Make the receiving thread non blocking
[lttng-tools.git] / liblttkconsumerd / liblttkconsumerd.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; only version 2
8 * of the License.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <fcntl.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <urcu/list.h>
31
32 #include "libkernelctl.h"
33 #include "liblttkconsumerd.h"
34 #include "lttngerr.h"
35
36 static
37 struct kconsumerd_global_data {
38 /*
39 * kconsumerd_data.lock protects kconsumerd_data.fd_list,
40 * kconsumerd_data.fds_count, and kconsumerd_data.need_update. It
41 * ensures the count matches the number of items in the fd_list.
42 * It ensures the list updates *always* trigger an fd_array
43 * update (therefore need to make list update vs
44 * kconsumerd_data.need_update flag update atomic, and also flag
45 * read, fd array and flag clear atomic).
46 */
47 pthread_mutex_t lock;
48 /*
49 * Number of element for the list below. Protected by
50 * kconsumerd_data.lock.
51 */
52 unsigned int fds_count;
53 /*
54 * List of FDs. Protected by kconsumerd_data.lock.
55 */
56 struct kconsumerd_fd_list fd_list;
57 /*
58 * Flag specifying if the local array of FDs needs update in the
59 * poll function. Protected by kconsumerd_data.lock.
60 */
61 unsigned int need_update;
62 } kconsumerd_data = {
63 .fd_list.head = CDS_LIST_HEAD_INIT(kconsumerd_data.fd_list.head),
64 };
65
66 /* communication with splice */
67 static int kconsumerd_thread_pipe[2];
68
69 /* pipe to wake the poll thread when necessary */
70 static int kconsumerd_poll_pipe[2];
71
72 /* to let the signal handler wake up the fd receiver thread */
73 static int kconsumerd_should_quit[2];
74
75 /* timeout parameter, to control the polling thread grace period */
76 static int kconsumerd_poll_timeout = -1;
77
78 /* socket to communicate errors with sessiond */
79 static int kconsumerd_error_socket;
80
81 /* socket to exchange commands with sessiond */
82 static char *kconsumerd_command_sock_path;
83
84 /*
85 * flag to inform the polling thread to quit when all fd hung up.
86 * Updated by the kconsumerd_thread_receive_fds when it notices that all
87 * fds has hung up. Also updated by the signal handler
88 * (kconsumerd_should_exit()). Read by the polling threads.
89 */
90 static volatile int kconsumerd_quit = 0;
91
92 /*
93 * kconsumerd_set_error_socket
94 *
95 * Set the error socket
96 */
97 void kconsumerd_set_error_socket(int sock)
98 {
99 kconsumerd_error_socket = sock;
100 }
101
102 /*
103 * kconsumerd_set_command_socket_path
104 *
105 * Set the command socket path
106 */
107 void kconsumerd_set_command_socket_path(char *sock)
108 {
109 kconsumerd_command_sock_path = sock;
110 }
111
112 /*
113 * kconsumerd_find_session_fd
114 *
115 * Find a session fd in the global list.
116 * The kconsumerd_data.lock must be locked during this call
117 *
118 * Return 1 if found else 0
119 */
120 static int kconsumerd_find_session_fd(int fd)
121 {
122 struct kconsumerd_fd *iter;
123
124 cds_list_for_each_entry(iter, &kconsumerd_data.fd_list.head, list) {
125 if (iter->sessiond_fd == fd) {
126 DBG("Duplicate session fd %d", fd);
127 pthread_mutex_unlock(&kconsumerd_data.lock);
128 return 1;
129 }
130 }
131
132 return 0;
133 }
134
135 /*
136 * kconsumerd_del_fd
137 *
138 * Remove a fd from the global list protected by a mutex
139 */
140 static void kconsumerd_del_fd(struct kconsumerd_fd *lcf)
141 {
142 pthread_mutex_lock(&kconsumerd_data.lock);
