfortunate event the number of CPUs reported would be
428 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
429 */
430 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
431
432 static
433 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, struct rcu_table *t,
434 unsigned long count);
435
436 static long nr_cpus_mask = -1;
437
438 static
439 struct ht_items_count *alloc_per_cpu_items_count(void)
440 {
441 struct ht_items_count *count;
442
443 switch (nr_cpus_mask) {
444 case -2:
445 return NULL;
446 case -1:
447 {
448 long maxcpus;
449
450 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
451 if (maxcpus <= 0) {
452 nr_cpus_mask = -2;
453 return NULL;
454 }
455 /*
456 * round up number of CPUs to next power of two, so we
457 * can use & for modulo.
458 */
459 maxcpus = 1UL << get_count_order_ulong(maxcpus);
460 nr_cpus_mask = maxcpus - 1;
461 }
462 /* Fall-through */
463 default:
464 return calloc(nr_cpus_mask + 1, sizeof(*count));
465 }
466 }
467
468 static
469 void free_per_cpu_items_count(struct ht_items_count *count)
470 {
471 free(count);
472 }
473
474 static
475 int ht_get_cpu(void)
476 {
477 int cpu;
478
479 assert(nr_cpus_mask >= 0);
480 cpu = sched_getcpu();
481 if (unlikely(cpu < 0))
482 return cpu;
483 else
484 return cpu & nr_cpus_mask;
485 }
486
487 static
488 void ht_count_add(struct cds_lfht *ht, struct rcu_table *t)
489 {
490 unsigned long percpu_count;
491 int cpu;
492
493 if (unlikely(!ht->percpu_count))
494 return;
495 cpu = ht_get_cpu();
496 if (unlikely(cpu < 0))
497 return;
498 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
499 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
500 unsigned long count;
501
502 dbg_printf("add percpu %lu\n", percpu_count);
503 count = uatomic_add_return(&ht->count,
504 1UL << COUNT_COMMIT_ORDER);
505 /* If power of 2 */
506 if (!(count & (count - 1))) {
507 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD)
508 < t->size)
509 return;
510 dbg_printf("add set global %lu\n", count);
511 cds_lfht_resize_lazy_count(ht, t,
512 count >> (CHAIN_LEN_TARGET - 1));
513 }
514 }
515 }
516
517 static
518 void ht_count_remove(struct cds_lfht *ht, struct rcu_table *t)
519 {
520 unsigned long percpu_count;
521 int cpu;
522
523 if (unlikely(!ht->percpu_count))
524 return;
525 cpu = ht_get_cpu();
526 if (unlikely(cpu < 0))
527 return;
528 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].remove, -1);
529 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
530 unsigned long count;
531
532 dbg_printf("remove percpu %lu\n", percpu_count);
533 count = uatomic_add_return(&ht->count,
534 -(1UL << COUNT_COMMIT_ORDER));
535 /* If power of 2 */
536 if (!(count & (count - 1))) {
537 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD)
538 >= t->size)
539 return;
540 dbg_printf("remove set global %lu\n", count);
541 cds_lfht_resize_lazy_count(ht, t,
542 count >> (CHAIN_LEN_TARGET - 1));
543 }
544 }
545 }
546
547 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
548
549 static const long nr_cpus_mask = -1;
550
551 static
552 struct ht_items_count *alloc_per_cpu_items_count(void)
553 {
554 return NULL;
555 }
556
557 static
558 void free_per_cpu_items_count(struct ht_items_count *count)
559 {
560 }
561
562 static
563 void ht_count_add(struct cds_lfht *ht, struct rcu_table *t)
564 {
565 }
566
567 static
568 void ht_count_remove(struct cds_lfht *ht, struct rcu_table *t)
569 {
570 }
571
572 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
573
574
575 static
576 void check_resize(struct cds_lfht *ht, struct rcu_table *t,
577 uint32_t chain_len)
578 {
579 unsigned long count;
580
581 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
582 return;
583 count = uatomic_read(&ht->count);
584 /*
585 * Use bucket-local length for small table expand and for
586 * environments lacking per-cpu data support.
