88bdfefc487d5dae3239aa38984a5a6c5150dbbe
[lttng-ust.git] / libtracing / relay.c
1 /*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
5 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
6 * Copyright (C) 2008 - Mathieu Desnoyers (mathieu.desnoyers@polymtl.ca)
7 *
8 * Moved to kernel/relay.c by Paul Mundt, 2006.
9 * November 2006 - CPU hotplug support by Mathieu Desnoyers
10 * (mathieu.desnoyers@polymtl.ca)
11 *
12 * This file is released under the GPL.
13 */
14 //ust// #include <linux/errno.h>
15 //ust// #include <linux/stddef.h>
16 //ust// #include <linux/slab.h>
17 //ust// #include <linux/module.h>
18 //ust// #include <linux/string.h>
19 //ust// #include <linux/ltt-relay.h>
20 //ust// #include <linux/vmalloc.h>
21 //ust// #include <linux/mm.h>
22 //ust// #include <linux/cpu.h>
23 //ust// #include <linux/splice.h>
24 //ust// #include <linux/bitops.h>
25 #include "kernelcompat.h"
26 #include <sys/mman.h>
27 #include <sys/ipc.h>
28 #include <sys/shm.h>
29 #include "list.h"
30 #include "relay.h"
31 #include "channels.h"
32 #include "kref.h"
33 #include "tracer.h"
34 #include "tracercore.h"
35 #include "usterr.h"
36
37 /* list of open channels, for cpu hotplug */
38 static DEFINE_MUTEX(relay_channels_mutex);
39 static LIST_HEAD(relay_channels);
40
41
42 static struct dentry *ltt_create_buf_file_callback(struct rchan_buf *buf);
43
44 /**
45 * relay_alloc_buf - allocate a channel buffer
46 * @buf: the buffer struct
47 * @size: total size of the buffer
48 */
49 //ust// static int relay_alloc_buf(struct rchan_buf *buf, size_t *size)
50 //ust//{
51 //ust// unsigned int i, n_pages;
52 //ust// struct buf_page *buf_page, *n;
53 //ust//
54 //ust// *size = PAGE_ALIGN(*size);
55 //ust// n_pages = *size >> PAGE_SHIFT;
56 //ust//
57 //ust// INIT_LIST_HEAD(&buf->pages);
58 //ust//
59 //ust// for (i = 0; i < n_pages; i++) {
60 //ust// buf_page = kmalloc_node(sizeof(*buf_page), GFP_KERNEL,
61 //ust// cpu_to_node(buf->cpu));
62 //ust// if (unlikely(!buf_page))
63 //ust// goto depopulate;
64 //ust// buf_page->page = alloc_pages_node(cpu_to_node(buf->cpu),
65 //ust// GFP_KERNEL | __GFP_ZERO, 0);
66 //ust// if (unlikely(!buf_page->page)) {
67 //ust// kfree(buf_page);
68 //ust// goto depopulate;
69 //ust// }
70 //ust// list_add_tail(&buf_page->list, &buf->pages);
71 //ust// buf_page->offset = (size_t)i << PAGE_SHIFT;
72 //ust// buf_page->buf = buf;
73 //ust// set_page_private(buf_page->page, (unsigned long)buf_page);
74 //ust// if (i == 0) {
75 //ust// buf->wpage = buf_page;
76 //ust// buf->hpage[0] = buf_page;
77 //ust// buf->hpage[1] = buf_page;
78 //ust// buf->rpage = buf_page;
79 //ust// }
80 //ust// }
81 //ust// buf->page_count = n_pages;
82 //ust// return 0;
83 //ust//
84 //ust//depopulate:
85 //ust// list_for_each_entry_safe(buf_page, n, &buf->pages, list) {
86 //ust// list_del_init(&buf_page->list);
87 //ust// __free_page(buf_page->page);
88 //ust// kfree(buf_page);
89 //ust// }
90 //ust// return -ENOMEM;
91 //ust//}
92
93 static int relay_alloc_buf(struct rchan_buf *buf, size_t *size)
94 {
95 unsigned int n_pages;
96 struct buf_page *buf_page, *n;
97
98 void *ptr;
99 int result;
100
101 *size = PAGE_ALIGN(*size);
102
103 result = buf->shmid = shmget(getpid(), *size, IPC_CREAT | IPC_EXCL | 0700);
104 if(buf->shmid == -1) {
105 PERROR("shmget");
106 return -1;
107 }
108
109 ptr = shmat(buf->shmid, NULL, 0);
110 if(ptr == (void *) -1) {
111 perror("shmat");
112 goto destroy_shmem;
113 }
114
115 /* Already mark the shared memory for destruction. This will occur only
116 * when all users have detached.
117 */
118 result = shmctl(buf->shmid, IPC_RMID, NULL);
119 if(result == -1) {
120 perror("shmctl");
121 return -1;
122 }
123
124 buf->buf_data = ptr;
125 buf->buf_size = *size;
126
127 return 0;
128
129 destroy_shmem:
130 result = shmctl(buf->shmid, IPC_RMID, NULL);
131 if(result == -1) {
132 perror("shmctl");
133 }
134
135 return -1;
136 }
137
138 /**
139 * relay_create_buf - allocate and initialize a channel buffer
140 * @chan: the relay channel
141 * @cpu: cpu the buffer belongs to
142 *
143 * Returns channel buffer if successful, %NULL otherwise.
144 */
145 static struct rchan_buf *relay_create_buf(struct rchan *chan)
146 {
147 int ret;
148 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
149 if (!buf)
150 return NULL;
151
152 // buf->cpu = cpu;
153 ret = relay_alloc_buf(buf, &chan->alloc_size);
154 if (ret)
155 goto free_buf;
156
157 buf->chan = chan;
158 kref_get(&buf->chan->kref);
159 return buf;
160
161 free_buf:
162 kfree(buf);
163 return NULL;
164 }
165
166 /**
167 * relay_destroy_channel - free the channel struct
168 * @kref: target kernel reference that contains the relay channel
169 *
170 * Should only be called from kref_put().
171 */
172 static void relay_destroy_channel(struct kref *kref)
173 {
174 struct rchan *chan = container_of(kref, struct rchan, kref);
175 kfree(chan);
176 }
177
178 /**
179 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
180 * @buf: the buffer struct
181 */
182 static void relay_destroy_buf(struct rchan_buf *buf)
183 {
184 struct rchan *chan = buf->chan;
185 struct buf_page *buf_page, *n;
186 int result;
187
188 result = munmap(buf->buf_data, buf->buf_size);
189 if(result == -1) {
190 PERROR("munmap");
191 }
192
193 //ust// chan->buf[buf->cpu] = NULL;
194 kfree(buf);
195 kref_put(&chan->kref, relay_destroy_channel);
196 }
197
198 /**
199 * relay_remove_buf - remove a channel buffer
200 * @kref: target kernel reference that contains the relay buffer
201 *
202 * Removes the file from the fileystem, which also frees the
203 * rchan_buf_struct and the channel buffer. Should only be called from
204 * kref_put().
205 */
206 static void relay_remove_buf(struct kref *kref)
207 {
208 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
209 //ust// buf->chan->cb->remove_buf_file(buf);
210 relay_destroy_buf(buf);
211 }
212
213 /*
214 * High-level relay kernel API and associated functions.
215 */
216
217 /*
218 * rchan_callback implementations defining default channel behavior. Used
219 * in place of corresponding NULL values in client callback struct.
220 */
221
222 /*
223 * create_buf_file_create() default callback. Does nothing.
224 */
225 static struct dentry *create_buf_file_default_callback(const char *filename,
226 struct dentry *parent,
227 int mode,
228 struct rchan_buf *buf)
229 {
230 return NULL;
231 }
232
233 /*
234 * remove_buf_file() default callback. Does nothing.
235 */
236 static int remove_buf_file_default_callback(struct dentry *dentry)
237 {
238 return -EINVAL;
239 }
240
241 /**
242 * wakeup_readers - wake up readers waiting on a channel
243 * @data: contains the channel buffer
244 *
245 * This is the timer function used to defer reader waking.
246 */
247 //ust// static void wakeup_readers(unsigned long data)
248 //ust// {
249 //ust// struct rchan_buf *buf = (struct rchan_buf *)data;
250 //ust// wake_up_interruptible(&buf->read_wait);
251 //ust// }
252
253 /**
254 * __relay_reset - reset a channel buffer
255 * @buf: the channel buffer
256 * @init: 1 if this is a first-time initialization
257 *
258 * See relay_reset() for description of effect.
259 */
260 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
261 {
262 if (init) {
263 //ust// init_waitqueue_head(&buf->read_wait);
264 kref_init(&buf->kref);
265 //ust// setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
266 } else
267 //ust// del_timer_sync(&buf->timer);
268
269 buf->finalized = 0;
270 }
271
272 /*
273 * relay_open_buf - create a new relay channel buffer
274 *
275 * used by relay_open() and CPU hotplug.
276 */
277 static struct rchan_buf *relay_open_buf(struct rchan *chan)
278 {
279 struct rchan_buf *buf = NULL;
280 struct dentry *dentry;
281 //ust// char *tmpname;
282
283 //ust// tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
284 //ust// if (!tmpname)
285 //ust// goto end;
286 //ust// snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
287
288 buf = relay_create_buf(chan);
289 if (!buf)
290 goto free_name;
291
292 __relay_reset(buf, 1);
293
294 /* Create file in fs */
295 //ust// dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
296 //ust// buf);
297
298 ltt_create_buf_file_callback(buf); // ust //
299
300 //ust// if (!dentry)
301 //ust// goto free_buf;
302 //ust//
303 //ust// buf->dentry = dentry;
304
305 goto free_name;
306
307 free_buf:
308 relay_destroy_buf(buf);
309 buf = NULL;
310 free_name:
311 //ust// kfree(tmpname);
312 end:
313 return buf;
314 }
315
316 /**
317 * relay_close_buf - close a channel buffer
318 * @buf: channel buffer
319 *
320 * Marks the buffer finalized and restores the default callbacks.
321 * The channel buffer and channel buffer data structure are then freed
322 * automatically when the last reference is given up.
323 */
324 static void relay_close_buf(struct rchan_buf *buf)
325 {
326 //ust// del_timer_sync(&buf->timer);
327 kref_put(&buf->kref, relay_remove_buf);
328 }
329
330 //ust// static void setup_callbacks(struct rchan *chan,
331 //ust// struct rchan_callbacks *cb)
332 //ust// {
333 //ust// if (!cb) {
334 //ust// chan->cb = &default_channel_callbacks;
335 //ust// return;
336 //ust// }
337 //ust//
338 //ust// if (!cb->create_buf_file)
339 //ust// cb->create_buf_file = create_buf_file_default_callback;
340 //ust// if (!cb->remove_buf_file)
341 //ust// cb->remove_buf_file = remove_buf_file_default_callback;
342 //ust// chan->cb = cb;
343 //ust// }
344
345 /**
346 * relay_hotcpu_callback - CPU hotplug callback
347 * @nb: notifier block
348 * @action: hotplug action to take
349 * @hcpu: CPU number
350 *
351 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
352 */
353 //ust// static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
354 //ust// unsigned long action,
355 //ust// void *hcpu)
356 //ust// {
357 //ust// unsigned int hotcpu = (unsigned long)hcpu;
358 //ust// struct rchan *chan;
359 //ust//
360 //ust// switch (action) {
361 //ust// case CPU_UP_PREPARE:
362 //ust// case CPU_UP_PREPARE_FROZEN:
363 //ust// mutex_lock(&relay_channels_mutex);
364 //ust// list_for_each_entry(chan, &relay_channels, list) {
365 //ust// if (chan->buf[hotcpu])
366 //ust// continue;
367 //ust// chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
368 //ust// if (!chan->buf[hotcpu]) {
369 //ust// printk(KERN_ERR
370 //ust// "relay_hotcpu_callback: cpu %d buffer "
371 //ust// "creation failed\n", hotcpu);
372 //ust// mutex_unlock(&relay_channels_mutex);
373 //ust// return NOTIFY_BAD;
374 //ust// }
375 //ust// }
376 //ust// mutex_unlock(&relay_channels_mutex);
377 //ust// break;
378 //ust// case CPU_DEAD:
379 //ust// case CPU_DEAD_FROZEN:
380 //ust// /* No need to flush the cpu : will be flushed upon
381 //ust// * final relay_flush() call. */
382 //ust// break;
383 //ust// }
384 //ust// return NOTIFY_OK;
385 //ust// }
386
387 /**
388 * ltt_relay_open - create a new relay channel
389 * @base_filename: base name of files to create
390 * @parent: dentry of parent directory, %NULL for root directory
391 * @subbuf_size: size of sub-buffers
392 * @n_subbufs: number of sub-buffers
393 * @cb: client callback functions
394 * @private_data: user-defined data
395 *
396 * Returns channel pointer if successful, %NULL otherwise.