143 cds_list_del(&lcf->list);
144 if (kconsumerd_data.fds_count > 0) {
145 kconsumerd_data.fds_count--;
146 if (lcf != NULL) {
147 close(lcf->out_fd);
148 close(lcf->consumerd_fd);
149 free(lcf);
150 lcf = NULL;
151 }
152 }
153 kconsumerd_data.need_update = 1;
154 pthread_mutex_unlock(&kconsumerd_data.lock);
155 }
156
157 /*
158 * kconsumerd_add_fd
159 *
160 * Add a fd to the global list protected by a mutex
161 */
162 static int kconsumerd_add_fd(struct lttcomm_kconsumerd_msg *buf, int consumerd_fd)
163 {
164 int ret;
165 struct kconsumerd_fd *tmp_fd;
166
167 pthread_mutex_lock(&kconsumerd_data.lock);
168 /* Check if already exist */
169 ret = kconsumerd_find_session_fd(buf->fd);
170 if (ret == 1) {
171 goto end;
172 }
173
174 tmp_fd = malloc(sizeof(struct kconsumerd_fd));
175 tmp_fd->sessiond_fd = buf->fd;
176 tmp_fd->consumerd_fd = consumerd_fd;
177 tmp_fd->state = buf->state;
178 tmp_fd->max_sb_size = buf->max_sb_size;
179 strncpy(tmp_fd->path_name, buf->path_name, PATH_MAX);
180
181 /* Opening the tracefile in write mode */
182 ret = open(tmp_fd->path_name,
183 O_WRONLY|O_CREAT|O_TRUNC, S_IRWXU|S_IRWXG|S_IRWXO);
184 if (ret < 0) {
185 ERR("Opening %s", tmp_fd->path_name);
186 perror("open");
187 goto end;
188 }
189 tmp_fd->out_fd = ret;
190 tmp_fd->out_fd_offset = 0;
191
192 DBG("Adding %s (%d, %d, %d)", tmp_fd->path_name,
193 tmp_fd->sessiond_fd, tmp_fd->consumerd_fd, tmp_fd->out_fd);
194
195 cds_list_add(&tmp_fd->list, &kconsumerd_data.fd_list.head);
196 kconsumerd_data.fds_count++;
197 kconsumerd_data.need_update = 1;
198 end:
199 pthread_mutex_unlock(&kconsumerd_data.lock);
200 return ret;
201 }
202
203 /*
204 * kconsumerd_change_fd_state
205 *
206 * Update a fd according to what we just received
207 */
208 static void kconsumerd_change_fd_state(int sessiond_fd,
209 enum kconsumerd_fd_state state)
210 {
211 struct kconsumerd_fd *iter;
212
213 pthread_mutex_lock(&kconsumerd_data.lock);
214 cds_list_for_each_entry(iter, &kconsumerd_data.fd_list.head, list) {
215 if (iter->sessiond_fd == sessiond_fd) {
216 iter->state = state;
217 break;
218 }
219 }
220 kconsumerd_data.need_update = 1;
221 pthread_mutex_unlock(&kconsumerd_data.lock);
222 }
223
224 /*
225 * kconsumerd_update_poll_array
226 *
227 * Allocate the pollfd structure and the local view of the out fds
228 * to avoid doing a lookup in the linked list and concurrency issues
229 * when writing is needed.
230 * Returns the number of fds in the structures
231 * Called with kconsumerd_data.lock held.
232 */
233 static int kconsumerd_update_poll_array(struct pollfd **pollfd,
234 struct kconsumerd_fd **local_kconsumerd_fd)
235 {
236 struct kconsumerd_fd *iter;
237 int i = 0;
238
239 DBG("Updating poll fd array");
240
241 cds_list_for_each_entry(iter, &kconsumerd_data.fd_list.head, list) {
242 DBG("Inside for each");
243 if (iter->state == ACTIVE_FD) {
244 DBG("Active FD %d", iter->consumerd_fd);
245 (*pollfd)[i].fd = iter->consumerd_fd;
246 (*pollfd)[i].events = POLLIN | POLLPRI;
247 local_kconsumerd_fd[i] = iter;
248 i++;
249 }
250 }
251
252 /*
253 * insert the kconsumerd_poll_pipe at the end of the array and don't
254 * increment i so nb_fd is the number of real FD
255 */
256 (*pollfd)[i].fd = kconsumerd_poll_pipe[0];
257 (*pollfd)[i].events = POLLIN;
258 return i;
259 }
260
261
262 /*
263 * kconsumerd_on_read_subbuffer_mmap
264 *
265 * mmap the ring buffer, read it and write the data to the tracefile.
