Initial commit for control flow view
[lttv.git] / lttv / lttv / time.h
1 /* This file is part of the Linux Trace Toolkit trace reading library
2 * Copyright (C) 2003-2004 Michel Dagenais
3 * 2005 Mathieu Desnoyers
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License Version 2.1 as published by the Free Software Foundation.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
13 *
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 */
19
20 #ifndef LTT_TIME_H
21 #define LTT_TIME_H
22
23 #include <glib.h>
24 #include <math.h>
25 #include <lttv/compiler.h>
26
27 typedef struct _LttTime {
28 unsigned long tv_sec;
29 unsigned long tv_nsec;
30 } LttTime;
31
32
33 #define NANOSECONDS_PER_SECOND 1000000000
34
35 /* We give the DIV and MUL constants so we can always multiply, for a
36 * division as well as a multiplication of NANOSECONDS_PER_SECOND */
37 /* 2^30/1.07374182400631629848 = 1000000000.0 */
38 #define DOUBLE_SHIFT_CONST_DIV 1.07374182400631629848
39 #define DOUBLE_SHIFT 30
40
41 /* 2^30*0.93132257461547851562 = 1000000000.0000000000 */
42 #define DOUBLE_SHIFT_CONST_MUL 0.93132257461547851562
43
44
45 /* 1953125 * 2^9 = NANOSECONDS_PER_SECOND */
46 #define LTT_TIME_UINT_SHIFT_CONST 1953125
47 #define LTT_TIME_UINT_SHIFT 9
48
49
50 static const LttTime ltt_time_zero = { 0, 0 };
51
52 static const LttTime ltt_time_one = { 0, 1 };
53
54 static const LttTime ltt_time_infinite = { G_MAXUINT, NANOSECONDS_PER_SECOND };
55
56 static inline LttTime ltt_time_sub(LttTime t1, LttTime t2)
57 {
58 LttTime res;
59 res.tv_sec = t1.tv_sec - t2.tv_sec;
60 res.tv_nsec = t1.tv_nsec - t2.tv_nsec;
61 /* unlikely : given equal chance to be anywhere in t1.tv_nsec, and
62 * higher probability of low value for t2.tv_sec, we will habitually
63 * not wrap.
64 */
65 if(unlikely(t1.tv_nsec < t2.tv_nsec)) {
66 res.tv_sec--;
67 res.tv_nsec += NANOSECONDS_PER_SECOND;
68 }
69 return res;
70 }
71
72
73 static inline LttTime ltt_time_add(LttTime t1, LttTime t2)
74 {
75 LttTime res;
76 res.tv_nsec = t1.tv_nsec + t2.tv_nsec;
77 res.tv_sec = t1.tv_sec + t2.tv_sec;
78 /* unlikely : given equal chance to be anywhere in t1.tv_nsec, and
79 * higher probability of low value for t2.tv_sec, we will habitually
80 * not wrap.
81 */
82 if(unlikely(res.tv_nsec >= NANOSECONDS_PER_SECOND)) {
83 res.tv_sec++;
84 res.tv_nsec -= NANOSECONDS_PER_SECOND;
85 }
86 return res;
87 }
88
89 /* Fastest comparison : t1 > t2 */
90 static inline int ltt_time_compare(LttTime t1, LttTime t2)
91 {
92 int ret=0;
93 if(likely(t1.tv_sec > t2.tv_sec)) ret = 1;
94 else if(unlikely(t1.tv_sec < t2.tv_sec)) ret = -1;
95 else if(likely(t1.tv_nsec > t2.tv_nsec)) ret = 1;
96 else if(unlikely(t1.tv_nsec < t2.tv_nsec)) ret = -1;
97
98 return ret;
99 }
100
101 #define LTT_TIME_MIN(a,b) ((ltt_time_compare((a),(b)) < 0) ? (a) : (b))
102 #define LTT_TIME_MAX(a,b) ((ltt_time_compare((a),(b)) > 0) ? (a) : (b))
103
104 #define MAX_TV_SEC_TO_DOUBLE 0x7FFFFF
105 static inline double ltt_time_to_double(LttTime t1)
106 {
107 /* We lose precision if tv_sec is > than (2^23)-1
108 *
109 * Max values that fits in a double (53 bits precision on normalised
110 * mantissa):
111 * tv_nsec : NANOSECONDS_PER_SECONDS : 2^30
112 *
113 * So we have 53-30 = 23 bits left for tv_sec.
114 * */
115 #ifdef EXTRA_CHECK
116 g_assert(t1.tv_sec <= MAX_TV_SEC_TO_DOUBLE);
117 if(t1.tv_sec > MAX_TV_SEC_TO_DOUBLE)
118 g_warning("Precision loss in conversion LttTime to double");
119 #endif //EXTRA_CHECK
120 return ((double)((guint64)t1.tv_sec<<DOUBLE_SHIFT)
121 * (double)DOUBLE_SHIFT_CONST_MUL)
122 + (double)t1.tv_nsec;
123 }
124
125
126 static inline LttTime ltt_time_from_double(double t1)
127 {
128 /* We lose precision if tv_sec is > than (2^23)-1
129 *
130 * Max values that fits in a double (53 bits precision on normalised
131 * mantissa):
132 * tv_nsec : NANOSECONDS_PER_SECONDS : 2^30
133 *
134 * So we have 53-30 = 23 bits left for tv_sec.