397 *
398 * Creates a channel buffer for each cpu using the sizes and
399 * attributes specified. The created channel buffer files
400 * will be named base_filename0...base_filenameN-1. File
401 * permissions will be %S_IRUSR.
402 */
403 struct rchan *ltt_relay_open(const char *base_filename,
404 struct dentry *parent,
405 size_t subbuf_size,
406 size_t n_subbufs,
407 void *private_data)
408 {
409 unsigned int i;
410 struct rchan *chan;
411 //ust// if (!base_filename)
412 //ust// return NULL;
413
414 if (!(subbuf_size && n_subbufs))
415 return NULL;
416
417 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
418 if (!chan)
419 return NULL;
420
421 chan->version = LTT_RELAY_CHANNEL_VERSION;
422 chan->n_subbufs = n_subbufs;
423 chan->subbuf_size = subbuf_size;
424 chan->subbuf_size_order = get_count_order(subbuf_size);
425 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
426 chan->parent = parent;
427 chan->private_data = private_data;
428 //ust// strlcpy(chan->base_filename, base_filename, NAME_MAX);
429 //ust// setup_callbacks(chan, cb);
430 kref_init(&chan->kref);
431
432 mutex_lock(&relay_channels_mutex);
433 //ust// for_each_online_cpu(i) {
434 chan->buf = relay_open_buf(chan);
435 if (!chan->buf)
436 goto error;
437 //ust// }
438 list_add(&chan->list, &relay_channels);
439 mutex_unlock(&relay_channels_mutex);
440
441 return chan;
442
443 //ust//free_bufs:
444 //ust// for_each_possible_cpu(i) {
445 //ust// if (!chan->buf[i])
446 //ust// break;
447 //ust// relay_close_buf(chan->buf[i]);
448 //ust// }
449
450 error:
451 kref_put(&chan->kref, relay_destroy_channel);
452 mutex_unlock(&relay_channels_mutex);
453 return NULL;
454 }
455 //ust// EXPORT_SYMBOL_GPL(ltt_relay_open);
456
457 /**
458 * ltt_relay_close - close the channel
459 * @chan: the channel
460 *
461 * Closes all channel buffers and frees the channel.
462 */
463 void ltt_relay_close(struct rchan *chan)
464 {
465 unsigned int i;
466
467 if (!chan)
468 return;
469
470 mutex_lock(&relay_channels_mutex);
471 //ust// for_each_possible_cpu(i)
472 if (chan->buf)
473 relay_close_buf(chan->buf);
474
475 list_del(&chan->list);
476 kref_put(&chan->kref, relay_destroy_channel);
477 mutex_unlock(&relay_channels_mutex);
478 }
479 //ust// EXPORT_SYMBOL_GPL(ltt_relay_close);
480
481 /*
482 * Start iteration at the previous element. Skip the real list head.
483 */
484 //ust// struct buf_page *ltt_relay_find_prev_page(struct rchan_buf *buf,
485 //ust// struct buf_page *page, size_t offset, ssize_t diff_offset)
486 //ust// {
487 //ust// struct buf_page *iter;
488 //ust// size_t orig_iter_off;
489 //ust// unsigned int i = 0;
490 //ust//
491 //ust// orig_iter_off = page->offset;
492 //ust// list_for_each_entry_reverse(iter, &page->list, list) {
493 //ust// /*
494 //ust// * Skip the real list head.
495 //ust// */
496 //ust// if (&iter->list == &buf->pages)
497 //ust// continue;
498 //ust// i++;
499 //ust// if (offset >= iter->offset
500 //ust// && offset < iter->offset + PAGE_SIZE) {
501 //ust// #ifdef CONFIG_LTT_RELAY_CHECK_RANDOM_ACCESS
502 //ust// if (i > 1) {
503 //ust// printk(KERN_WARNING
504 //ust// "Backward random access detected in "
505 //ust// "ltt_relay. Iterations %u, "
506 //ust// "offset %zu, orig iter->off %zu, "
507 //ust// "iter->off %zu diff_offset %zd.\n", i,
508 //ust// offset, orig_iter_off, iter->offset,
509 //ust// diff_offset);
510 //ust// WARN_ON(1);
511 //ust// }
512 //ust// #endif
513 //ust// return iter;
514 //ust// }
515 //ust// }
516 //ust// WARN_ON(1);
517 //ust// return NULL;
518 //ust// }
519 //ust// EXPORT_SYMBOL_GPL(ltt_relay_find_prev_page);
520
521 /*
522 * Start iteration at the next element. Skip the real list head.
523 */
524 //ust// struct buf_page *ltt_relay_find_next_page(struct rchan_buf *buf,
525 //ust// struct buf_page *page, size_t offset, ssize_t diff_offset)
526 //ust// {
527 //ust// struct buf_page *iter;
528 //ust// unsigned int i = 0;
529 //ust// size_t orig_iter_off;
530 //ust//
531 //ust// orig_iter_off = page->offset;
532 //ust// list_for_each_entry(iter, &page->list, list) {
533 //ust// /*
534 //ust// * Skip the real list head.
535 //ust// */
536 //ust// if (&iter->list == &buf->pages)
537 //ust// continue;
538 //ust// i++;
539 //ust// if (offset >= iter->offset
540 //ust// && offset < iter->offset + PAGE_SIZE) {
541 //ust// #ifdef CONFIG_LTT_RELAY_CHECK_RANDOM_ACCESS
542 //ust// if (i > 1) {
543 //ust// printk(KERN_WARNING
544 //ust// "Forward random access detected in "
545 //ust// "ltt_relay. Iterations %u, "
546 //ust// "offset %zu, orig iter->off %zu, "
547 //ust// "iter->off %zu diff_offset %zd.\n", i,
548 //ust// offset, orig_iter_off, iter->offset,
549 //ust// diff_offset);
550 //ust// WARN_ON(1);
551 //ust// }
552 //ust// #endif
553 //ust// return iter;
554 //ust// }
555 //ust// }
556 //ust// WARN_ON(1);
557 //ust// return NULL;
558 //ust// }
559 //ust// EXPORT_SYMBOL_GPL(ltt_relay_find_next_page);
560
561 /**
562 * ltt_relay_write - write data to a ltt_relay buffer.
563 * @buf : buffer
564 * @offset : offset within the buffer
565 * @src : source address
566 * @len : length to write
567 * @page : cached buffer page
568 * @pagecpy : page size copied so far
569 */
570 void _ltt_relay_write(struct rchan_buf *buf, size_t offset,
571 const void *src, size_t len, ssize_t cpy)
572 {
573 do {
574 len -= cpy;
575 src += cpy;
576 offset += cpy;
577 /*
578 * Underlying layer should never ask for writes across
579 * subbuffers.
580 */
581 WARN_ON(offset >= buf->buf_size);
582
583 cpy = min_t(size_t, len, buf->buf_size - offset);
584 ltt_relay_do_copy(buf->buf_data + offset, src, cpy);
585 } while (unlikely(len != cpy));
586 }
587 //ust// EXPORT_SYMBOL_GPL(_ltt_relay_write);
588
589 /**
590 * ltt_relay_read - read data from ltt_relay_buffer.
591 * @buf : buffer
592 * @offset : offset within the buffer
593 * @dest : destination address
594 * @len : length to write
595 */
596 //ust// int ltt_relay_read(struct rchan_buf *buf, size_t offset,
597 //ust// void *dest, size_t len)
598 //ust// {
599 //ust// struct buf_page *page;
600 //ust// ssize_t pagecpy, orig_len;
601 //ust//
602 //ust// orig_len = len;
603 //ust// offset &= buf->chan->alloc_size - 1;
604 //ust// page = buf->rpage;
605 //ust// if (unlikely(!len))
606 //ust// return 0;
607 //ust// for (;;) {
608 //ust// page = ltt_relay_cache_page(buf, &buf->rpage, page, offset);
609 //ust// pagecpy = min_t(size_t, len, PAGE_SIZE - (offset & ~PAGE_MASK));
610 //ust// memcpy(dest, page_address(page->page) + (offset & ~PAGE_MASK),
611 //ust// pagecpy);
612 //ust// len -= pagecpy;
613 //ust// if (likely(!len))
614 //ust// break;
615 //ust// dest += pagecpy;
616 //ust// offset += pagecpy;
617 //ust// /*
618 //ust// * Underlying layer should never ask for reads across
619 //ust// * subbuffers.
620 //ust// */
621 //ust// WARN_ON(offset >= buf->chan->alloc_size);
622 //ust// }
623 //ust// return orig_len;
624 //ust// }
625 //ust// EXPORT_SYMBOL_GPL(ltt_relay_read);
626
627 /**
628 * ltt_relay_read_get_page - Get a whole page to read from
629 * @buf : buffer
630 * @offset : offset within the buffer
631 */
632 //ust// struct buf_page *ltt_relay_read_get_page(struct rchan_buf *buf, size_t offset)
633 //ust// {
634 //ust// struct buf_page *page;
635
636 //ust// offset &= buf->chan->alloc_size - 1;
637 //ust// page = buf->rpage;
638 //ust// page = ltt_relay_cache_page(buf, &buf->rpage, page, offset);
639 //ust// return page;
640 //ust// }
641 //ust// EXPORT_SYMBOL_GPL(ltt_relay_read_get_page);
642
643 /**
644 * ltt_relay_offset_address - get address of a location within the buffer
645 * @buf : buffer
646 * @offset : offset within the buffer.
647 *
648 * Return the address where a given offset is located.
649 * Should be used to get the current subbuffer header pointer. Given we know
650 * it's never on a page boundary, it's safe to write directly to this address,
651 * as long as the write is never bigger than a page size.
652 */
653 void *ltt_relay_offset_address(struct rchan_buf *buf, size_t offset)
654 {
655 //ust// struct buf_page *page;
656 //ust// unsigned int odd;
657 //ust//
658 //ust// offset &= buf->chan->alloc_size - 1;
659 //ust// odd = !!(offset & buf->chan->subbuf_size);
660 //ust// page = buf->hpage[odd];
661 //ust// if (offset < page->offset || offset >= page->offset + PAGE_SIZE)
662 //ust// buf->hpage[odd] = page = buf->wpage;
663 //ust// page = ltt_relay_cache_page(buf, &buf->hpage[odd], page, offset);
664 //ust// return page_address(page->page) + (offset & ~PAGE_MASK);
665 return ((char *)buf->buf_data)+offset;
666 return NULL;
667 }
668 //ust// EXPORT_SYMBOL_GPL(ltt_relay_offset_address);
669
670 /**
671 * relay_file_open - open file op for relay files
672 * @inode: the inode
673 * @filp: the file
674 *
675 * Increments the channel buffer refcount.
676 */
677 //ust// static int relay_file_open(struct inode *inode, struct file *filp)
678 //ust// {
679 //ust// struct rchan_buf *buf = inode->i_private;
680 //ust// kref_get(&buf->kref);
681 //ust// filp->private_data = buf;
682 //ust//
683 //ust// return nonseekable_open(inode, filp);
684 //ust// }
685
686 /**
687 * relay_file_release - release file op for relay files
688 * @inode: the inode
689 * @filp: the file
690 *
691 * Decrements the channel refcount, as the filesystem is
692 * no longer using it.
693 */
694 //ust// static int relay_file_release(struct inode *inode, struct file *filp)
695 //ust// {
696 //ust// struct rchan_buf *buf = filp->private_data;
697 //ust// kref_put(&buf->kref, relay_remove_buf);
698 //ust//
699 //ust// return 0;
700 //ust// }
701
702 //ust// const struct file_operations ltt_relay_file_operations = {
703 //ust// .open = relay_file_open,
704 //ust// .release = relay_file_release,
705 //ust// };
706 //ust// EXPORT_SYMBOL_GPL(ltt_relay_file_operations);
707
708 //ust// static __init int relay_init(void)
709 //ust// {
710 //ust// hotcpu_notifier(relay_hotcpu_callback, 5);
711 //ust// return 0;
712 //ust// }
713
714 //ust// module_init(relay_init);
715 /*
716 * ltt/ltt-relay.c
717 *
718 * (C) Copyright 2005-2008 - Mathieu Desnoyers (mathieu.desnoyers@polymtl.ca)
719 *
720 * LTTng lockless buffer space management (reader/writer).