266 * Returns the number of bytes written
267 */
268 static int kconsumerd_on_read_subbuffer_mmap(
269 struct kconsumerd_fd *kconsumerd_fd, unsigned long len)
270 {
271 unsigned long mmap_len, mmap_offset, padded_len, padding_len;
272 char *mmap_base;
273 char *padding = NULL;
274 long ret = 0;
275 off_t orig_offset = kconsumerd_fd->out_fd_offset;
276 int fd = kconsumerd_fd->consumerd_fd;
277 int outfd = kconsumerd_fd->out_fd;
278
279 /* get the padded subbuffer size to know the padding required */
280 ret = kernctl_get_padded_subbuf_size(fd, &padded_len);
281 if (ret != 0) {
282 ret = errno;
283 perror("kernctl_get_padded_subbuf_size");
284 goto end;
285 }
286 padding_len = padded_len - len;
287 padding = malloc(padding_len * sizeof(char));
288 memset(padding, '\0', padding_len);
289
290 /* get the len of the mmap region */
291 ret = kernctl_get_mmap_len(fd, &mmap_len);
292 if (ret != 0) {
293 ret = errno;
294 perror("kernctl_get_mmap_len");
295 goto end;
296 }
297
298 /* get the offset inside the fd to mmap */
299 ret = kernctl_get_mmap_read_offset(fd, &mmap_offset);
300 if (ret != 0) {
301 ret = errno;
302 perror("kernctl_get_mmap_read_offset");
303 goto end;
304 }
305
306 mmap_base = mmap(NULL, mmap_len, PROT_READ, MAP_PRIVATE, fd, mmap_offset);
307 if (mmap_base == MAP_FAILED) {
308 perror("Error mmaping");
309 ret = -1;
310 goto end;
311 }
312
313 while (len > 0) {
314 ret = write(outfd, mmap_base, len);
315 if (ret >= len) {
316 len = 0;
317 } else if (ret < 0) {
318 ret = errno;
319 perror("Error in file write");
320 goto end;
321 }
322 /* This won't block, but will start writeout asynchronously */
323 sync_file_range(outfd, kconsumerd_fd->out_fd_offset, ret,
324 SYNC_FILE_RANGE_WRITE);
325 kconsumerd_fd->out_fd_offset += ret;
326 }
327
328 /* once all the data is written, write the padding to disk */
329 ret = write(outfd, padding, padding_len);
330 if (ret < 0) {
331 ret = errno;
332 perror("Error writing padding to file");
333 goto end;
334 }
335
336 /*
337 * This does a blocking write-and-wait on any page that belongs to the
338 * subbuffer prior to the one we just wrote.
339 * Don't care about error values, as these are just hints and ways to
340 * limit the amount of page cache used.
341 */
342 if (orig_offset >= kconsumerd_fd->max_sb_size) {
343 sync_file_range(outfd, orig_offset - kconsumerd_fd->max_sb_size,
344 kconsumerd_fd->max_sb_size,
345 SYNC_FILE_RANGE_WAIT_BEFORE
346 | SYNC_FILE_RANGE_WRITE
347 | SYNC_FILE_RANGE_WAIT_AFTER);
348
349 /*
350 * Give hints to the kernel about how we access the file:
351 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
352 * we write it.
353 *
354 * We need to call fadvise again after the file grows because the
355 * kernel does not seem to apply fadvise to non-existing parts of the
356 * file.
357 *
358 * Call fadvise _after_ having waited for the page writeback to
359 * complete because the dirty page writeback semantic is not well
360 * defined. So it can be expected to lead to lower throughput in
361 * streaming.
362 */
363 posix_fadvise(outfd, orig_offset - kconsumerd_fd->max_sb_size,
364 kconsumerd_fd->max_sb_size, POSIX_FADV_DONTNEED);
365 }
366 goto end;
367
368 end:
369 if (padding != NULL) {
370 free(padding);
371 }
372 return ret;
373 }
374
375 /*
376 * kconsumerd_on_read_subbuffer
377 *
378 * Splice the data from the ring buffer to the tracefile.