135 * */
136 #ifdef EXTRA_CHECK
137 g_assert(t1 <= MAX_TV_SEC_TO_DOUBLE);
138 if(t1 > MAX_TV_SEC_TO_DOUBLE)
139 g_warning("Conversion from non precise double to LttTime");
140 #endif //EXTRA_CHECK
141 LttTime res;
142 //res.tv_sec = t1/(double)NANOSECONDS_PER_SECOND;
143 res.tv_sec = (guint64)(t1 * DOUBLE_SHIFT_CONST_DIV) >> DOUBLE_SHIFT;
144 res.tv_nsec = (t1 - (((guint64)res.tv_sec<<LTT_TIME_UINT_SHIFT))
145 * LTT_TIME_UINT_SHIFT_CONST);
146 return res;
147 }
148
149 /* Use ltt_time_to_double and ltt_time_from_double to check for lack
150 * of precision.
151 */
152 static inline LttTime ltt_time_mul(LttTime t1, double d)
153 {
154 LttTime res;
155
156 double time_double = ltt_time_to_double(t1);
157
158 time_double = time_double * d;
159
160 res = ltt_time_from_double(time_double);
161
162 return res;
163
164 #if 0
165 /* What is that ? (Mathieu) */
166 if(f == 0.0){
167 res.tv_sec = 0;
168 res.tv_nsec = 0;
169 }else{
170 double d;
171 d = 1.0/f;
172 sec = t1.tv_sec / (double)d;
173 res.tv_sec = sec;
174 res.tv_nsec = t1.tv_nsec / (double)d + (sec - res.tv_sec) *
175 NANOSECONDS_PER_SECOND;
176 res.tv_sec += res.tv_nsec / NANOSECONDS_PER_SECOND;
177 res.tv_nsec %= NANOSECONDS_PER_SECOND;
178 }
179 return res;
180 #endif //0
181 }
182
183
184 /* Use ltt_time_to_double and ltt_time_from_double to check for lack
185 * of precision.
186 */
187 static inline LttTime ltt_time_div(LttTime t1, double d)
188 {
189 LttTime res;
190
191 double time_double = ltt_time_to_double(t1);
192
193 time_double = time_double / d;
194
195 res = ltt_time_from_double(time_double);
196
197 return res;
198
199
200 #if 0
201 double sec;
202 LttTime res;
203
204 sec = t1.tv_sec / (double)f;
205 res.tv_sec = sec;
206 res.tv_nsec = t1.tv_nsec / (double)f + (sec - res.tv_sec) *
207 NANOSECONDS_PER_SECOND;
208 res.tv_sec += res.tv_nsec / NANOSECONDS_PER_SECOND;
209 res.tv_nsec %= NANOSECONDS_PER_SECOND;
210 return res;
211 #endif //0
212 }
213
214
215 static inline guint64 ltt_time_to_uint64(LttTime t1)
216 {
217 return (((guint64)t1.tv_sec*LTT_TIME_UINT_SHIFT_CONST) << LTT_TIME_UINT_SHIFT)
218 + (guint64)t1.tv_nsec;
219 }
220
221
222 #define MAX_TV_SEC_TO_UINT64 0x3FFFFFFFFFFFFFFFULL
223
224 /* The likely branch is with sec != 0, because most events in a bloc
225 * will be over 1s from the block start. (see tracefile.c)
226 */
227 static inline LttTime ltt_time_from_uint64(guint64 t1)
228 {
229 /* We lose precision if tv_sec is > than (2^62)-1
230 * */
231 #ifdef EXTRA_CHECK
232 g_assert(t1 <= MAX_TV_SEC_TO_UINT64);
233 if(t1 > MAX_TV_SEC_TO_UINT64)
234 g_warning("Conversion from uint64 to non precise LttTime");
235 #endif //EXTRA_CHECK
236 LttTime res;
237 //if(unlikely(t1 >= NANOSECONDS_PER_SECOND)) {
238 if(likely(t1>>LTT_TIME_UINT_SHIFT >= LTT_TIME_UINT_SHIFT_CONST)) {
239 //res.tv_sec = t1/NANOSECONDS_PER_SECOND;
240 res.tv_sec = (t1>>LTT_TIME_UINT_SHIFT)
241 /LTT_TIME_UINT_SHIFT_CONST; // acceleration
242 res.tv_nsec = (t1 - res.tv_sec*NANOSECONDS_PER_SECOND);
243 } else {
244 res.tv_sec = 0;
245 res.tv_nsec = (guint32)t1;
246 }
247 return res;
248 }
249
250 #endif // LTT_TIME_H
This page took 0.05828 seconds and 4 git commands to generate.