721 *
722 * Author:
723 * Mathieu Desnoyers (mathieu.desnoyers@polymtl.ca)
724 *
725 * Inspired from LTT :
726 * Karim Yaghmour (karim@opersys.com)
727 * Tom Zanussi (zanussi@us.ibm.com)
728 * Bob Wisniewski (bob@watson.ibm.com)
729 * And from K42 :
730 * Bob Wisniewski (bob@watson.ibm.com)
731 *
732 * Changelog:
733 * 08/10/08, Cleanup.
734 * 19/10/05, Complete lockless mechanism.
735 * 27/05/05, Modular redesign and rewrite.
736 *
737 * Userspace reader semantic :
738 * while (poll fd != POLLHUP) {
739 * - ioctl RELAY_GET_SUBBUF_SIZE
740 * while (1) {
741 * - ioctl GET_SUBBUF
742 * - splice 1 subbuffer worth of data to a pipe
743 * - splice the data from pipe to disk/network
744 * - ioctl PUT_SUBBUF, check error value
745 * if err val < 0, previous subbuffer was corrupted.
746 * }
747 * }
748 */
749
750 //ust// #include <linux/time.h>
751 //ust// #include <linux/ltt-tracer.h>
752 //ust// #include <linux/ltt-relay.h>
753 //ust// #include <linux/module.h>
754 //ust// #include <linux/string.h>
755 //ust// #include <linux/slab.h>
756 //ust// #include <linux/init.h>
757 //ust// #include <linux/rcupdate.h>
758 //ust// #include <linux/sched.h>
759 //ust// #include <linux/bitops.h>
760 //ust// #include <linux/fs.h>
761 //ust// #include <linux/smp_lock.h>
762 //ust// #include <linux/debugfs.h>
763 //ust// #include <linux/stat.h>
764 //ust// #include <linux/cpu.h>
765 //ust// #include <linux/pipe_fs_i.h>
766 //ust// #include <linux/splice.h>
767 //ust// #include <asm/atomic.h>
768 //ust// #include <asm/local.h>
769
770 #if 0
771 #define printk_dbg(fmt, args...) printk(fmt, args)
772 #else
773 #define printk_dbg(fmt, args...)
774 #endif
775
776 /*
777 * Last TSC comparison functions. Check if the current TSC overflows
778 * LTT_TSC_BITS bits from the last TSC read. Reads and writes last_tsc
779 * atomically.
780 */
781
782 #if (BITS_PER_LONG == 32)
783 static inline void save_last_tsc(struct ltt_channel_buf_struct *ltt_buf,
784 u64 tsc)
785 {
786 ltt_buf->last_tsc = (unsigned long)(tsc >> LTT_TSC_BITS);
787 }
788
789 static inline int last_tsc_overflow(struct ltt_channel_buf_struct *ltt_buf,
790 u64 tsc)
791 {
792 unsigned long tsc_shifted = (unsigned long)(tsc >> LTT_TSC_BITS);
793
794 if (unlikely((tsc_shifted - ltt_buf->last_tsc)))
795 return 1;
796 else
797 return 0;
798 }
799 #else
800 static inline void save_last_tsc(struct ltt_channel_buf_struct *ltt_buf,
801 u64 tsc)
802 {
803 ltt_buf->last_tsc = (unsigned long)tsc;
804 }
805
806 static inline int last_tsc_overflow(struct ltt_channel_buf_struct *ltt_buf,
807 u64 tsc)
808 {
809 if (unlikely((tsc - ltt_buf->last_tsc) >> LTT_TSC_BITS))
810 return 1;
811 else
812 return 0;
813 }
814 #endif
815
816 //ust// static struct file_operations ltt_file_operations;
817
818 /*
819 * A switch is done during tracing or as a final flush after tracing (so it
820 * won't write in the new sub-buffer).
821 */
822 enum force_switch_mode { FORCE_ACTIVE, FORCE_FLUSH };
823
824 static int ltt_relay_create_buffer(struct ltt_trace_struct *trace,
825 struct ltt_channel_struct *ltt_chan,
826 struct rchan_buf *buf,
827 unsigned int n_subbufs);
828
829 static void ltt_relay_destroy_buffer(struct ltt_channel_struct *ltt_chan);
830
831 static void ltt_force_switch(struct rchan_buf *buf,
832 enum force_switch_mode mode);
833
834 /*
835 * Trace callbacks
836 */
837 static void ltt_buffer_begin_callback(struct rchan_buf *buf,
838 u64 tsc, unsigned int subbuf_idx)
839 {
840 struct ltt_channel_struct *channel =
841 (struct ltt_channel_struct *)buf->chan->private_data;
842 struct ltt_subbuffer_header *header =
843 (struct ltt_subbuffer_header *)
844 ltt_relay_offset_address(buf,
845 subbuf_idx * buf->chan->subbuf_size);
846
847 header->cycle_count_begin = tsc;
848 header->lost_size = 0xFFFFFFFF; /* for debugging */
849 header->buf_size = buf->chan->subbuf_size;
850 ltt_write_trace_header(channel->trace, header);
851 }
852
853 /*
854 * offset is assumed to never be 0 here : never deliver a completely empty
855 * subbuffer. The lost size is between 0 and subbuf_size-1.
856 */
857 static notrace void ltt_buffer_end_callback(struct rchan_buf *buf,
858 u64 tsc, unsigned int offset, unsigned int subbuf_idx)
859 {
860 struct ltt_channel_struct *channel =
861 (struct ltt_channel_struct *)buf->chan->private_data;
862 struct ltt_channel_buf_struct *ltt_buf = channel->buf;
863 struct ltt_subbuffer_header *header =
864 (struct ltt_subbuffer_header *)
865 ltt_relay_offset_address(buf,
866 subbuf_idx * buf->chan->subbuf_size);
867
868 header->lost_size = SUBBUF_OFFSET((buf->chan->subbuf_size - offset),
869 buf->chan);
870 header->cycle_count_end = tsc;
871 header->events_lost = local_read(&ltt_buf->events_lost);
872 header->subbuf_corrupt = local_read(&ltt_buf->corrupted_subbuffers);
873
874 }
875
876 void (*wake_consumer)(void *, int) = NULL;
877
878 void relay_set_wake_consumer(void (*wake)(void *, int))
879 {
880 wake_consumer = wake;
881 }
882
883 void relay_wake_consumer(void *arg, int finished)
884 {
885 if(wake_consumer)
886 wake_consumer(arg, finished);
887 }
888
889 static notrace void ltt_deliver(struct rchan_buf *buf, unsigned int subbuf_idx,
890 void *subbuf)
891 {
892 struct ltt_channel_struct *channel =
893 (struct ltt_channel_struct *)buf->chan->private_data;
894 struct ltt_channel_buf_struct *ltt_buf = channel->buf;
895 int result;
896
897 result = write(ltt_buf->data_ready_fd_write, "1", 1);
898 if(result == -1) {
899 PERROR("write (in ltt_relay_buffer_flush)");
900 ERR("this should never happen!");
901 }
902 //ust// atomic_set(&ltt_buf->wakeup_readers, 1);
903 }
904
905 static struct dentry *ltt_create_buf_file_callback(struct rchan_buf *buf)
906 {
907 struct ltt_channel_struct *ltt_chan;
908 int err;
909 //ust// struct dentry *dentry;
910
911 ltt_chan = buf->chan->private_data;
912 err = ltt_relay_create_buffer(ltt_chan->trace, ltt_chan, buf, buf->chan->n_subbufs);
913 if (err)
914 return ERR_PTR(err);
915
916 //ust// dentry = debugfs_create_file(filename, mode, parent, buf,
917 //ust// &ltt_file_operations);
918 //ust// if (!dentry)
919 //ust// goto error;
920 //ust// return dentry;
921 return NULL; //ust//
922 //ust//error:
923 ltt_relay_destroy_buffer(ltt_chan);
924 return NULL;
925 }
926
927 static int ltt_remove_buf_file_callback(struct rchan_buf *buf)
928 {
929 //ust// struct rchan_buf *buf = dentry->d_inode->i_private;
930 struct ltt_channel_struct *ltt_chan = buf->chan->private_data;
931
932 //ust// debugfs_remove(dentry);
933 ltt_relay_destroy_buffer(ltt_chan);
934
935 return 0;
936 }
937
938 /*
939 * Wake writers :
940 *
941 * This must be done after the trace is removed from the RCU list so that there
942 * are no stalled writers.
943 */
944 //ust// static void ltt_relay_wake_writers(struct ltt_channel_buf_struct *ltt_buf)
945 //ust// {
946 //ust//
947 //ust// if (waitqueue_active(&ltt_buf->write_wait))
948 //ust// wake_up_interruptible(&ltt_buf->write_wait);
949 //ust// }
950
951 /*
952 * This function should not be called from NMI interrupt context
953 */
954 static notrace void ltt_buf_unfull(struct rchan_buf *buf,
955 unsigned int subbuf_idx,
956 long offset)
957 {
958 //ust// struct ltt_channel_struct *ltt_channel =
959 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
960 //ust// struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
961 //ust//
962 //ust// ltt_relay_wake_writers(ltt_buf);
963 }
964
965 /**
966 * ltt_open - open file op for ltt files
967 * @inode: opened inode
968 * @file: opened file
969 *
970 * Open implementation. Makes sure only one open instance of a buffer is
971 * done at a given moment.
972 */
973 //ust// static int ltt_open(struct inode *inode, struct file *file)
974 //ust// {
975 //ust// struct rchan_buf *buf = inode->i_private;
976 //ust// struct ltt_channel_struct *ltt_channel =
977 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
978 //ust// struct ltt_channel_buf_struct *ltt_buf =
979 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
980 //ust//
981 //ust// if (!atomic_long_add_unless(&ltt_buf->active_readers, 1, 1))
982 //ust// return -EBUSY;
983 //ust// return ltt_relay_file_operations.open(inode, file);
984 //ust// }
985
986 /**
987 * ltt_release - release file op for ltt files
988 * @inode: opened inode
989 * @file: opened file
990 *
991 * Release implementation.
992 */
993 //ust// static int ltt_release(struct inode *inode, struct file *file)
994 //ust// {
995 //ust// struct rchan_buf *buf = inode->i_private;
996 //ust// struct ltt_channel_struct *ltt_channel =
997 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
998 //ust// struct ltt_channel_buf_struct *ltt_buf =
999 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
1000 //ust// int ret;
1001 //ust//
1002 //ust// WARN_ON(atomic_long_read(&ltt_buf->active_readers) != 1);
1003 //ust// atomic_long_dec(&ltt_buf->active_readers);
1004 //ust// ret = ltt_relay_file_operations.release(inode, file);
1005 //ust// WARN_ON(ret);
1006 //ust// return ret;
1007 //ust// }
1008
1009 /**
1010 * ltt_poll - file op for ltt files
1011 * @filp: the file
1012 * @wait: poll table
1013 *
1014 * Poll implementation.