587 */
588 if (count >= (1UL << COUNT_COMMIT_ORDER))
589 return;
590 if (chain_len > 100)
591 dbg_printf("WARNING: large chain length: %u.\n",
592 chain_len);
593 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
594 cds_lfht_resize_lazy(ht, t,
595 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
596 }
597
598 static
599 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
600 {
601 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
602 }
603
604 static
605 int is_removed(struct cds_lfht_node *node)
606 {
607 return ((unsigned long) node) & REMOVED_FLAG;
608 }
609
610 static
611 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
612 {
613 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
614 }
615
616 static
617 int is_dummy(struct cds_lfht_node *node)
618 {
619 return ((unsigned long) node) & DUMMY_FLAG;
620 }
621
622 static
623 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
624 {
625 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
626 }
627
628 static
629 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
630 {
631 unsigned long old1, old2;
632
633 old1 = uatomic_read(ptr);
634 do {
635 old2 = old1;
636 if (old2 >= v)
637 return old2;
638 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
639 return v;
640 }
641
642 static
643 void cds_lfht_free_table_cb(struct rcu_head *head)
644 {
645 struct rcu_table *t =
646 caa_container_of(head, struct rcu_table, head);
647 free(t);
648 }
649
650 static
651 void cds_lfht_free_level(struct rcu_head *head)
652 {
653 struct rcu_level *l =
654 caa_container_of(head, struct rcu_level, head);
655 free(l);
656 }
657
658 /*
659 * Remove all logically deleted nodes from a bucket up to a certain node key.
660 */
661 static
662 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
663 {
664 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
665
666 for (;;) {
667 iter_prev = dummy;
668 /* We can always skip the dummy node initially */
669 iter = rcu_dereference(iter_prev->p.next);
670 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
671 for (;;) {
672 if (unlikely(!clear_flag(iter)))
673 return;
674 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
675 return;
676 next = rcu_dereference(clear_flag(iter)->p.next);
677 if (likely(is_removed(next)))
678 break;
679 iter_prev = clear_flag(iter);
680 iter = next;
681 }
682 assert(!is_removed(iter));
683 if (is_dummy(iter))
684 new_next = flag_dummy(clear_flag(next));
685 else
686 new_next = clear_flag(next);
687 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
688 }
689 }
690
691 static
692 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht, struct rcu_table *t,
693 struct cds_lfht_node *node, int unique, int dummy)
694 {
695 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
696 *dummy_node;
697 struct _cds_lfht_node *lookup;
698 unsigned long hash, index, order;
699
700 if (!t->size) {
701 assert(dummy);
702 node->p.next = flag_dummy(NULL);
703 return node; /* Initial first add (head) */
704 }
705 hash = bit_reverse_ulong(node->p.reverse_hash);
706 for (;;) {
707 uint32_t chain_len = 0;
708
709 /*
710 * iter_prev points to the non-removed node prior to the
711 * insert location.