379 * Returns the number of bytes spliced
380 */
381 static int kconsumerd_on_read_subbuffer(
382 struct kconsumerd_fd *kconsumerd_fd, unsigned long len)
383 {
384 long ret = 0;
385 loff_t offset = 0;
386 off_t orig_offset = kconsumerd_fd->out_fd_offset;
387 int fd = kconsumerd_fd->consumerd_fd;
388 int outfd = kconsumerd_fd->out_fd;
389
390 while (len > 0) {
391 DBG("splice chan to pipe offset %lu (fd : %d)",
392 (unsigned long)offset, fd);
393 ret = splice(fd, &offset, kconsumerd_thread_pipe[1], NULL, len,
394 SPLICE_F_MOVE | SPLICE_F_MORE);
395 DBG("splice chan to pipe ret %ld", ret);
396 if (ret < 0) {
397 ret = errno;
398 perror("Error in relay splice");
399 goto splice_error;
400 }
401
402 ret = splice(kconsumerd_thread_pipe[0], NULL, outfd, NULL, ret,
403 SPLICE_F_MOVE | SPLICE_F_MORE);
404 DBG("splice pipe to file %ld", ret);
405 if (ret < 0) {
406 ret = errno;
407 perror("Error in file splice");
408 goto splice_error;
409 }
410 if (ret >= len) {
411 len = 0;
412 }
413 /* This won't block, but will start writeout asynchronously */
414 sync_file_range(outfd, kconsumerd_fd->out_fd_offset, ret,
415 SYNC_FILE_RANGE_WRITE);
416 kconsumerd_fd->out_fd_offset += ret;
417 }
418
419 /*
420 * This does a blocking write-and-wait on any page that belongs to the
421 * subbuffer prior to the one we just wrote.
422 * Don't care about error values, as these are just hints and ways to
423 * limit the amount of page cache used.
424 */
425 if (orig_offset >= kconsumerd_fd->max_sb_size) {
426 sync_file_range(outfd, orig_offset - kconsumerd_fd->max_sb_size,
427 kconsumerd_fd->max_sb_size,
428 SYNC_FILE_RANGE_WAIT_BEFORE
429 | SYNC_FILE_RANGE_WRITE
430 | SYNC_FILE_RANGE_WAIT_AFTER);
431 /*
432 * Give hints to the kernel about how we access the file:
433 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
434 * we write it.
435 *
436 * We need to call fadvise again after the file grows because the
437 * kernel does not seem to apply fadvise to non-existing parts of the
438 * file.
439 *
440 * Call fadvise _after_ having waited for the page writeback to
441 * complete because the dirty page writeback semantic is not well
442 * defined. So it can be expected to lead to lower throughput in
443 * streaming.
444 */
445 posix_fadvise(outfd, orig_offset - kconsumerd_fd->max_sb_size,
446 kconsumerd_fd->max_sb_size, POSIX_FADV_DONTNEED);
447 }
448 goto end;
449
450 splice_error:
451 /* send the appropriate error description to sessiond */
452 switch(ret) {
453 case EBADF:
454 kconsumerd_send_error(KCONSUMERD_SPLICE_EBADF);
455 break;
456 case EINVAL:
457 kconsumerd_send_error(KCONSUMERD_SPLICE_EINVAL);
458 break;
459 case ENOMEM:
460 kconsumerd_send_error(KCONSUMERD_SPLICE_ENOMEM);
461 break;
462 case ESPIPE:
463 kconsumerd_send_error(KCONSUMERD_SPLICE_ESPIPE);
464 break;
465 }
466
467 end:
468 return ret;
469 }
470
471 /*
472 * kconsumerd_read_subbuffer
473 *
474 * Consume data on a file descriptor and write it on a trace file
475 */
476 static int kconsumerd_read_subbuffer(struct kconsumerd_fd *kconsumerd_fd)
477 {
478 unsigned long len;
479 int err;
480 long ret = 0;
481 int infd = kconsumerd_fd->consumerd_fd;
482
483 DBG("In kconsumerd_read_subbuffer (infd : %d)", infd);
484 /* Get the next subbuffer */
485 err = kernctl_get_next_subbuf(infd);
486 if (err != 0) {
487 ret = errno;
488 perror("Reserving sub buffer failed (everything is normal, "
489 "it is due to concurrency)");
490 goto end;
491 }
492
493 switch (DEFAULT_KERNEL_CHANNEL_OUTPUT) {
494 case LTTNG_EVENT_SPLICE:
495 /* read the whole subbuffer */
496 err = kernctl_get_padded_subbuf_size(infd, &len);
497 if (err != 0) {
498 ret = errno;
499 perror("Getting sub-buffer len failed.");
500 goto end;
501 }
502
503 /* splice the subbuffer to the tracefile */
504 ret = kconsumerd_on_read_subbuffer(kconsumerd_fd, len);
505 if (ret < 0) {
506 /*
507 * display the error but continue processing to try
508 * to release the subbuffer
509 */
510 ERR("Error splicing to tracefile");
511 }