1015 */
1016 //ust// static unsigned int ltt_poll(struct file *filp, poll_table *wait)
1017 //ust// {
1018 //ust// unsigned int mask = 0;
1019 //ust// struct inode *inode = filp->f_dentry->d_inode;
1020 //ust// struct rchan_buf *buf = inode->i_private;
1021 //ust// struct ltt_channel_struct *ltt_channel =
1022 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
1023 //ust// struct ltt_channel_buf_struct *ltt_buf =
1024 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
1025 //ust//
1026 //ust// if (filp->f_mode & FMODE_READ) {
1027 //ust// poll_wait_set_exclusive(wait);
1028 //ust// poll_wait(filp, &buf->read_wait, wait);
1029 //ust//
1030 //ust// WARN_ON(atomic_long_read(&ltt_buf->active_readers) != 1);
1031 //ust// if (SUBBUF_TRUNC(local_read(&ltt_buf->offset),
1032 //ust// buf->chan)
1033 //ust// - SUBBUF_TRUNC(atomic_long_read(&ltt_buf->consumed),
1034 //ust// buf->chan)
1035 //ust// == 0) {
1036 //ust// if (buf->finalized)
1037 //ust// return POLLHUP;
1038 //ust// else
1039 //ust// return 0;
1040 //ust// } else {
1041 //ust// struct rchan *rchan =
1042 //ust// ltt_channel->trans_channel_data;
1043 //ust// if (SUBBUF_TRUNC(local_read(&ltt_buf->offset),
1044 //ust// buf->chan)
1045 //ust// - SUBBUF_TRUNC(atomic_long_read(
1046 //ust// &ltt_buf->consumed),
1047 //ust// buf->chan)
1048 //ust// >= rchan->alloc_size)
1049 //ust// return POLLPRI | POLLRDBAND;
1050 //ust// else
1051 //ust// return POLLIN | POLLRDNORM;
1052 //ust// }
1053 //ust// }
1054 //ust// return mask;
1055 //ust// }
1056
1057 int ltt_do_get_subbuf(struct rchan_buf *buf, struct ltt_channel_buf_struct *ltt_buf, long *pconsumed_old)
1058 {
1059 struct ltt_channel_struct *ltt_channel = (struct ltt_channel_struct *)buf->chan->private_data;
1060 long consumed_old, consumed_idx, commit_count, write_offset;
1061 consumed_old = atomic_long_read(&ltt_buf->consumed);
1062 consumed_idx = SUBBUF_INDEX(consumed_old, buf->chan);
1063 commit_count = local_read(&ltt_buf->commit_count[consumed_idx]);
1064 /*
1065 * Make sure we read the commit count before reading the buffer
1066 * data and the write offset. Correct consumed offset ordering
1067 * wrt commit count is insured by the use of cmpxchg to update
1068 * the consumed offset.
1069 */
1070 smp_rmb();
1071 write_offset = local_read(&ltt_buf->offset);
1072 /*
1073 * Check that the subbuffer we are trying to consume has been
1074 * already fully committed.
1075 */
1076 if (((commit_count - buf->chan->subbuf_size)
1077 & ltt_channel->commit_count_mask)
1078 - (BUFFER_TRUNC(consumed_old, buf->chan)
1079 >> ltt_channel->n_subbufs_order)
1080 != 0) {
1081 return -EAGAIN;
1082 }
1083 /*
1084 * Check that we are not about to read the same subbuffer in
1085 * which the writer head is.
1086 */
1087 if ((SUBBUF_TRUNC(write_offset, buf->chan)
1088 - SUBBUF_TRUNC(consumed_old, buf->chan))
1089 == 0) {
1090 return -EAGAIN;
1091 }
1092
1093 *pconsumed_old = consumed_old;
1094 return 0;
1095 }
1096
1097 int ltt_do_put_subbuf(struct rchan_buf *buf, struct ltt_channel_buf_struct *ltt_buf, u32 uconsumed_old)
1098 {
1099 long consumed_new, consumed_old;
1100
1101 consumed_old = atomic_long_read(&ltt_buf->consumed);
1102 consumed_old = consumed_old & (~0xFFFFFFFFL);
1103 consumed_old = consumed_old | uconsumed_old;
1104 consumed_new = SUBBUF_ALIGN(consumed_old, buf->chan);
1105
1106 //ust// spin_lock(&ltt_buf->full_lock);
1107 if (atomic_long_cmpxchg(&ltt_buf->consumed, consumed_old,
1108 consumed_new)
1109 != consumed_old) {
1110 /* We have been pushed by the writer : the last
1111 * buffer read _is_ corrupted! It can also
1112 * happen if this is a buffer we never got. */
1113 //ust// spin_unlock(&ltt_buf->full_lock);
1114 return -EIO;
1115 } else {
1116 /* tell the client that buffer is now unfull */
1117 int index;
1118 long data;
1119 index = SUBBUF_INDEX(consumed_old, buf->chan);
1120 data = BUFFER_OFFSET(consumed_old, buf->chan);
1121 ltt_buf_unfull(buf, index, data);
1122 //ust// spin_unlock(&ltt_buf->full_lock);
1123 }
1124 return 0;
1125 }
1126
1127 /**
1128 * ltt_ioctl - control on the debugfs file
1129 *
1130 * @inode: the inode
1131 * @filp: the file
1132 * @cmd: the command
1133 * @arg: command arg
1134 *
1135 * This ioctl implements three commands necessary for a minimal
1136 * producer/consumer implementation :
1137 * RELAY_GET_SUBBUF
1138 * Get the next sub buffer that can be read. It never blocks.
1139 * RELAY_PUT_SUBBUF
1140 * Release the currently read sub-buffer. Parameter is the last
1141 * put subbuffer (returned by GET_SUBBUF).
1142 * RELAY_GET_N_BUBBUFS
1143 * returns the number of sub buffers in the per cpu channel.
1144 * RELAY_GET_SUBBUF_SIZE
1145 * returns the size of the sub buffers.
1146 */
1147 //ust// static int ltt_ioctl(struct inode *inode, struct file *filp,
1148 //ust// unsigned int cmd, unsigned long arg)
1149 //ust// {
1150 //ust// struct rchan_buf *buf = inode->i_private;
1151 //ust// struct ltt_channel_struct *ltt_channel =
1152 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
1153 //ust// struct ltt_channel_buf_struct *ltt_buf =
1154 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
1155 //ust// u32 __user *argp = (u32 __user *)arg;
1156 //ust//
1157 //ust// WARN_ON(atomic_long_read(&ltt_buf->active_readers) != 1);
1158 //ust// switch (cmd) {
1159 //ust// case RELAY_GET_SUBBUF:
1160 //ust// {
1161 //ust// int ret;
1162 //ust// ret = ltt_do_get_subbuf(buf, ltt_buf, &consumed_old);
1163 //ust// if(ret < 0)
1164 //ust// return ret;
1165 //ust// return put_user((u32)consumed_old, argp);
1166 //ust// }
1167 //ust// case RELAY_PUT_SUBBUF:
1168 //ust// {
1169 //ust// int ret;
1170 //ust// u32 uconsumed_old;
1171 //ust// ret = get_user(uconsumed_old, argp);
1172 //ust// if (ret)
1173 //ust// return ret; /* will return -EFAULT */
1174 //ust// return ltt_do_put_subbuf(buf, ltt_buf, uconsumed_old);
1175 //ust// }
1176 //ust// case RELAY_GET_N_SUBBUFS:
1177 //ust// return put_user((u32)buf->chan->n_subbufs, argp);
1178 //ust// break;
1179 //ust// case RELAY_GET_SUBBUF_SIZE:
1180 //ust// return put_user((u32)buf->chan->subbuf_size, argp);
1181 //ust// break;
1182 //ust// default:
1183 //ust// return -ENOIOCTLCMD;
1184 //ust// }
1185 //ust// return 0;
1186 //ust// }
1187
1188 //ust// #ifdef CONFIG_COMPAT
1189 //ust// static long ltt_compat_ioctl(struct file *file, unsigned int cmd,
1190 //ust// unsigned long arg)
1191 //ust// {
1192 //ust// long ret = -ENOIOCTLCMD;
1193 //ust//
1194 //ust// lock_kernel();
1195 //ust// ret = ltt_ioctl(file->f_dentry->d_inode, file, cmd, arg);
1196 //ust// unlock_kernel();
1197 //ust//
1198 //ust// return ret;
1199 //ust// }
1200 //ust// #endif
1201
1202 //ust// static void ltt_relay_pipe_buf_release(struct pipe_inode_info *pipe,
1203 //ust// struct pipe_buffer *pbuf)
1204 //ust// {
1205 //ust// }
1206 //ust//
1207 //ust// static struct pipe_buf_operations ltt_relay_pipe_buf_ops = {
1208 //ust// .can_merge = 0,
1209 //ust// .map = generic_pipe_buf_map,
1210 //ust// .unmap = generic_pipe_buf_unmap,
1211 //ust// .confirm = generic_pipe_buf_confirm,
1212 //ust// .release = ltt_relay_pipe_buf_release,
1213 //ust// .steal = generic_pipe_buf_steal,
1214 //ust// .get = generic_pipe_buf_get,
1215 //ust// };
1216
1217 //ust// static void ltt_relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1218 //ust// {
1219 //ust// }
1220
1221 /*
1222 * subbuf_splice_actor - splice up to one subbuf's worth of data
1223 */
1224 //ust// static int subbuf_splice_actor(struct file *in,
1225 //ust// loff_t *ppos,
1226 //ust// struct pipe_inode_info *pipe,
1227 //ust// size_t len,
1228 //ust// unsigned int flags)
1229 //ust// {
1230 //ust// struct rchan_buf *buf = in->private_data;
1231 //ust// struct ltt_channel_struct *ltt_channel =
1232 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
1233 //ust// struct ltt_channel_buf_struct *ltt_buf =
1234 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
1235 //ust// unsigned int poff, subbuf_pages, nr_pages;
1236 //ust// struct page *pages[PIPE_BUFFERS];
1237 //ust// struct partial_page partial[PIPE_BUFFERS];
1238 //ust// struct splice_pipe_desc spd = {
1239 //ust// .pages = pages,
1240 //ust// .nr_pages = 0,
1241 //ust// .partial = partial,
1242 //ust// .flags = flags,
1243 //ust// .ops = &ltt_relay_pipe_buf_ops,
1244 //ust// .spd_release = ltt_relay_page_release,
1245 //ust// };
1246 //ust// long consumed_old, consumed_idx, roffset;
1247 //ust// unsigned long bytes_avail;
1248 //ust//
1249 //ust// /*
1250 //ust// * Check that a GET_SUBBUF ioctl has been done before.
1251 //ust// */
1252 //ust// WARN_ON(atomic_long_read(&ltt_buf->active_readers) != 1);
1253 //ust// consumed_old = atomic_long_read(&ltt_buf->consumed);
1254 //ust// consumed_old += *ppos;
1255 //ust// consumed_idx = SUBBUF_INDEX(consumed_old, buf->chan);
1256 //ust//
1257 //ust// /*
1258 //ust// * Adjust read len, if longer than what is available
1259 //ust// */
1260 //ust// bytes_avail = SUBBUF_TRUNC(local_read(&ltt_buf->offset), buf->chan)
1261 //ust// - consumed_old;
1262 //ust// WARN_ON(bytes_avail > buf->chan->alloc_size);
1263 //ust// len = min_t(size_t, len, bytes_avail);
1264 //ust// subbuf_pages = bytes_avail >> PAGE_SHIFT;
1265 //ust// nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS);
1266 //ust// roffset = consumed_old & PAGE_MASK;
1267 //ust// poff = consumed_old & ~PAGE_MASK;
1268 //ust// printk_dbg(KERN_DEBUG "SPLICE actor len %zu pos %zd write_pos %ld\n",
1269 //ust// len, (ssize_t)*ppos, local_read(&ltt_buf->offset));
1270 //ust//
1271 //ust// for (; spd.nr_pages < nr_pages; spd.nr_pages++) {
1272 //ust// unsigned int this_len;
1273 //ust// struct buf_page *page;
1274 //ust//
1275 //ust// if (!len)
1276 //ust// break;
1277 //ust// printk_dbg(KERN_DEBUG "SPLICE actor loop len %zu roffset %ld\n",
1278 //ust// len, roffset);
1279 //ust//
1280 //ust// this_len = PAGE_SIZE - poff;
1281 //ust// page = ltt_relay_read_get_page(buf, roffset);
1282 //ust// spd.pages[spd.nr_pages] = page->page;
1283 //ust// spd.partial[spd.nr_pages].offset = poff;
1284 //ust// spd.partial[spd.nr_pages].len = this_len;
1285 //ust//
1286 //ust// poff = 0;
1287 //ust// roffset += PAGE_SIZE;
1288 //ust// len -= this_len;
1289 //ust// }
1290 //ust//
1291 //ust// if (!spd.nr_pages)
1292 //ust// return 0;
1293 //ust//
1294 //ust// return splice_to_pipe(pipe, &spd);
1295 //ust// }
1296
1297 //ust// static ssize_t ltt_relay_file_splice_read(struct file *in,
1298 //ust// loff_t *ppos,
1299 //ust// struct pipe_inode_info *pipe,
1300 //ust// size_t len,
1301 //ust// unsigned int flags)
1302 //ust// {
1303 //ust// ssize_t spliced;
1304 //ust// int ret;
1305 //ust//
1306 //ust// ret = 0;
1307 //ust// spliced = 0;
1308 //ust//
1309 //ust// printk_dbg(KERN_DEBUG "SPLICE read len %zu pos %zd\n",
1310 //ust// len, (ssize_t)*ppos);
1311 //ust// while (len && !spliced) {
1312 //ust// ret = subbuf_splice_actor(in, ppos, pipe, len, flags);
1313 //ust// printk_dbg(KERN_DEBUG "SPLICE read loop ret %d\n", ret);
1314 //ust// if (ret < 0)
1315 //ust// break;
1316 //ust// else if (!ret) {
1317 //ust// if (flags & SPLICE_F_NONBLOCK)
1318 //ust// ret = -EAGAIN;
1319 //ust// break;
1320 //ust// }
1321 //ust//
1322 //ust// *ppos += ret;
1323 //ust// if (ret > len)
1324 //ust// len = 0;
1325 //ust// else
1326 //ust// len -= ret;
1327 //ust// spliced += ret;
1328 //ust// }
1329 //ust//
1330 //ust// if (spliced)
1331 //ust// return spliced;
1332 //ust//
1333 //ust// return ret;
1334 //ust// }
1335
1336 static void ltt_relay_print_subbuffer_errors(
1337 struct ltt_channel_struct *ltt_chan,
1338 long cons_off)
1339 {
1340 struct rchan *rchan = ltt_chan->trans_channel_data;
1341 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
1342 long cons_idx, commit_count, write_offset;
1343
1344 cons_idx = SUBBUF_INDEX(cons_off, rchan);
1345 commit_count = local_read(&ltt_buf->commit_count[cons_idx]);
1346 /*
1347 * No need to order commit_count and write_offset reads because we
1348 * execute after trace is stopped when there are no readers left.