712 */
713 index = hash & (t->size - 1);
714 order = get_count_order_ulong(index + 1);
715 lookup = &t->tbl[order]->nodes[index & ((!order ? 0 : (1UL << (order - 1))) - 1)];
716 iter_prev = (struct cds_lfht_node *) lookup;
717 /* We can always skip the dummy node initially */
718 iter = rcu_dereference(iter_prev->p.next);
719 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
720 for (;;) {
721 if (unlikely(!clear_flag(iter)))
722 goto insert;
723 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
724 goto insert;
725 next = rcu_dereference(clear_flag(iter)->p.next);
726 if (unlikely(is_removed(next)))
727 goto gc_node;
728 if (unique
729 && !is_dummy(next)
730 && !ht->compare_fct(node->key, node->key_len,
731 clear_flag(iter)->key,
732 clear_flag(iter)->key_len))
733 return clear_flag(iter);
734 /* Only account for identical reverse hash once */
735 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
736 && !is_dummy(next))
737 check_resize(ht, t, ++chain_len);
738 iter_prev = clear_flag(iter);
739 iter = next;
740 }
741 insert:
742 assert(node != clear_flag(iter));
743 assert(!is_removed(iter_prev));
744 assert(iter_prev != node);
745 if (!dummy)
746 node->p.next = clear_flag(iter);
747 else
748 node->p.next = flag_dummy(clear_flag(iter));
749 if (is_dummy(iter))
750 new_node = flag_dummy(node);
751 else
752 new_node = node;
753 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
754 new_node) != iter)
755 continue; /* retry */
756 else
757 goto gc_end;
758 gc_node:
759 assert(!is_removed(iter));
760 if (is_dummy(iter))
761 new_next = flag_dummy(clear_flag(next));
762 else
763 new_next = clear_flag(next);
764 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
765 /* retry */
766 }
767 gc_end:
768 /* Garbage collect logically removed nodes in the bucket */
769 index = hash & (t->size - 1);
770 order = get_count_order_ulong(index + 1);
771 lookup = &t->tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
772 dummy_node = (struct cds_lfht_node *) lookup;
773 _cds_lfht_gc_bucket(dummy_node, node);
774 return node;
775 }
776
777 static
778 int _cds_lfht_remove(struct cds_lfht *ht, struct rcu_table *t,
779 struct cds_lfht_node *node, int dummy_removal)
780 {
781 struct cds_lfht_node *dummy, *next, *old;
782 struct _cds_lfht_node *lookup;
783 int flagged = 0;
784 unsigned long hash, index, order;
785
786 /* logically delete the node */
787 old = rcu_dereference(node->p.next);
788 do {
789 next = old;
790 if (unlikely(is_removed(next)))
791 goto end;
792 if (dummy_removal)
793 assert(is_dummy(next));
794 else
795 assert(!is_dummy(next));
796 old = uatomic_cmpxchg(&node->p.next, next,
797 flag_removed(next));
798 } while (old != next);
799
800 /* We performed the (logical) deletion. */
801 flagged = 1;
802
803 if (dummy_removal)
804 node = clear_flag(node);
805
806 /*
807 * Ensure that the node is not visible to readers anymore: lookup for
808 * the node, and remove it (along with any other logically removed node)
809 * if found.
810 */
811 hash = bit_reverse_ulong(node->p.reverse_hash);
812 assert(t->size > 0);
813 index = hash & (t->size - 1);
814 order = get_count_order_ulong(index + 1);
815 lookup = &t->tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
816 dummy = (struct cds_lfht_node *) lookup;
817 _cds_lfht_gc_bucket(dummy, node);
818 end:
819 /*
820 * Only the flagging action indicated that we (and no other)
821 * removed the node from the hash.
822 */
823 if (flagged) {
824 assert(is_removed(rcu_dereference(node->p.next)));
825 return 0;
826 } else
827 return -ENOENT;
828 }
829
830 static
831 void init_table(struct cds_lfht *ht, struct rcu_table *t,
832 unsigned long first_order, unsigned long len_order)
833 {
834 unsigned long i, end_order;
835
836 dbg_printf("init table: first_order %lu end_order %lu\n",
837 first_order, first_order + len_order);
838 end_order = first_order + len_order;