512 break;
513 case LTTNG_EVENT_MMAP:
514 /* read the used subbuffer size */
515 err = kernctl_get_subbuf_size(infd, &len);
516 if (err != 0) {
517 ret = errno;
518 perror("Getting sub-buffer len failed.");
519 goto end;
520 }
521 /* write the subbuffer to the tracefile */
522 ret = kconsumerd_on_read_subbuffer_mmap(kconsumerd_fd, len);
523 if (ret < 0) {
524 /*
525 * display the error but continue processing to try
526 * to release the subbuffer
527 */
528 ERR("Error writing to tracefile");
529 }
530 break;
531 default:
532 ERR("Unknown output method");
533 ret = -1;
534 }
535
536 err = kernctl_put_next_subbuf(infd);
537 if (err != 0) {
538 ret = errno;
539 if (errno == EFAULT) {
540 perror("Error in unreserving sub buffer\n");
541 } else if (errno == EIO) {
542 /* Should never happen with newer LTTng versions */
543 perror("Reader has been pushed by the writer, last sub-buffer corrupted.");
544 }
545 goto end;
546 }
547
548 end:
549 return ret;
550 }
551
552 /*
553 * kconsumerd_poll_socket
554 *
555 * Poll on the should_quit pipe and the command socket
556 * return -1 on error and should exit, 0 if data is
557 * available on the command socket
558 */
559 int kconsumerd_poll_socket(struct pollfd *kconsumerd_sockpoll)
560 {
561 int num_rdy;
562
563 num_rdy = poll(kconsumerd_sockpoll, 2, -1);
564 if (num_rdy == -1) {
565 perror("Poll error");
566 goto exit;
567 }
568 if (kconsumerd_sockpoll[0].revents == POLLIN) {
569 DBG("kconsumerd_should_quit wake up");
570 goto exit;
571 }
572 return 0;
573
574 exit:
575 return -1;
576 }
577
578 /*
579 * kconsumerd_consumerd_recv_fd
580 *
581 * Receives an array of file descriptors and the associated
582 * structures describing each fd (path name).
583 * Returns the size of received data
584 */
585 static int kconsumerd_consumerd_recv_fd(int sfd,
586 struct pollfd *kconsumerd_sockpoll, int size,
587 enum kconsumerd_command cmd_type)
588 {
589 struct msghdr msg;
590 struct iovec iov[1];
591 int ret = 0, i, tmp2;
592 struct cmsghdr *cmsg;
593 int nb_fd;
594 char recv_fd[CMSG_SPACE(sizeof(int))];
595 struct lttcomm_kconsumerd_msg lkm;
596
597 /* the number of fds we are about to receive */
598 nb_fd = size / sizeof(struct lttcomm_kconsumerd_msg);
599
600 for (i = 0; i < nb_fd; i++) {
601 memset(&msg, 0, sizeof(msg));
602
603 /* Prepare to receive the structures */
604 iov[0].iov_base = &lkm;
605 iov[0].iov_len = sizeof(lkm);
606 msg.msg_iov = iov;
607 msg.msg_iovlen = 1;
608
609 msg.msg_control = recv_fd;
610 msg.msg_controllen = sizeof(recv_fd);
611
612 DBG("Waiting to receive fd");
613 if (kconsumerd_poll_socket(kconsumerd_sockpoll) < 0) {
614 goto end;
615 }
616
617 if ((ret = recvmsg(sfd, &msg, 0)) < 0) {
618 perror("recvmsg");
619 continue;
620 }
621
622 if (ret != (size / nb_fd)) {
623 ERR("Received only %d, expected %d", ret, size);
624 kconsumerd_send_error(KCONSUMERD_ERROR_RECV_FD);
625 goto end;
626 }
627
628 cmsg = CMSG_FIRSTHDR(&msg);
629 if (!cmsg) {
630 ERR("Invalid control message header");
631 ret = -1;
632 kconsumerd_send_error(KCONSUMERD_ERROR_RECV_FD);
633 goto end;
634 }
635 /* if we received fds */
636 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
637 switch (cmd_type) {
638 case ADD_STREAM:
639 DBG("kconsumerd_add_fd %s (%d)", lkm.path_name, (CMSG_DATA(cmsg)[0]));
640 ret = kconsumerd_add_fd(&lkm, (CMSG_DATA(cmsg)[0]));
641 if (ret < 0) {
642 kconsumerd_send_error(KCONSUMERD_OUTFD_ERROR);
643 goto end;
644 }
645 break;
646 case UPDATE_STREAM:
647 kconsumerd_change_fd_state(lkm.fd, lkm.state);
648 break;
649 default:
650 break;
651 }
652 /* signal the poll thread */
653 tmp2 = write(kconsumerd_poll_pipe[1], "4", 1);
654 } else {
655 ERR("Didn't received any fd");
656 kconsumerd_send_error(KCONSUMERD_ERROR_RECV_FD);
657 ret = -1;
658 goto end;
659 }
660 }
661
662 end:
663 return ret;
664 }
665
666 /*
667 * kconsumerd_thread_poll_fds
668 *
669 * This thread polls the fds in the ltt_fd_list to consume the data
670 * and write it to tracefile if necessary.