1349 */
1350 write_offset = local_read(&ltt_buf->offset);
1351 printk(KERN_WARNING
1352 "LTT : unread channel %s offset is %ld "
1353 "and cons_off : %ld\n",
1354 ltt_chan->channel_name, write_offset, cons_off);
1355 /* Check each sub-buffer for non filled commit count */
1356 if (((commit_count - rchan->subbuf_size) & ltt_chan->commit_count_mask)
1357 - (BUFFER_TRUNC(cons_off, rchan) >> ltt_chan->n_subbufs_order)
1358 != 0)
1359 printk(KERN_ALERT
1360 "LTT : %s : subbuffer %lu has non filled "
1361 "commit count %lu.\n",
1362 ltt_chan->channel_name, cons_idx, commit_count);
1363 printk(KERN_ALERT "LTT : %s : commit count : %lu, subbuf size %zd\n",
1364 ltt_chan->channel_name, commit_count,
1365 rchan->subbuf_size);
1366 }
1367
1368 static void ltt_relay_print_errors(struct ltt_trace_struct *trace,
1369 struct ltt_channel_struct *ltt_chan)
1370 {
1371 struct rchan *rchan = ltt_chan->trans_channel_data;
1372 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
1373 long cons_off;
1374
1375 for (cons_off = atomic_long_read(&ltt_buf->consumed);
1376 (SUBBUF_TRUNC(local_read(&ltt_buf->offset),
1377 rchan)
1378 - cons_off) > 0;
1379 cons_off = SUBBUF_ALIGN(cons_off, rchan))
1380 ltt_relay_print_subbuffer_errors(ltt_chan, cons_off);
1381 }
1382
1383 static void ltt_relay_print_buffer_errors(struct ltt_channel_struct *ltt_chan)
1384 {
1385 struct ltt_trace_struct *trace = ltt_chan->trace;
1386 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
1387
1388 if (local_read(&ltt_buf->events_lost))
1389 printk(KERN_ALERT
1390 "LTT : %s : %ld events lost "
1391 "in %s channel.\n",
1392 ltt_chan->channel_name,
1393 local_read(&ltt_buf->events_lost),
1394 ltt_chan->channel_name);
1395 if (local_read(&ltt_buf->corrupted_subbuffers))
1396 printk(KERN_ALERT
1397 "LTT : %s : %ld corrupted subbuffers "
1398 "in %s channel.\n",
1399 ltt_chan->channel_name,
1400 local_read(&ltt_buf->corrupted_subbuffers),
1401 ltt_chan->channel_name);
1402
1403 ltt_relay_print_errors(trace, ltt_chan);
1404 }
1405
1406 static void ltt_relay_remove_dirs(struct ltt_trace_struct *trace)
1407 {
1408 //ust// debugfs_remove(trace->dentry.trace_root);
1409 }
1410
1411 static void ltt_relay_release_channel(struct kref *kref)
1412 {
1413 struct ltt_channel_struct *ltt_chan = container_of(kref,
1414 struct ltt_channel_struct, kref);
1415 free(ltt_chan->buf);
1416 }
1417
1418 /*
1419 * Create ltt buffer.
1420 */
1421 //ust// static int ltt_relay_create_buffer(struct ltt_trace_struct *trace,
1422 //ust// struct ltt_channel_struct *ltt_chan, struct rchan_buf *buf,
1423 //ust// unsigned int cpu, unsigned int n_subbufs)
1424 //ust// {
1425 //ust// struct ltt_channel_buf_struct *ltt_buf =
1426 //ust// percpu_ptr(ltt_chan->buf, cpu);
1427 //ust// unsigned int j;
1428 //ust//
1429 //ust// ltt_buf->commit_count =
1430 //ust// kzalloc_node(sizeof(ltt_buf->commit_count) * n_subbufs,
1431 //ust// GFP_KERNEL, cpu_to_node(cpu));
1432 //ust// if (!ltt_buf->commit_count)
1433 //ust// return -ENOMEM;
1434 //ust// kref_get(&trace->kref);
1435 //ust// kref_get(&trace->ltt_transport_kref);
1436 //ust// kref_get(&ltt_chan->kref);
1437 //ust// local_set(&ltt_buf->offset, ltt_subbuffer_header_size());
1438 //ust// atomic_long_set(&ltt_buf->consumed, 0);
1439 //ust// atomic_long_set(&ltt_buf->active_readers, 0);
1440 //ust// for (j = 0; j < n_subbufs; j++)
1441 //ust// local_set(&ltt_buf->commit_count[j], 0);
1442 //ust// init_waitqueue_head(&ltt_buf->write_wait);
1443 //ust// atomic_set(&ltt_buf->wakeup_readers, 0);
1444 //ust// spin_lock_init(&ltt_buf->full_lock);
1445 //ust//
1446 //ust// ltt_buffer_begin_callback(buf, trace->start_tsc, 0);
1447 //ust// /* atomic_add made on local variable on data that belongs to
1448 //ust// * various CPUs : ok because tracing not started (for this cpu). */
1449 //ust// local_add(ltt_subbuffer_header_size(), &ltt_buf->commit_count[0]);
1450 //ust//
1451 //ust// local_set(&ltt_buf->events_lost, 0);
1452 //ust// local_set(&ltt_buf->corrupted_subbuffers, 0);
1453 //ust//
1454 //ust// return 0;
1455 //ust// }
1456
1457 static int ltt_relay_create_buffer(struct ltt_trace_struct *trace,
1458 struct ltt_channel_struct *ltt_chan, struct rchan_buf *buf,
1459 unsigned int n_subbufs)
1460 {
1461 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
1462 unsigned int j;
1463 int fds[2];
1464 int result;
1465
1466 ltt_buf->commit_count =
1467 zmalloc(sizeof(ltt_buf->commit_count) * n_subbufs);
1468 if (!ltt_buf->commit_count)
1469 return -ENOMEM;
1470 kref_get(&trace->kref);
1471 kref_get(&trace->ltt_transport_kref);
1472 kref_get(&ltt_chan->kref);
1473 local_set(&ltt_buf->offset, ltt_subbuffer_header_size());
1474 atomic_long_set(&ltt_buf->consumed, 0);
1475 atomic_long_set(&ltt_buf->active_readers, 0);
1476 for (j = 0; j < n_subbufs; j++)
1477 local_set(&ltt_buf->commit_count[j], 0);
1478 //ust// init_waitqueue_head(&ltt_buf->write_wait);
1479 //ust// atomic_set(&ltt_buf->wakeup_readers, 0);
1480 //ust// spin_lock_init(&ltt_buf->full_lock);
1481
1482 ltt_buffer_begin_callback(buf, trace->start_tsc, 0);
1483
1484 local_add(ltt_subbuffer_header_size(), &ltt_buf->commit_count[0]);
1485
1486 local_set(&ltt_buf->events_lost, 0);
1487 local_set(&ltt_buf->corrupted_subbuffers, 0);
1488
1489 result = pipe(fds);
1490 if(result == -1) {
1491 PERROR("pipe");
1492 return -1;
1493 }
1494 ltt_buf->data_ready_fd_read = fds[0];
1495 ltt_buf->data_ready_fd_write = fds[1];
1496
1497 return 0;
1498 }
1499
1500 static void ltt_relay_destroy_buffer(struct ltt_channel_struct *ltt_chan)
1501 {
1502 struct ltt_trace_struct *trace = ltt_chan->trace;
1503 struct ltt_channel_buf_struct *ltt_buf = ltt_chan->buf;
1504
1505 kref_put(&ltt_chan->trace->ltt_transport_kref,
1506 ltt_release_transport);
1507 ltt_relay_print_buffer_errors(ltt_chan);
1508 kfree(ltt_buf->commit_count);
1509 ltt_buf->commit_count = NULL;
1510 kref_put(&ltt_chan->kref, ltt_relay_release_channel);
1511 kref_put(&trace->kref, ltt_release_trace);
1512 //ust// wake_up_interruptible(&trace->kref_wq);
1513 }
1514
1515 /*
1516 * Create channel.
1517 */
1518 static int ltt_relay_create_channel(const char *trace_name,
1519 struct ltt_trace_struct *trace, struct dentry *dir,
1520 const char *channel_name, struct ltt_channel_struct *ltt_chan,
1521 unsigned int subbuf_size, unsigned int n_subbufs,
1522 int overwrite)
1523 {
1524 char *tmpname;
1525 unsigned int tmpname_len;
1526 int err = 0;
1527
1528 tmpname = kmalloc(PATH_MAX, GFP_KERNEL);
1529 if (!tmpname)
1530 return EPERM;
1531 if (overwrite) {
1532 strncpy(tmpname, LTT_FLIGHT_PREFIX, PATH_MAX-1);
1533 strncat(tmpname, channel_name,
1534 PATH_MAX-1-sizeof(LTT_FLIGHT_PREFIX));
1535 } else {
1536 strncpy(tmpname, channel_name, PATH_MAX-1);
1537 }
1538 strncat(tmpname, "_", PATH_MAX-1-strlen(tmpname));
1539
1540 kref_init(&ltt_chan->kref);
1541
1542 ltt_chan->trace = trace;
1543 ltt_chan->buffer_begin = ltt_buffer_begin_callback;
1544 ltt_chan->buffer_end = ltt_buffer_end_callback;
1545 ltt_chan->overwrite = overwrite;
1546 ltt_chan->n_subbufs_order = get_count_order(n_subbufs);
1547 ltt_chan->commit_count_mask = (~0UL >> ltt_chan->n_subbufs_order);
1548 //ust// ltt_chan->buf = percpu_alloc_mask(sizeof(struct ltt_channel_buf_struct), GFP_KERNEL, cpu_possible_map);
1549 ltt_chan->buf = malloc(sizeof(struct ltt_channel_buf_struct));
1550 if (!ltt_chan->buf)
1551 goto alloc_error;
1552 ltt_chan->trans_channel_data = ltt_relay_open(tmpname,
1553 dir,
1554 subbuf_size,
1555 n_subbufs,
1556 ltt_chan);
1557 tmpname_len = strlen(tmpname);
1558 if (tmpname_len > 0) {
1559 /* Remove final _ for pretty printing */
1560 tmpname[tmpname_len-1] = '\0';
1561 }
1562 if (ltt_chan->trans_channel_data == NULL) {
1563 printk(KERN_ERR "LTT : Can't open %s channel for trace %s\n",
1564 tmpname, trace_name);
1565 goto relay_open_error;
1566 }
1567
1568 err = 0;
1569 goto end;
1570
1571 relay_open_error:
1572 //ust// percpu_free(ltt_chan->buf);
1573 alloc_error:
1574 err = EPERM;
1575 end:
1576 kfree(tmpname);
1577 return err;
1578 }
1579
1580 static int ltt_relay_create_dirs(struct ltt_trace_struct *new_trace)
1581 {
1582 //ust// new_trace->dentry.trace_root = debugfs_create_dir(new_trace->trace_name,
1583 //ust// get_ltt_root());
1584 //ust// if (new_trace->dentry.trace_root == NULL) {
1585 //ust// printk(KERN_ERR "LTT : Trace directory name %s already taken\n",
1586 //ust// new_trace->trace_name);
1587 //ust// return EEXIST;
1588 //ust// }
1589
1590 //ust// new_trace->callbacks.create_buf_file = ltt_create_buf_file_callback;
1591 //ust// new_trace->callbacks.remove_buf_file = ltt_remove_buf_file_callback;
1592
1593 return 0;
1594 }
1595
1596 /*
1597 * LTTng channel flush function.