839 t->size = !first_order ? 0 : (1UL << (first_order - 1));
840 for (i = first_order; i < end_order; i++) {
841 unsigned long j, len;
842
843 len = !i ? 1 : 1UL << (i - 1);
844 dbg_printf("init order %lu len: %lu\n", i, len);
845 t->tbl[i] = calloc(1, sizeof(struct rcu_level)
846 + (len * sizeof(struct _cds_lfht_node)));
847 for (j = 0; j < len; j++) {
848 struct cds_lfht_node *new_node =
849 (struct cds_lfht_node *) &t->tbl[i]->nodes[j];
850
851 dbg_printf("init entry: i %lu j %lu hash %lu\n",
852 i, j, !i ? 0 : (1UL << (i - 1)) + j);
853 new_node->p.reverse_hash =
854 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
855 (void) _cds_lfht_add(ht, t, new_node, 0, 1);
856 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
857 break;
858 }
859 /* Update table size */
860 t->size = !i ? 1 : (1UL << i);
861 dbg_printf("init new size: %lu\n", t->size);
862 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
863 break;
864 }
865 t->resize_target = t->size;
866 t->resize_initiated = 0;
867 }
868
869 static
870 void fini_table(struct cds_lfht *ht, struct rcu_table *t,
871 unsigned long first_order, unsigned long len_order)
872 {
873 long i, end_order;
874
875 dbg_printf("fini table: first_order %lu end_order %lu\n",
876 first_order, first_order + len_order);
877 end_order = first_order + len_order;
878 assert(first_order > 0);
879 assert(t->size == (1UL << (end_order - 1)));
880 for (i = end_order - 1; i >= first_order; i--) {
881 unsigned long j, len;
882
883 len = !i ? 1 : 1UL << (i - 1);
884 dbg_printf("fini order %lu len: %lu\n", i, len);
885 /* Update table size */
886 t->size = 1UL << (i - 1);
887 /* Unlink */
888 for (j = 0; j < len; j++) {
889 struct cds_lfht_node *new_node =
890 (struct cds_lfht_node *) &t->tbl[i]->nodes[j];
891
892 dbg_printf("fini entry: i %lu j %lu hash %lu\n",
893 i, j, !i ? 0 : (1UL << (i - 1)) + j);
894 new_node->p.reverse_hash =
895 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
896 (void) _cds_lfht_remove(ht, t, new_node, 1);
897 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
898 break;
899 }
900 ht->cds_lfht_call_rcu(&t->tbl[i]->head, cds_lfht_free_level);
901 dbg_printf("fini new size: %lu\n", t->size);
902 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
903 break;
904 }
905 t->resize_target = t->size;
906 t->resize_initiated = 0;
907 }
908
909 struct cds_lfht *cds_lfht_new(cds_lfht_hash_fct hash_fct,
910 cds_lfht_compare_fct compare_fct,
911 unsigned long hash_seed,
912 unsigned long init_size,
913 int flags,
914 void (*cds_lfht_call_rcu)(struct rcu_head *head,
915 void (*func)(struct rcu_head *head)),
916 void (*cds_lfht_synchronize_rcu)(void))
917 {
918 struct cds_lfht *ht;
919 unsigned long order;
920
921 /* init_size must be power of two */
922 if (init_size && (init_size & (init_size - 1)))
923 return NULL;
924 ht = calloc(1, sizeof(struct cds_lfht));
925 ht->hash_fct = hash_fct;
926 ht->compare_fct = compare_fct;
927 ht->hash_seed = hash_seed;
928 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
929 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
930 ht->in_progress_resize = 0;
931 ht->percpu_count = alloc_per_cpu_items_count();
932 /* this mutex should not nest in read-side C.S. */
933 pthread_mutex_init(&ht->resize_mutex, NULL);
934 order = get_count_order_ulong(max(init_size, MIN_TABLE_SIZE)) + 1;
935 ht->t = calloc(1, sizeof(struct cds_lfht)
936 + (order * sizeof(struct rcu_level *)));
937 ht->t->size = 0;
938 ht->flags = flags;
939 pthread_mutex_lock(&ht->resize_mutex);
940 init_table(ht, ht->t, 0, order);
941 pthread_mutex_unlock(&ht->resize_mutex);
942 return ht;
943 }
944
945 struct cds_lfht_node *cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len)
946 {
947 struct rcu_table *t;
948 struct cds_lfht_node *node, *next;
949 struct _cds_lfht_node *lookup;
950 unsigned long hash, reverse_hash, index, order;
951
952 hash = ht->hash_fct(key, key_len, ht->hash_seed);