671 */
672 void *kconsumerd_thread_poll_fds(void *data)
673 {
674 int num_rdy, num_hup, high_prio, ret, i;
675 struct pollfd *pollfd = NULL;
676 /* local view of the fds */
677 struct kconsumerd_fd **local_kconsumerd_fd = NULL;
678 /* local view of kconsumerd_data.fds_count */
679 int nb_fd = 0;
680 char tmp;
681 int tmp2;
682
683 ret = pipe(kconsumerd_thread_pipe);
684 if (ret < 0) {
685 perror("Error creating pipe");
686 goto end;
687 }
688
689 local_kconsumerd_fd = malloc(sizeof(struct kconsumerd_fd));
690
691 while (1) {
692 high_prio = 0;
693 num_hup = 0;
694
695 /*
696 * the ltt_fd_list has been updated, we need to update our
697 * local array as well
698 */
699 pthread_mutex_lock(&kconsumerd_data.lock);
700 if (kconsumerd_data.need_update) {
701 if (pollfd != NULL) {
702 free(pollfd);
703 pollfd = NULL;
704 }
705 if (local_kconsumerd_fd != NULL) {
706 free(local_kconsumerd_fd);
707 local_kconsumerd_fd = NULL;
708 }
709
710 /* allocate for all fds + 1 for the kconsumerd_poll_pipe */
711 pollfd = malloc((kconsumerd_data.fds_count + 1) * sizeof(struct pollfd));
712 if (pollfd == NULL) {
713 perror("pollfd malloc");
714 pthread_mutex_unlock(&kconsumerd_data.lock);
715 goto end;
716 }
717
718 /* allocate for all fds + 1 for the kconsumerd_poll_pipe */
719 local_kconsumerd_fd = malloc((kconsumerd_data.fds_count + 1) *
720 sizeof(struct kconsumerd_fd));
721 if (local_kconsumerd_fd == NULL) {
722 perror("local_kconsumerd_fd malloc");
723 pthread_mutex_unlock(&kconsumerd_data.lock);
724 goto end;
725 }
726 ret = kconsumerd_update_poll_array(&pollfd, local_kconsumerd_fd);
727 if (ret < 0) {
728 ERR("Error in allocating pollfd or local_outfds");
729 kconsumerd_send_error(KCONSUMERD_POLL_ERROR);
730 pthread_mutex_unlock(&kconsumerd_data.lock);
731 goto end;
732 }
733 nb_fd = ret;
734 kconsumerd_data.need_update = 0;
735 }
736 pthread_mutex_unlock(&kconsumerd_data.lock);
737
738 /* poll on the array of fds */
739 DBG("polling on %d fd", nb_fd + 1);
740 num_rdy = poll(pollfd, nb_fd + 1, kconsumerd_poll_timeout);
741 DBG("poll num_rdy : %d", num_rdy);
742 if (num_rdy == -1) {
743 perror("Poll error");
744 kconsumerd_send_error(KCONSUMERD_POLL_ERROR);
745 goto end;
746 } else if (num_rdy == 0) {
747 DBG("Polling thread timed out");
748 goto end;
749 }
750
751 /* No FDs and kconsumerd_quit, kconsumerd_cleanup the thread */
752 if (nb_fd == 0 && kconsumerd_quit == 1) {
753 goto end;
754 }
755
756 /*
757 * If the kconsumerd_poll_pipe triggered poll go
758 * directly to the beginning of the loop to update the
759 * array. We want to prioritize array update over
760 * low-priority reads.