1598 *
1599 * Must be called when no tracing is active in the channel, because of
1600 * accesses across CPUs.
1601 */
1602 static notrace void ltt_relay_buffer_flush(struct rchan_buf *buf)
1603 {
1604 struct ltt_channel_struct *channel =
1605 (struct ltt_channel_struct *)buf->chan->private_data;
1606 struct ltt_channel_buf_struct *ltt_buf = channel->buf;
1607 int result;
1608
1609 buf->finalized = 1;
1610 ltt_force_switch(buf, FORCE_FLUSH);
1611
1612 result = write(ltt_buf->data_ready_fd_write, "1", 1);
1613 if(result == -1) {
1614 PERROR("write (in ltt_relay_buffer_flush)");
1615 ERR("this should never happen!");
1616 }
1617 }
1618
1619 static void ltt_relay_async_wakeup_chan(struct ltt_channel_struct *ltt_channel)
1620 {
1621 //ust// unsigned int i;
1622 //ust// struct rchan *rchan = ltt_channel->trans_channel_data;
1623 //ust//
1624 //ust// for_each_possible_cpu(i) {
1625 //ust// struct ltt_channel_buf_struct *ltt_buf =
1626 //ust// percpu_ptr(ltt_channel->buf, i);
1627 //ust//
1628 //ust// if (atomic_read(&ltt_buf->wakeup_readers) == 1) {
1629 //ust// atomic_set(&ltt_buf->wakeup_readers, 0);
1630 //ust// wake_up_interruptible(&rchan->buf[i]->read_wait);
1631 //ust// }
1632 //ust// }
1633 }
1634
1635 static void ltt_relay_finish_buffer(struct ltt_channel_struct *ltt_channel)
1636 {
1637 struct rchan *rchan = ltt_channel->trans_channel_data;
1638 int result;
1639
1640 if (rchan->buf) {
1641 struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
1642 ltt_relay_buffer_flush(rchan->buf);
1643 //ust// ltt_relay_wake_writers(ltt_buf);
1644 /* closing the pipe tells the consumer the buffer is finished */
1645
1646 //result = write(ltt_buf->data_ready_fd_write, "D", 1);
1647 //if(result == -1) {
1648 // PERROR("write (in ltt_relay_finish_buffer)");
1649 // ERR("this should never happen!");
1650 //}
1651 close(ltt_buf->data_ready_fd_write);
1652 }
1653 }
1654
1655
1656 static void ltt_relay_finish_channel(struct ltt_channel_struct *ltt_channel)
1657 {
1658 unsigned int i;
1659
1660 //ust// for_each_possible_cpu(i)
1661 ltt_relay_finish_buffer(ltt_channel);
1662 }
1663
1664 static void ltt_relay_remove_channel(struct ltt_channel_struct *channel)
1665 {
1666 struct rchan *rchan = channel->trans_channel_data;
1667
1668 ltt_relay_close(rchan);
1669 kref_put(&channel->kref, ltt_relay_release_channel);
1670 }
1671
1672 struct ltt_reserve_switch_offsets {
1673 long begin, end, old;
1674 long begin_switch, end_switch_current, end_switch_old;
1675 long commit_count, reserve_commit_diff;
1676 size_t before_hdr_pad, size;
1677 };
1678
1679 /*
1680 * Returns :
1681 * 0 if ok
1682 * !0 if execution must be aborted.
1683 */
1684 static inline int ltt_relay_try_reserve(
1685 struct ltt_channel_struct *ltt_channel,
1686 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1687 struct rchan_buf *buf,
1688 struct ltt_reserve_switch_offsets *offsets, size_t data_size,
1689 u64 *tsc, unsigned int *rflags, int largest_align)
1690 {
1691 offsets->begin = local_read(&ltt_buf->offset);
1692 offsets->old = offsets->begin;
1693 offsets->begin_switch = 0;
1694 offsets->end_switch_current = 0;
1695 offsets->end_switch_old = 0;
1696
1697 *tsc = trace_clock_read64();
1698 if (last_tsc_overflow(ltt_buf, *tsc))
1699 *rflags = LTT_RFLAG_ID_SIZE_TSC;
1700
1701 if (SUBBUF_OFFSET(offsets->begin, buf->chan) == 0) {
1702 offsets->begin_switch = 1; /* For offsets->begin */
1703 } else {
1704 offsets->size = ltt_get_header_size(ltt_channel,
1705 offsets->begin, data_size,
1706 &offsets->before_hdr_pad, *rflags);
1707 offsets->size += ltt_align(offsets->begin + offsets->size,
1708 largest_align)
1709 + data_size;
1710 if ((SUBBUF_OFFSET(offsets->begin, buf->chan) + offsets->size)
1711 > buf->chan->subbuf_size) {
1712 offsets->end_switch_old = 1; /* For offsets->old */
1713 offsets->begin_switch = 1; /* For offsets->begin */
1714 }
1715 }
1716 if (offsets->begin_switch) {
1717 long subbuf_index;
1718
1719 if (offsets->end_switch_old)
1720 offsets->begin = SUBBUF_ALIGN(offsets->begin,
1721 buf->chan);
1722 offsets->begin = offsets->begin + ltt_subbuffer_header_size();
1723 /* Test new buffer integrity */
1724 subbuf_index = SUBBUF_INDEX(offsets->begin, buf->chan);
1725 offsets->reserve_commit_diff =
1726 (BUFFER_TRUNC(offsets->begin, buf->chan)
1727 >> ltt_channel->n_subbufs_order)
1728 - (local_read(&ltt_buf->commit_count[subbuf_index])
1729 & ltt_channel->commit_count_mask);
1730 if (offsets->reserve_commit_diff == 0) {
1731 /* Next buffer not corrupted. */
1732 if (!ltt_channel->overwrite &&
1733 (SUBBUF_TRUNC(offsets->begin, buf->chan)
1734 - SUBBUF_TRUNC(atomic_long_read(
1735 &ltt_buf->consumed),
1736 buf->chan))
1737 >= rchan->alloc_size) {
1738 /*
1739 * We do not overwrite non consumed buffers
1740 * and we are full : event is lost.
1741 */
1742 local_inc(&ltt_buf->events_lost);
1743 return -1;
1744 } else {
1745 /*
1746 * next buffer not corrupted, we are either in
1747 * overwrite mode or the buffer is not full.
1748 * It's safe to write in this new subbuffer.
1749 */
1750 }
1751 } else {
1752 /*
1753 * Next subbuffer corrupted. Force pushing reader even
1754 * in normal mode. It's safe to write in this new
1755 * subbuffer.
1756 */
1757 }
1758 offsets->size = ltt_get_header_size(ltt_channel,
1759 offsets->begin, data_size,
1760 &offsets->before_hdr_pad, *rflags);
1761 offsets->size += ltt_align(offsets->begin + offsets->size,
1762 largest_align)
1763 + data_size;
1764 if ((SUBBUF_OFFSET(offsets->begin, buf->chan) + offsets->size)
1765 > buf->chan->subbuf_size) {
1766 /*
1767 * Event too big for subbuffers, report error, don't
1768 * complete the sub-buffer switch.
1769 */
1770 local_inc(&ltt_buf->events_lost);
1771 return -1;
1772 } else {
1773 /*
1774 * We just made a successful buffer switch and the event
1775 * fits in the new subbuffer. Let's write.
1776 */
1777 }
1778 } else {
1779 /*
1780 * Event fits in the current buffer and we are not on a switch
1781 * boundary. It's safe to write.
1782 */
1783 }
1784 offsets->end = offsets->begin + offsets->size;
1785
1786 if ((SUBBUF_OFFSET(offsets->end, buf->chan)) == 0) {
1787 /*
1788 * The offset_end will fall at the very beginning of the next
1789 * subbuffer.
1790 */
1791 offsets->end_switch_current = 1; /* For offsets->begin */
1792 }
1793 return 0;
1794 }
1795
1796 /*
1797 * Returns :
1798 * 0 if ok
1799 * !0 if execution must be aborted.
1800 */
1801 static inline int ltt_relay_try_switch(
1802 enum force_switch_mode mode,
1803 struct ltt_channel_struct *ltt_channel,
1804 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1805 struct rchan_buf *buf,
1806 struct ltt_reserve_switch_offsets *offsets,
1807 u64 *tsc)
1808 {
1809 long subbuf_index;
1810
1811 offsets->begin = local_read(&ltt_buf->offset);
1812 offsets->old = offsets->begin;
1813 offsets->begin_switch = 0;
1814 offsets->end_switch_old = 0;
1815
1816 *tsc = trace_clock_read64();
1817
1818 if (SUBBUF_OFFSET(offsets->begin, buf->chan) != 0) {
1819 offsets->begin = SUBBUF_ALIGN(offsets->begin, buf->chan);
1820 offsets->end_switch_old = 1;
1821 } else {
1822 /* we do not have to switch : buffer is empty */
1823 return -1;
1824 }
1825 if (mode == FORCE_ACTIVE)
1826 offsets->begin += ltt_subbuffer_header_size();
1827 /*
1828 * Always begin_switch in FORCE_ACTIVE mode.
1829 * Test new buffer integrity
1830 */
1831 subbuf_index = SUBBUF_INDEX(offsets->begin, buf->chan);
1832 offsets->reserve_commit_diff =
1833 (BUFFER_TRUNC(offsets->begin, buf->chan)
1834 >> ltt_channel->n_subbufs_order)
1835 - (local_read(&ltt_buf->commit_count[subbuf_index])
1836 & ltt_channel->commit_count_mask);
1837 if (offsets->reserve_commit_diff == 0) {
1838 /* Next buffer not corrupted. */
1839 if (mode == FORCE_ACTIVE
1840 && !ltt_channel->overwrite
1841 && offsets->begin - atomic_long_read(&ltt_buf->consumed)
1842 >= rchan->alloc_size) {
1843 /*
1844 * We do not overwrite non consumed buffers and we are
1845 * full : ignore switch while tracing is active.
1846 */
1847 return -1;
1848 }
1849 } else {
1850 /*
1851 * Next subbuffer corrupted. Force pushing reader even in normal
1852 * mode
1853 */
1854 }
1855 offsets->end = offsets->begin;
1856 return 0;
1857 }
1858
1859 static inline void ltt_reserve_push_reader(
1860 struct ltt_channel_struct *ltt_channel,
1861 struct ltt_channel_buf_struct *ltt_buf,
1862 struct rchan *rchan,
1863 struct rchan_buf *buf,
1864 struct ltt_reserve_switch_offsets *offsets)
1865 {
1866 long consumed_old, consumed_new;
1867
1868 do {
1869 consumed_old = atomic_long_read(&ltt_buf->consumed);
1870 /*
1871 * If buffer is in overwrite mode, push the reader consumed
1872 * count if the write position has reached it and we are not
1873 * at the first iteration (don't push the reader farther than
1874 * the writer). This operation can be done concurrently by many
1875 * writers in the same buffer, the writer being at the farthest
1876 * write position sub-buffer index in the buffer being the one
1877 * which will win this loop.
1878 * If the buffer is not in overwrite mode, pushing the reader
1879 * only happens if a sub-buffer is corrupted.