953 reverse_hash = bit_reverse_ulong(hash);
954
955 t = rcu_dereference(ht->t);
956 index = hash & (t->size - 1);
957 order = get_count_order_ulong(index + 1);
958 lookup = &t->tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1))) - 1)];
959 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
960 hash, index, order, index & (!order ? 0 : ((1UL << (order - 1)) - 1)));
961 node = (struct cds_lfht_node *) lookup;
962 for (;;) {
963 if (unlikely(!node))
964 break;
965 if (unlikely(node->p.reverse_hash > reverse_hash)) {
966 node = NULL;
967 break;
968 }
969 next = rcu_dereference(node->p.next);
970 if (likely(!is_removed(next))
971 && !is_dummy(next)
972 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
973 break;
974 }
975 node = clear_flag(next);
976 }
977 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
978 return node;
979 }
980
981 struct cds_lfht_node *cds_lfht_next(struct cds_lfht *ht,
982 struct cds_lfht_node *node)
983 {
984 struct cds_lfht_node *next;
985 unsigned long reverse_hash;
986 void *key;
987 size_t key_len;
988
989 reverse_hash = node->p.reverse_hash;
990 key = node->key;
991 key_len = node->key_len;
992 next = rcu_dereference(node->p.next);
993 node = clear_flag(next);
994
995 for (;;) {
996 if (unlikely(!node))
997 break;
998 if (unlikely(node->p.reverse_hash > reverse_hash)) {
999 node = NULL;
1000 break;
1001 }
1002 next = rcu_dereference(node->p.next);
1003 if (likely(!is_removed(next))
1004 && !is_dummy(next)
1005 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1006 break;
1007 }
1008 node = clear_flag(next);
1009 }
1010 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1011 return node;
1012 }
1013
1014 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1015 {
1016 struct rcu_table *t;
1017 unsigned long hash;
1018
1019 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1020 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1021
1022 t = rcu_dereference(ht->t);
1023 (void) _cds_lfht_add(ht, t, node, 0, 0);
1024 ht_count_add(ht, t);
1025 }
1026
1027 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1028 struct cds_lfht_node *node)
1029 {
1030 struct rcu_table *t;
1031 unsigned long hash;
1032 struct cds_lfht_node *ret;
1033
1034 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1035 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1036
1037 t = rcu_dereference(ht->t);
1038 ret = _cds_lfht_add(ht, t, node, 1, 0);
1039 if (ret != node)
1040 ht_count_add(ht, t);
1041 return ret;
1042 }
1043
1044 int cds_lfht_remove(struct cds_lfht *ht, struct cds_lfht_node *node)
1045 {
1046 struct rcu_table *t;
1047 int ret;
1048
1049 t = rcu_dereference(ht->t);
1050 ret = _cds_lfht_remove(ht, t, node, 0);
1051 if (!ret)
1052 ht_count_remove(ht, t);
1053 return ret;
1054 }
1055
1056 static
1057 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1058 {
1059 struct rcu_table *t;
1060 struct cds_lfht_node *node;
1061 struct _cds_lfht_node *lookup;
1062 unsigned long order, i;
1063
1064 t = ht->t;
1065 /* Check that the table is empty */
1066 lookup = &t->tbl[0]->nodes[0];
1067 node = (struct cds_lfht_node *) lookup;
1068 do {
1069 node = clear_flag(node)->p.next;
1070 if (!is_dummy(node))
1071 return -EPERM;
1072 assert(!is_removed(node));
1073 } while (clear_flag(node));
1074 /* Internal sanity check: all nodes left should be dummy */
1075 for (order = 0; order < get_count_order_ulong(t->size) + 1; order++) {
1076 unsigned long len;
1077
1078 len = !order ? 1 : 1UL << (order - 1);
1079 for (i = 0; i < len; i++) {
1080 dbg_printf("delete order %lu i %lu hash %lu\n",
1081 order, i,
1082 bit_reverse_ulong(t->tbl[order]->nodes[i].reverse_hash));
1083 assert(is_dummy(t->tbl[order]->nodes[i].next));
1084 }
1085 free(t->tbl[order]);
1086 }
1087 return 0;
1088 }
1089
1090 /*
1091 * Should only be called when no more concurrent readers nor writers can
1092 * possibly access the table.