761 */
762 if (pollfd[nb_fd].revents == POLLIN) {
763 DBG("kconsumerd_poll_pipe wake up");
764 tmp2 = read(kconsumerd_poll_pipe[0], &tmp, 1);
765 continue;
766 }
767
768 /* Take care of high priority channels first. */
769 for (i = 0; i < nb_fd; i++) {
770 switch(pollfd[i].revents) {
771 case POLLERR:
772 ERR("Error returned in polling fd %d.", pollfd[i].fd);
773 kconsumerd_del_fd(local_kconsumerd_fd[i]);
774 num_hup++;
775 break;
776 case POLLHUP:
777 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
778 kconsumerd_del_fd(local_kconsumerd_fd[i]);
779 num_hup++;
780 break;
781 case POLLNVAL:
782 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
783 kconsumerd_del_fd(local_kconsumerd_fd[i]);
784 num_hup++;
785 break;
786 case POLLPRI:
787 DBG("Urgent read on fd %d", pollfd[i].fd);
788 high_prio = 1;
789 ret = kconsumerd_read_subbuffer(local_kconsumerd_fd[i]);
790 /* it's ok to have an unavailable sub-buffer */
791 if (ret == EAGAIN) {
792 ret = 0;
793 }
794 break;
795 }
796 }
797
798 /* If every buffer FD has hung up, we end the read loop here */
799 if (nb_fd > 0 && num_hup == nb_fd) {
800 DBG("every buffer FD has hung up\n");
801 if (kconsumerd_quit == 1) {
802 goto end;
803 }
804 continue;
805 }
806
807 /* Take care of low priority channels. */
808 if (high_prio == 0) {
809 for (i = 0; i < nb_fd; i++) {
810 if (pollfd[i].revents == POLLIN) {
811 DBG("Normal read on fd %d", pollfd[i].fd);
812 ret = kconsumerd_read_subbuffer(local_kconsumerd_fd[i]);
813 /* it's ok to have an unavailable subbuffer */
814 if (ret == EAGAIN) {
815 ret = 0;
816 }
817 }
818 }
819 }
820 }
821 end:
822 DBG("polling thread exiting");
823 if (pollfd != NULL) {
824 free(pollfd);
825 pollfd = NULL;
826 }
827 if (local_kconsumerd_fd != NULL) {
828 free(local_kconsumerd_fd);
829 local_kconsumerd_fd = NULL;
830 }
831 return NULL;
832 }
833
834 /*
835 * kconsumerd_init(void)
836 *
837 * initialise the necessary environnement :
838 * - inform the polling thread to update the polling array
839 * - create the poll_pipe
840 * - create the should_quit pipe (for signal handler)
841 */
842 int kconsumerd_init(void)
843 {
844 int ret;
845
846 /* need to update the polling array at init time */
847 kconsumerd_data.need_update = 1;
848
849 ret = pipe(kconsumerd_poll_pipe);
850 if (ret < 0) {
851 perror("Error creating poll pipe");
852 goto end;
853 }
854
855 ret = pipe(kconsumerd_should_quit);
856 if (ret < 0) {
857 perror("Error creating recv pipe");
858 goto end;
859 }
860
861 end:
862 return ret;
863 }
864
865 /*
866 * kconsumerd_thread_receive_fds
867 *
868 * This thread listens on the consumerd socket and
869 * receives the file descriptors from ltt-sessiond
870 */
871 void *kconsumerd_thread_receive_fds(void *data)
872 {
873 int sock, client_socket, ret;
874 struct lttcomm_kconsumerd_header tmp;
875 /*
876 * structure to poll for incoming data on communication socket
877 * avoids making blocking sockets
878 */
879 struct pollfd kconsumerd_sockpoll[2];
880
881
882 DBG("Creating command socket %s", kconsumerd_command_sock_path);
883 unlink(kconsumerd_command_sock_path);
884 client_socket = lttcomm_create_unix_sock(kconsumerd_command_sock_path);
885 if (client_socket < 0) {
886 ERR("Cannot create command socket");
887 goto end;
888 }
889
890 ret = lttcomm_listen_unix_sock(client_socket);
891 if (ret < 0) {
892 goto end;
893 }
894
895 DBG("Sending ready command to ltt-sessiond");
896 ret = kconsumerd_send_error(KCONSUMERD_COMMAND_SOCK_READY);
897 if (ret < 0) {
898 ERR("Error sending ready command to ltt-sessiond");
899 goto end;
900 }
901
902 ret = fcntl(client_socket, F_SETFL, O_NONBLOCK);