1880 */
1881 if ((SUBBUF_TRUNC(offsets->end-1, buf->chan)
1882 - SUBBUF_TRUNC(consumed_old, buf->chan))
1883 >= rchan->alloc_size)
1884 consumed_new = SUBBUF_ALIGN(consumed_old, buf->chan);
1885 else {
1886 consumed_new = consumed_old;
1887 break;
1888 }
1889 } while (atomic_long_cmpxchg(&ltt_buf->consumed, consumed_old,
1890 consumed_new) != consumed_old);
1891
1892 if (consumed_old != consumed_new) {
1893 /*
1894 * Reader pushed : we are the winner of the push, we can
1895 * therefore reequilibrate reserve and commit. Atomic increment
1896 * of the commit count permits other writers to play around
1897 * with this variable before us. We keep track of
1898 * corrupted_subbuffers even in overwrite mode :
1899 * we never want to write over a non completely committed
1900 * sub-buffer : possible causes : the buffer size is too low
1901 * compared to the unordered data input, or there is a writer
1902 * that died between the reserve and the commit.
1903 */
1904 if (offsets->reserve_commit_diff) {
1905 /*
1906 * We have to alter the sub-buffer commit count.
1907 * We do not deliver the previous subbuffer, given it
1908 * was either corrupted or not consumed (overwrite
1909 * mode).
1910 */
1911 local_add(offsets->reserve_commit_diff,
1912 &ltt_buf->commit_count[
1913 SUBBUF_INDEX(offsets->begin,
1914 buf->chan)]);
1915 if (!ltt_channel->overwrite
1916 || offsets->reserve_commit_diff
1917 != rchan->subbuf_size) {
1918 /*
1919 * The reserve commit diff was not subbuf_size :
1920 * it means the subbuffer was partly written to
1921 * and is therefore corrupted. If it is multiple
1922 * of subbuffer size and we are in flight
1923 * recorder mode, we are skipping over a whole
1924 * subbuffer.
1925 */
1926 local_inc(&ltt_buf->corrupted_subbuffers);
1927 }
1928 }
1929 }
1930 }
1931
1932
1933 /*
1934 * ltt_reserve_switch_old_subbuf: switch old subbuffer
1935 *
1936 * Concurrency safe because we are the last and only thread to alter this
1937 * sub-buffer. As long as it is not delivered and read, no other thread can
1938 * alter the offset, alter the reserve_count or call the
1939 * client_buffer_end_callback on this sub-buffer.
1940 *
1941 * The only remaining threads could be the ones with pending commits. They will
1942 * have to do the deliver themselves. Not concurrency safe in overwrite mode.
1943 * We detect corrupted subbuffers with commit and reserve counts. We keep a
1944 * corrupted sub-buffers count and push the readers across these sub-buffers.
1945 *
1946 * Not concurrency safe if a writer is stalled in a subbuffer and another writer
1947 * switches in, finding out it's corrupted. The result will be than the old
1948 * (uncommited) subbuffer will be declared corrupted, and that the new subbuffer
1949 * will be declared corrupted too because of the commit count adjustment.
1950 *
1951 * Note : offset_old should never be 0 here.
1952 */
1953 static inline void ltt_reserve_switch_old_subbuf(
1954 struct ltt_channel_struct *ltt_channel,
1955 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1956 struct rchan_buf *buf,
1957 struct ltt_reserve_switch_offsets *offsets, u64 *tsc)
1958 {
1959 long oldidx = SUBBUF_INDEX(offsets->old - 1, rchan);
1960
1961 ltt_channel->buffer_end(buf, *tsc, offsets->old, oldidx);
1962 /* Must write buffer end before incrementing commit count */
1963 smp_wmb();
1964 offsets->commit_count =
1965 local_add_return(rchan->subbuf_size
1966 - (SUBBUF_OFFSET(offsets->old - 1, rchan)
1967 + 1),
1968 &ltt_buf->commit_count[oldidx]);
1969 if ((BUFFER_TRUNC(offsets->old - 1, rchan)
1970 >> ltt_channel->n_subbufs_order)
1971 - ((offsets->commit_count - rchan->subbuf_size)
1972 & ltt_channel->commit_count_mask) == 0)
1973 ltt_deliver(buf, oldidx, NULL);
1974 }
1975
1976 /*
1977 * ltt_reserve_switch_new_subbuf: Populate new subbuffer.
1978 *
1979 * This code can be executed unordered : writers may already have written to the
1980 * sub-buffer before this code gets executed, caution. The commit makes sure
1981 * that this code is executed before the deliver of this sub-buffer.
1982 */
1983 static inline void ltt_reserve_switch_new_subbuf(
1984 struct ltt_channel_struct *ltt_channel,
1985 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
1986 struct rchan_buf *buf,
1987 struct ltt_reserve_switch_offsets *offsets, u64 *tsc)
1988 {
1989 long beginidx = SUBBUF_INDEX(offsets->begin, rchan);
1990
1991 ltt_channel->buffer_begin(buf, *tsc, beginidx);
1992 /* Must write buffer end before incrementing commit count */
1993 smp_wmb();
1994 offsets->commit_count = local_add_return(ltt_subbuffer_header_size(),
1995 &ltt_buf->commit_count[beginidx]);
1996 /* Check if the written buffer has to be delivered */
1997 if ((BUFFER_TRUNC(offsets->begin, rchan)
1998 >> ltt_channel->n_subbufs_order)
1999 - ((offsets->commit_count - rchan->subbuf_size)
2000 & ltt_channel->commit_count_mask) == 0)
2001 ltt_deliver(buf, beginidx, NULL);
2002 }
2003
2004
2005 /*
2006 * ltt_reserve_end_switch_current: finish switching current subbuffer
2007 *
2008 * Concurrency safe because we are the last and only thread to alter this
2009 * sub-buffer. As long as it is not delivered and read, no other thread can
2010 * alter the offset, alter the reserve_count or call the
2011 * client_buffer_end_callback on this sub-buffer.
2012 *
2013 * The only remaining threads could be the ones with pending commits. They will
2014 * have to do the deliver themselves. Not concurrency safe in overwrite mode.
2015 * We detect corrupted subbuffers with commit and reserve counts. We keep a
2016 * corrupted sub-buffers count and push the readers across these sub-buffers.
2017 *
2018 * Not concurrency safe if a writer is stalled in a subbuffer and another writer
2019 * switches in, finding out it's corrupted. The result will be than the old
2020 * (uncommited) subbuffer will be declared corrupted, and that the new subbuffer
2021 * will be declared corrupted too because of the commit count adjustment.
2022 */
2023 static inline void ltt_reserve_end_switch_current(
2024 struct ltt_channel_struct *ltt_channel,
2025 struct ltt_channel_buf_struct *ltt_buf, struct rchan *rchan,
2026 struct rchan_buf *buf,
2027 struct ltt_reserve_switch_offsets *offsets, u64 *tsc)
2028 {
2029 long endidx = SUBBUF_INDEX(offsets->end - 1, rchan);
2030
2031 ltt_channel->buffer_end(buf, *tsc, offsets->end, endidx);
2032 /* Must write buffer begin before incrementing commit count */
2033 smp_wmb();
2034 offsets->commit_count =
2035 local_add_return(rchan->subbuf_size
2036 - (SUBBUF_OFFSET(offsets->end - 1, rchan)
2037 + 1),
2038 &ltt_buf->commit_count[endidx]);
2039 if ((BUFFER_TRUNC(offsets->end - 1, rchan)
2040 >> ltt_channel->n_subbufs_order)
2041 - ((offsets->commit_count - rchan->subbuf_size)
2042 & ltt_channel->commit_count_mask) == 0)
2043 ltt_deliver(buf, endidx, NULL);
2044 }
2045
2046 /**
2047 * ltt_relay_reserve_slot - Atomic slot reservation in a LTTng buffer.
2048 * @trace: the trace structure to log to.
2049 * @ltt_channel: channel structure
2050 * @transport_data: data structure specific to ltt relay
2051 * @data_size: size of the variable length data to log.
2052 * @slot_size: pointer to total size of the slot (out)
2053 * @buf_offset : pointer to reserved buffer offset (out)
2054 * @tsc: pointer to the tsc at the slot reservation (out)
2055 * @cpu: cpuid
2056 *
2057 * Return : -ENOSPC if not enough space, else returns 0.
2058 * It will take care of sub-buffer switching.
2059 */
2060 static notrace int ltt_relay_reserve_slot(struct ltt_trace_struct *trace,
2061 struct ltt_channel_struct *ltt_channel, void **transport_data,
2062 size_t data_size, size_t *slot_size, long *buf_offset, u64 *tsc,
2063 unsigned int *rflags, int largest_align)
2064 {
2065 struct rchan *rchan = ltt_channel->trans_channel_data;
2066 struct rchan_buf *buf = *transport_data = rchan->buf;
2067 struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
2068 struct ltt_reserve_switch_offsets offsets;
2069
2070 offsets.reserve_commit_diff = 0;
2071 offsets.size = 0;
2072
2073 /*
2074 * Perform retryable operations.
2075 */
2076 if (ltt_nesting > 4) {
2077 local_inc(&ltt_buf->events_lost);
2078 return -EPERM;
2079 }
2080 do {
2081 if (ltt_relay_try_reserve(ltt_channel, ltt_buf,
2082 rchan, buf, &offsets, data_size, tsc, rflags,
2083 largest_align))
2084 return -ENOSPC;
2085 } while (local_cmpxchg(&ltt_buf->offset, offsets.old,
2086 offsets.end) != offsets.old);
2087
2088 /*
2089 * Atomically update last_tsc. This update races against concurrent
2090 * atomic updates, but the race will always cause supplementary full TSC
2091 * events, never the opposite (missing a full TSC event when it would be
2092 * needed).
2093 */
2094 save_last_tsc(ltt_buf, *tsc);
2095
2096 /*
2097 * Push the reader if necessary
2098 */
2099 ltt_reserve_push_reader(ltt_channel, ltt_buf, rchan, buf, &offsets);
2100
2101 /*
2102 * Switch old subbuffer if needed.
2103 */
2104 if (offsets.end_switch_old)
2105 ltt_reserve_switch_old_subbuf(ltt_channel, ltt_buf, rchan, buf,
2106 &offsets, tsc);
2107
2108 /*
2109 * Populate new subbuffer.
2110 */
2111 if (offsets.begin_switch)
2112 ltt_reserve_switch_new_subbuf(ltt_channel, ltt_buf, rchan,
2113 buf, &offsets, tsc);
2114
2115 if (offsets.end_switch_current)
2116 ltt_reserve_end_switch_current(ltt_channel, ltt_buf, rchan,
2117 buf, &offsets, tsc);
2118
2119 *slot_size = offsets.size;
2120 *buf_offset = offsets.begin + offsets.before_hdr_pad;
2121 return 0;
2122 }
2123
2124 /*
2125 * Force a sub-buffer switch for a per-cpu buffer. This operation is
2126 * completely reentrant : can be called while tracing is active with
2127 * absolutely no lock held.
2128 *
2129 * Note, however, that as a local_cmpxchg is used for some atomic
2130 * operations, this function must be called from the CPU which owns the buffer
2131 * for a ACTIVE flush.
2132 */
2133 static notrace void ltt_force_switch(struct rchan_buf *buf,
2134 enum force_switch_mode mode)
2135 {
2136 struct ltt_channel_struct *ltt_channel =
2137 (struct ltt_channel_struct *)buf->chan->private_data;
2138 struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
2139 struct rchan *rchan = ltt_channel->trans_channel_data;
2140 struct ltt_reserve_switch_offsets offsets;
2141 u64 tsc;
2142
2143 offsets.reserve_commit_diff = 0;
2144 offsets.size = 0;
2145
2146 /*
2147 * Perform retryable operations.
2148 */
2149 do {
2150 if (ltt_relay_try_switch(mode, ltt_channel, ltt_buf,
2151 rchan, buf, &offsets, &tsc))
2152 return;
2153 } while (local_cmpxchg(&ltt_buf->offset, offsets.old,
2154 offsets.end) != offsets.old);
2155
2156 /*
2157 * Atomically update last_tsc. This update races against concurrent
2158 * atomic updates, but the race will always cause supplementary full TSC
2159 * events, never the opposite (missing a full TSC event when it would be
2160 * needed).
2161 */
2162 save_last_tsc(ltt_buf, tsc);
2163
2164 /*
2165 * Push the reader if necessary
2166 */
2167 if (mode == FORCE_ACTIVE)
2168 ltt_reserve_push_reader(ltt_channel, ltt_buf, rchan,
2169 buf, &offsets);
2170
2171 /*
2172 * Switch old subbuffer if needed.