1093 */
1094 int cds_lfht_destroy(struct cds_lfht *ht)
1095 {
1096 int ret;
1097
1098 /* Wait for in-flight resize operations to complete */
1099 CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1100 while (uatomic_read(&ht->in_progress_resize))
1101 poll(NULL, 0, 100); /* wait for 100ms */
1102 ret = cds_lfht_delete_dummy(ht);
1103 if (ret)
1104 return ret;
1105 free(ht->t);
1106 free_per_cpu_items_count(ht->percpu_count);
1107 free(ht);
1108 return ret;
1109 }
1110
1111 void cds_lfht_count_nodes(struct cds_lfht *ht,
1112 unsigned long *count,
1113 unsigned long *removed)
1114 {
1115 struct rcu_table *t;
1116 struct cds_lfht_node *node, *next;
1117 struct _cds_lfht_node *lookup;
1118 unsigned long nr_dummy = 0;
1119
1120 *count = 0;
1121 *removed = 0;
1122
1123 t = rcu_dereference(ht->t);
1124 /* Count non-dummy nodes in the table */
1125 lookup = &t->tbl[0]->nodes[0];
1126 node = (struct cds_lfht_node *) lookup;
1127 do {
1128 next = rcu_dereference(node->p.next);
1129 if (is_removed(next)) {
1130 assert(!is_dummy(next));
1131 (*removed)++;
1132 } else if (!is_dummy(next))
1133 (*count)++;
1134 else
1135 (nr_dummy)++;
1136 node = clear_flag(next);
1137 } while (node);
1138 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1139 }
1140
1141 /* called with resize mutex held */
1142 static
1143 void _do_cds_lfht_grow(struct cds_lfht *ht, struct rcu_table *old_t,
1144 unsigned long old_size, unsigned long new_size)
1145 {
1146 unsigned long old_order, new_order;
1147 struct rcu_table *new_t;
1148
1149 old_order = get_count_order_ulong(old_size) + 1;
1150 new_order = get_count_order_ulong(new_size) + 1;
1151 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1152 old_size, old_order, new_size, new_order);
1153 new_t = malloc(sizeof(struct cds_lfht)
1154 + (new_order * sizeof(struct rcu_level *)));
1155 assert(new_size > old_size);
1156 memcpy(&new_t->tbl, &old_t->tbl,
1157 old_order * sizeof(struct rcu_level *));
1158 init_table(ht, new_t, old_order, new_order - old_order);
1159 /* Changing table and size atomically wrt lookups */
1160 rcu_assign_pointer(ht->t, new_t);
1161 ht->cds_lfht_call_rcu(&old_t->head, cds_lfht_free_table_cb);
1162 }
1163
1164 /* called with resize mutex held */
1165 static
1166 void _do_cds_lfht_shrink(struct cds_lfht *ht, struct rcu_table *old_t,
1167 unsigned long old_size, unsigned long new_size)
1168 {
1169 unsigned long old_order, new_order;
1170 struct rcu_table *new_t;
1171
1172 new_size = max(new_size, MIN_TABLE_SIZE);
1173 old_order = get_count_order_ulong(old_size) + 1;
1174 new_order = get_count_order_ulong(new_size) + 1;
1175 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1176 old_size, old_order, new_size, new_order);
1177 new_t = malloc(sizeof(struct cds_lfht)
1178 + (new_order * sizeof(struct rcu_level *)));
1179 assert(new_size < old_size);
1180 memcpy(&new_t->tbl, &old_t->tbl,
1181 new_order * sizeof(struct rcu_level *));
1182 new_t->size = !new_order ? 1 : (1UL << (new_order - 1));
1183 new_t->resize_target = new_t->size;
1184 new_t->resize_initiated = 0;
1185
1186 /* Changing table and size atomically wrt lookups */
1187 rcu_assign_pointer(ht->t, new_t);
1188
1189 /*
1190 * We need to wait for all reader threads to reach Q.S. (and
1191 * thus use the new table for lookups) before we can start
1192 * releasing the old dummy nodes.