903 if (ret < 0) {
904 perror("fcntl O_NONBLOCK");
905 goto end;
906 }
907
908 /* prepare the FDs to poll : to client socket and the should_quit pipe */
909 kconsumerd_sockpoll[0].fd = kconsumerd_should_quit[0];
910 kconsumerd_sockpoll[0].events = POLLIN | POLLPRI;
911 kconsumerd_sockpoll[1].fd = client_socket;
912 kconsumerd_sockpoll[1].events = POLLIN | POLLPRI;
913
914 if (kconsumerd_poll_socket(kconsumerd_sockpoll) < 0) {
915 goto end;
916 }
917 DBG("Connection on client_socket");
918
919 /* Blocking call, waiting for transmission */
920 sock = lttcomm_accept_unix_sock(client_socket);
921 if (sock <= 0) {
922 WARN("On accept");
923 goto end;
924 }
925 ret = fcntl(sock, F_SETFL, O_NONBLOCK);
926 if (ret < 0) {
927 perror("fcntl O_NONBLOCK");
928 goto end;
929 }
930
931 /* update the polling structure to poll on the established socket */
932 kconsumerd_sockpoll[1].fd = sock;
933 kconsumerd_sockpoll[1].events = POLLIN | POLLPRI;
934
935 while (1) {
936 if (kconsumerd_poll_socket(kconsumerd_sockpoll) < 0) {
937 goto end;
938 }
939 DBG("Incoming fds on sock");
940
941 /* We first get the number of fd we are about to receive */
942 ret = lttcomm_recv_unix_sock(sock, &tmp,
943 sizeof(struct lttcomm_kconsumerd_header));
944 if (ret <= 0) {
945 ERR("Communication interrupted on command socket");
946 goto end;
947 }
948 if (tmp.cmd_type == STOP) {
949 DBG("Received STOP command");
950 goto end;
951 }
952 if (kconsumerd_quit) {
953 DBG("kconsumerd_thread_receive_fds received quit from signal");
954 goto end;
955 }
956
957 /* we received a command to add or update fds */
958 ret = kconsumerd_consumerd_recv_fd(sock, kconsumerd_sockpoll,
959 tmp.payload_size, tmp.cmd_type);
960 if (ret <= 0) {
961 ERR("Receiving the FD, exiting");
962 goto end;
963 }
964 DBG("received fds on sock");
965 }
966
967 end:
968 DBG("kconsumerd_thread_receive_fds exiting");
969
970 /*
971 * when all fds have hung up, the polling thread
972 * can exit cleanly
973 */
974 kconsumerd_quit = 1;
975
976 /*
977 * 2s of grace period, if no polling events occur during
978 * this period, the polling thread will exit even if there
979 * are still open FDs (should not happen, but safety mechanism).
980 */
981 kconsumerd_poll_timeout = KCONSUMERD_POLL_GRACE_PERIOD;
982
983 /* wake up the polling thread */
984 ret = write(kconsumerd_poll_pipe[1], "4", 1);
985 if (ret < 0) {
986 perror("poll pipe write");
987 }
988 return NULL;
989 }
990
991 /*
992 * kconsumerd_cleanup
993 *
994 * Cleanup the daemon's socket on exit
995 */
996 void kconsumerd_cleanup(void)
997 {
998 struct kconsumerd_fd *iter;
999
1000 /* remove the socket file */
1001 unlink(kconsumerd_command_sock_path);
1002
1003 /*
1004 * close all outfd. Called when there are no more threads
1005 * running (after joining on the threads), no need to protect
1006 * list iteration with mutex.
1007 */
1008 cds_list_for_each_entry(iter, &kconsumerd_data.fd_list.head, list) {
1009 kconsumerd_del_fd(iter);
1010 }
1011 }
1012
1013 /*
1014 * kconsumerd_should_exit
1015 *
1016 * Called from signal handler.
1017 */
1018 void kconsumerd_should_exit(void)
1019 {
1020 int ret;
1021 kconsumerd_quit = 1;
1022 ret = write(kconsumerd_should_quit[1], "4", 1);
1023 }
1024
1025 /*
1026 * kconsumerd_send_error
1027 *
1028 * send return code to ltt-sessiond
1029 */
1030 int kconsumerd_send_error(enum lttcomm_return_code cmd)
1031 {
1032 if (kconsumerd_error_socket > 0) {
1033 return lttcomm_send_unix_sock(kconsumerd_error_socket, &cmd,
1034 sizeof(enum lttcomm_sessiond_command));
1035 }
1036
1037 return 0;
1038 }
This page took 0.102551 seconds and 4 git commands to generate.