2173 */
2174 if (offsets.end_switch_old)
2175 ltt_reserve_switch_old_subbuf(ltt_channel, ltt_buf, rchan, buf,
2176 &offsets, &tsc);
2177
2178 /*
2179 * Populate new subbuffer.
2180 */
2181 if (mode == FORCE_ACTIVE)
2182 ltt_reserve_switch_new_subbuf(ltt_channel,
2183 ltt_buf, rchan, buf, &offsets, &tsc);
2184 }
2185
2186 /*
2187 * for flight recording. must be called after relay_commit.
2188 * This function decrements de subbuffer's lost_size each time the commit count
2189 * reaches back the reserve offset (module subbuffer size). It is useful for
2190 * crash dump.
2191 * We use slot_size - 1 to make sure we deal correctly with the case where we
2192 * fill the subbuffer completely (so the subbuf index stays in the previous
2193 * subbuffer).
2194 */
2195 #ifdef CONFIG_LTT_VMCORE
2196 static inline void ltt_write_commit_counter(struct rchan_buf *buf,
2197 long buf_offset, size_t slot_size)
2198 {
2199 struct ltt_channel_struct *ltt_channel =
2200 (struct ltt_channel_struct *)buf->chan->private_data;
2201 struct ltt_channel_buf_struct *ltt_buf =
2202 percpu_ptr(ltt_channel->buf, buf->cpu);
2203 struct ltt_subbuffer_header *header;
2204 long offset, subbuf_idx, commit_count;
2205 uint32_t lost_old, lost_new;
2206
2207 subbuf_idx = SUBBUF_INDEX(buf_offset - 1, buf->chan);
2208 offset = buf_offset + slot_size;
2209 header = (struct ltt_subbuffer_header *)
2210 ltt_relay_offset_address(buf,
2211 subbuf_idx * buf->chan->subbuf_size);
2212 for (;;) {
2213 lost_old = header->lost_size;
2214 commit_count =
2215 local_read(&ltt_buf->commit_count[subbuf_idx]);
2216 /* SUBBUF_OFFSET includes commit_count_mask */
2217 if (!SUBBUF_OFFSET(offset - commit_count, buf->chan)) {
2218 lost_new = (uint32_t)buf->chan->subbuf_size
2219 - SUBBUF_OFFSET(commit_count, buf->chan);
2220 lost_old = cmpxchg_local(&header->lost_size, lost_old,
2221 lost_new);
2222 if (lost_old <= lost_new)
2223 break;
2224 } else {
2225 break;
2226 }
2227 }
2228 }
2229 #else
2230 static inline void ltt_write_commit_counter(struct rchan_buf *buf,
2231 long buf_offset, size_t slot_size)
2232 {
2233 }
2234 #endif
2235
2236 /*
2237 * Atomic unordered slot commit. Increments the commit count in the
2238 * specified sub-buffer, and delivers it if necessary.
2239 *
2240 * Parameters:
2241 *
2242 * @ltt_channel : channel structure
2243 * @transport_data: transport-specific data
2244 * @buf_offset : offset following the event header.
2245 * @slot_size : size of the reserved slot.
2246 */
2247 static notrace void ltt_relay_commit_slot(
2248 struct ltt_channel_struct *ltt_channel,
2249 void **transport_data, long buf_offset, size_t slot_size)
2250 {
2251 struct rchan_buf *buf = *transport_data;
2252 struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
2253 struct rchan *rchan = buf->chan;
2254 long offset_end = buf_offset;
2255 long endidx = SUBBUF_INDEX(offset_end - 1, rchan);
2256 long commit_count;
2257
2258 /* Must write slot data before incrementing commit count */
2259 smp_wmb();
2260 commit_count = local_add_return(slot_size,
2261 &ltt_buf->commit_count[endidx]);
2262 /* Check if all commits have been done */
2263 if ((BUFFER_TRUNC(offset_end - 1, rchan)
2264 >> ltt_channel->n_subbufs_order)
2265 - ((commit_count - rchan->subbuf_size)
2266 & ltt_channel->commit_count_mask) == 0)
2267 ltt_deliver(buf, endidx, NULL);
2268 /*
2269 * Update lost_size for each commit. It's needed only for extracting
2270 * ltt buffers from vmcore, after crash.
2271 */
2272 ltt_write_commit_counter(buf, buf_offset, slot_size);
2273 }
2274
2275 /*
2276 * This is called with preemption disabled when user space has requested
2277 * blocking mode. If one of the active traces has free space below a
2278 * specific threshold value, we reenable preemption and block.
2279 */
2280 static int ltt_relay_user_blocking(struct ltt_trace_struct *trace,
2281 unsigned int chan_index, size_t data_size,
2282 struct user_dbg_data *dbg)
2283 {
2284 //ust// struct rchan *rchan;
2285 //ust// struct ltt_channel_buf_struct *ltt_buf;
2286 //ust// struct ltt_channel_struct *channel;
2287 //ust// struct rchan_buf *relay_buf;
2288 //ust// int cpu;
2289 //ust// DECLARE_WAITQUEUE(wait, current);
2290 //ust//
2291 //ust// channel = &trace->channels[chan_index];
2292 //ust// rchan = channel->trans_channel_data;
2293 //ust// cpu = smp_processor_id();
2294 //ust// relay_buf = rchan->buf[cpu];
2295 //ust// ltt_buf = percpu_ptr(channel->buf, cpu);
2296 //ust//
2297 //ust// /*
2298 //ust// * Check if data is too big for the channel : do not
2299 //ust// * block for it.
2300 //ust// */
2301 //ust// if (LTT_RESERVE_CRITICAL + data_size > relay_buf->chan->subbuf_size)
2302 //ust// return 0;
2303 //ust//
2304 //ust// /*
2305 //ust// * If free space too low, we block. We restart from the
2306 //ust// * beginning after we resume (cpu id may have changed
2307 //ust// * while preemption is active).
2308 //ust// */
2309 //ust// spin_lock(&ltt_buf->full_lock);
2310 //ust// if (!channel->overwrite) {
2311 //ust// dbg->write = local_read(&ltt_buf->offset);
2312 //ust// dbg->read = atomic_long_read(&ltt_buf->consumed);
2313 //ust// dbg->avail_size = dbg->write + LTT_RESERVE_CRITICAL + data_size
2314 //ust// - SUBBUF_TRUNC(dbg->read,
2315 //ust// relay_buf->chan);
2316 //ust// if (dbg->avail_size > rchan->alloc_size) {
2317 //ust// __set_current_state(TASK_INTERRUPTIBLE);
2318 //ust// add_wait_queue(&ltt_buf->write_wait, &wait);
2319 //ust// spin_unlock(&ltt_buf->full_lock);
2320 //ust// preempt_enable();
2321 //ust// schedule();
2322 //ust// __set_current_state(TASK_RUNNING);
2323 //ust// remove_wait_queue(&ltt_buf->write_wait, &wait);
2324 //ust// if (signal_pending(current))
2325 //ust// return -ERESTARTSYS;
2326 //ust// preempt_disable();
2327 //ust// return 1;
2328 //ust// }
2329 //ust// }
2330 //ust// spin_unlock(&ltt_buf->full_lock);
2331 return 0;
2332 }
2333
2334 static void ltt_relay_print_user_errors(struct ltt_trace_struct *trace,
2335 unsigned int chan_index, size_t data_size,
2336 struct user_dbg_data *dbg)
2337 {
2338 struct rchan *rchan;
2339 struct ltt_channel_buf_struct *ltt_buf;
2340 struct ltt_channel_struct *channel;
2341 struct rchan_buf *relay_buf;
2342
2343 channel = &trace->channels[chan_index];
2344 rchan = channel->trans_channel_data;
2345 relay_buf = rchan->buf;
2346 ltt_buf = channel->buf;
2347
2348 printk(KERN_ERR "Error in LTT usertrace : "
2349 "buffer full : event lost in blocking "
2350 "mode. Increase LTT_RESERVE_CRITICAL.\n");
2351 printk(KERN_ERR "LTT nesting level is %u.\n", ltt_nesting);
2352 printk(KERN_ERR "LTT avail size %lu.\n",
2353 dbg->avail_size);
2354 printk(KERN_ERR "avai write : %lu, read : %lu\n",
2355 dbg->write, dbg->read);
2356
2357 dbg->write = local_read(&ltt_buf->offset);
2358 dbg->read = atomic_long_read(&ltt_buf->consumed);
2359
2360 printk(KERN_ERR "LTT cur size %lu.\n",
2361 dbg->write + LTT_RESERVE_CRITICAL + data_size
2362 - SUBBUF_TRUNC(dbg->read, relay_buf->chan));
2363 printk(KERN_ERR "cur write : %lu, read : %lu\n",
2364 dbg->write, dbg->read);
2365 }
2366
2367 //ust// static struct ltt_transport ltt_relay_transport = {
2368 //ust// .name = "relay",
2369 //ust// .owner = THIS_MODULE,
2370 //ust// .ops = {
2371 //ust// .create_dirs = ltt_relay_create_dirs,
2372 //ust// .remove_dirs = ltt_relay_remove_dirs,
2373 //ust// .create_channel = ltt_relay_create_channel,
2374 //ust// .finish_channel = ltt_relay_finish_channel,
2375 //ust// .remove_channel = ltt_relay_remove_channel,
2376 //ust// .wakeup_channel = ltt_relay_async_wakeup_chan,
2377 //ust// .commit_slot = ltt_relay_commit_slot,
2378 //ust// .reserve_slot = ltt_relay_reserve_slot,
2379 //ust// .user_blocking = ltt_relay_user_blocking,
2380 //ust// .user_errors = ltt_relay_print_user_errors,
2381 //ust// },
2382 //ust// };
2383
2384 static struct ltt_transport ust_relay_transport = {
2385 .name = "ustrelay",
2386 //ust// .owner = THIS_MODULE,
2387 .ops = {
2388 .create_dirs = ltt_relay_create_dirs,
2389 .remove_dirs = ltt_relay_remove_dirs,
2390 .create_channel = ltt_relay_create_channel,
2391 .finish_channel = ltt_relay_finish_channel,
2392 .remove_channel = ltt_relay_remove_channel,
2393 .wakeup_channel = ltt_relay_async_wakeup_chan,
2394 .commit_slot = ltt_relay_commit_slot,
2395 .reserve_slot = ltt_relay_reserve_slot,
2396 .user_blocking = ltt_relay_user_blocking,
2397 .user_errors = ltt_relay_print_user_errors,
2398 },
2399 };
2400
2401 //ust// static int __init ltt_relay_init(void)
2402 //ust// {
2403 //ust// printk(KERN_INFO "LTT : ltt-relay init\n");
2404 //ust//
2405 //ust// ltt_file_operations = ltt_relay_file_operations;
2406 //ust// ltt_file_operations.owner = THIS_MODULE;
2407 //ust// ltt_file_operations.open = ltt_open;
2408 //ust// ltt_file_operations.release = ltt_release;
2409 //ust// ltt_file_operations.poll = ltt_poll;
2410 //ust// ltt_file_operations.splice_read = ltt_relay_file_splice_read,
2411 //ust// ltt_file_operations.ioctl = ltt_ioctl;
2412 //ust//#ifdef CONFIG_COMPAT
2413 //ust// ltt_file_operations.compat_ioctl = ltt_compat_ioctl;
2414 //ust//#endif
2415 //ust//
2416 //ust// ltt_transport_register(&ltt_relay_transport);
2417 //ust//
2418 //ust// return 0;
2419 //ust// }
2420
2421 static char initialized = 0;
2422
2423 void __attribute__((constructor)) init_ustrelay_transport(void)
2424 {
2425 if(!initialized) {
2426 ltt_transport_register(&ust_relay_transport);
2427 initialized = 1;
2428 }
2429 }
2430
2431 static void __exit ltt_relay_exit(void)
2432 {
2433 //ust// printk(KERN_INFO "LTT : ltt-relay exit\n");
2434
2435 ltt_transport_unregister(&ust_relay_transport);
2436 }
2437
2438 //ust// module_init(ltt_relay_init);
2439 //ust// module_exit(ltt_relay_exit);
2440 //ust//
2441 //ust// MODULE_LICENSE("GPL");
2442 //ust// MODULE_AUTHOR("Mathieu Desnoyers");
2443 //ust// MODULE_DESCRIPTION("Linux Trace Toolkit Next Generation Lockless Relay");
This page took 0.07677 seconds and 3 git commands to generate.