1193 */
1194 ht->cds_lfht_synchronize_rcu();
1195
1196 /* Unlink and remove all now-unused dummy node pointers. */
1197 fini_table(ht, old_t, new_order, old_order - new_order);
1198 ht->cds_lfht_call_rcu(&old_t->head, cds_lfht_free_table_cb);
1199 }
1200
1201
1202 /* called with resize mutex held */
1203 static
1204 void _do_cds_lfht_resize(struct cds_lfht *ht)
1205 {
1206 unsigned long new_size, old_size;
1207 struct rcu_table *old_t;
1208
1209 old_t = ht->t;
1210 old_size = old_t->size;
1211 new_size = CMM_LOAD_SHARED(old_t->resize_target);
1212 if (old_size < new_size)
1213 _do_cds_lfht_grow(ht, old_t, old_size, new_size);
1214 else if (old_size > new_size)
1215 _do_cds_lfht_shrink(ht, old_t, old_size, new_size);
1216 else
1217 CMM_STORE_SHARED(old_t->resize_initiated, 0);
1218 }
1219
1220 static
1221 unsigned long resize_target_update(struct rcu_table *t,
1222 int growth_order)
1223 {
1224 return _uatomic_max(&t->resize_target,
1225 t->size << growth_order);
1226 }
1227
1228 static
1229 void resize_target_update_count(struct rcu_table *t,
1230 unsigned long count)
1231 {
1232 count = max(count, MIN_TABLE_SIZE);
1233 uatomic_set(&t->resize_target, count);
1234 }
1235
1236 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1237 {
1238 struct rcu_table *t = rcu_dereference(ht->t);
1239
1240 resize_target_update_count(t, new_size);
1241 CMM_STORE_SHARED(t->resize_initiated, 1);
1242 pthread_mutex_lock(&ht->resize_mutex);
1243 _do_cds_lfht_resize(ht);
1244 pthread_mutex_unlock(&ht->resize_mutex);
1245 }
1246
1247 static
1248 void do_resize_cb(struct rcu_head *head)
1249 {
1250 struct rcu_resize_work *work =
1251 caa_container_of(head, struct rcu_resize_work, head);
1252 struct cds_lfht *ht = work->ht;
1253
1254 pthread_mutex_lock(&ht->resize_mutex);
1255 _do_cds_lfht_resize(ht);
1256 pthread_mutex_unlock(&ht->resize_mutex);
1257 free(work);
1258 cmm_smp_mb(); /* finish resize before decrement */
1259 uatomic_dec(&ht->in_progress_resize);
1260 }
1261
1262 static
1263 void cds_lfht_resize_lazy(struct cds_lfht *ht, struct rcu_table *t, int growth)
1264 {
1265 struct rcu_resize_work *work;
1266 unsigned long target_size;
1267
1268 target_size = resize_target_update(t, growth);
1269 if (!CMM_LOAD_SHARED(t->resize_initiated) && t->size < target_size) {
1270 uatomic_inc(&ht->in_progress_resize);
1271 cmm_smp_mb(); /* increment resize count before calling it */
1272 work = malloc(sizeof(*work));
1273 work->ht = ht;
1274 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1275 CMM_STORE_SHARED(t->resize_initiated, 1);
1276 }
1277 }
1278
1279 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1280
1281 static
1282 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, struct rcu_table *t,
1283 unsigned long count)
1284 {
1285 struct rcu_resize_work *work;
1286
1287 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1288 return;
1289 resize_target_update_count(t, count);
1290 if (!CMM_LOAD_SHARED(t->resize_initiated)) {
1291 uatomic_inc(&ht->in_progress_resize);
1292 cmm_smp_mb(); /* increment resize count before calling it */
1293 work = malloc(sizeof(*work));
1294 work->ht = ht;
1295 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1296 CMM_STORE_SHARED(t->resize_initiated, 1);
1297 }
1298 }
1299
1300 #endif
This page took 0.057039 seconds and 4 git commands to generate.