| 1 | /* |
| 2 | * Copyright (C) - Bob Jenkins, May 2006 |
| 3 | * Copyright (C) 2011 - David Goulet <david.goulet@polymtl.ca> |
| 4 | * Copyright (C) 2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com> |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License, version 2 only, |
| 8 | * as published by the Free Software Foundation. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | * more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License along |
| 16 | * with this program; if not, write to the Free Software Foundation, Inc., |
| 17 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | */ |
| 19 | |
| 20 | /* |
| 21 | * These are functions for producing 32-bit hashes for hash table lookup. |
| 22 | * hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() are |
| 23 | * externally useful functions. Routines to test the hash are included if |
| 24 | * SELF_TEST is defined. You can use this free for any purpose. It's in the |
| 25 | * public domain. It has no warranty. |
| 26 | * |
| 27 | * You probably want to use hashlittle(). hashlittle() and hashbig() hash byte |
| 28 | * arrays. hashlittle() is is faster than hashbig() on little-endian machines. |
| 29 | * Intel and AMD are little-endian machines. On second thought, you probably |
| 30 | * want hashlittle2(), which is identical to hashlittle() except it returns two |
| 31 | * 32-bit hashes for the price of one. You could implement hashbig2() if you |
| 32 | * wanted but I haven't bothered here. |
| 33 | * |
| 34 | * If you want to find a hash of, say, exactly 7 integers, do |
| 35 | * a = i1; b = i2; c = i3; |
| 36 | * mix(a,b,c); |
| 37 | * a += i4; b += i5; c += i6; |
| 38 | * mix(a,b,c); |
| 39 | * a += i7; |
| 40 | * final(a,b,c); |
| 41 | * then use c as the hash value. If you have a variable length array of |
| 42 | * 4-byte integers to hash, use hashword(). If you have a byte array (like |
| 43 | * a character string), use hashlittle(). If you have several byte arrays, or |
| 44 | * a mix of things, see the comments above hashlittle(). |
| 45 | * |
| 46 | * Why is this so big? I read 12 bytes at a time into 3 4-byte integers, then |
| 47 | * mix those integers. This is fast (you can do a lot more thorough mixing |
| 48 | * with 12*3 instructions on 3 integers than you can with 3 instructions on 1 |
| 49 | * byte), but shoehorning those bytes into integers efficiently is messy. |
| 50 | */ |
| 51 | |
| 52 | #define _LGPL_SOURCE |
| 53 | #include <assert.h> |
| 54 | #include <stdint.h> /* defines uint32_t etc */ |
| 55 | #include <stdio.h> /* defines printf for tests */ |
| 56 | #include <string.h> |
| 57 | #include <sys/param.h> /* attempt to define endianness */ |
| 58 | #include <time.h> /* defines time_t for timings in the test */ |
| 59 | #include <urcu/compiler.h> |
| 60 | |
| 61 | #include "utils.h" |
| 62 | #include <common/compat/endian.h> /* attempt to define endianness */ |
| 63 | #include <common/common.h> |
| 64 | #include <common/hashtable/hashtable.h> |
| 65 | |
| 66 | /* |
| 67 | * My best guess at if you are big-endian or little-endian. This may |
| 68 | * need adjustment. |
| 69 | */ |
| 70 | #if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ |
| 71 | __BYTE_ORDER == __LITTLE_ENDIAN) || \ |
| 72 | (defined(i386) || defined(__i386__) || defined(__i486__) || \ |
| 73 | defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL)) |
| 74 | # define HASH_LITTLE_ENDIAN 1 |
| 75 | # define HASH_BIG_ENDIAN 0 |
| 76 | #elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ |
| 77 | __BYTE_ORDER == __BIG_ENDIAN) || \ |
| 78 | (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) |
| 79 | # define HASH_LITTLE_ENDIAN 0 |
| 80 | # define HASH_BIG_ENDIAN 1 |
| 81 | #else |
| 82 | # define HASH_LITTLE_ENDIAN 0 |
| 83 | # define HASH_BIG_ENDIAN 0 |
| 84 | #endif |
| 85 | |
| 86 | #define hashsize(n) ((uint32_t)1<<(n)) |
| 87 | #define hashmask(n) (hashsize(n)-1) |
| 88 | #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) |
| 89 | |
| 90 | /* |
| 91 | * mix -- mix 3 32-bit values reversibly. |
| 92 | * |
| 93 | * This is reversible, so any information in (a,b,c) before mix() is |
| 94 | * still in (a,b,c) after mix(). |
| 95 | * |
| 96 | * If four pairs of (a,b,c) inputs are run through mix(), or through |
| 97 | * mix() in reverse, there are at least 32 bits of the output that |
| 98 | * are sometimes the same for one pair and different for another pair. |
| 99 | * This was tested for: |
| 100 | * * pairs that differed by one bit, by two bits, in any combination |
| 101 | * of top bits of (a,b,c), or in any combination of bottom bits of |
| 102 | * (a,b,c). |
| 103 | * * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
| 104 | * the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
| 105 | * is commonly produced by subtraction) look like a single 1-bit |
| 106 | * difference. |
| 107 | * * the base values were pseudorandom, all zero but one bit set, or |
| 108 | * all zero plus a counter that starts at zero. |
| 109 | * |
| 110 | * Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that |
| 111 | * satisfy this are |
| 112 | * 4 6 8 16 19 4 |
| 113 | * 9 15 3 18 27 15 |
| 114 | * 14 9 3 7 17 3 |
| 115 | * Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing |
| 116 | * for "differ" defined as + with a one-bit base and a two-bit delta. I |
| 117 | * used http://burtleburtle.net/bob/hash/avalanche.html to choose |
| 118 | * the operations, constants, and arrangements of the variables. |
| 119 | * |
| 120 | * This does not achieve avalanche. There are input bits of (a,b,c) |
| 121 | * that fail to affect some output bits of (a,b,c), especially of a. The |
| 122 | * most thoroughly mixed value is c, but it doesn't really even achieve |
| 123 | * avalanche in c. |
| 124 | * |
| 125 | * This allows some parallelism. Read-after-writes are good at doubling |
| 126 | * the number of bits affected, so the goal of mixing pulls in the opposite |
| 127 | * direction as the goal of parallelism. I did what I could. Rotates |
| 128 | * seem to cost as much as shifts on every machine I could lay my hands |
| 129 | * on, and rotates are much kinder to the top and bottom bits, so I used |
| 130 | * rotates. |
| 131 | */ |
| 132 | #define mix(a,b,c) \ |
| 133 | { \ |
| 134 | a -= c; a ^= rot(c, 4); c += b; \ |
| 135 | b -= a; b ^= rot(a, 6); a += c; \ |
| 136 | c -= b; c ^= rot(b, 8); b += a; \ |
| 137 | a -= c; a ^= rot(c,16); c += b; \ |
| 138 | b -= a; b ^= rot(a,19); a += c; \ |
| 139 | c -= b; c ^= rot(b, 4); b += a; \ |
| 140 | } |
| 141 | |
| 142 | /* |
| 143 | * final -- final mixing of 3 32-bit values (a,b,c) into c |
| 144 | * |
| 145 | * Pairs of (a,b,c) values differing in only a few bits will usually |
| 146 | * produce values of c that look totally different. This was tested for |
| 147 | * * pairs that differed by one bit, by two bits, in any combination |
| 148 | * of top bits of (a,b,c), or in any combination of bottom bits of |
| 149 | * (a,b,c). |
| 150 | * * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
| 151 | * the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
| 152 | * is commonly produced by subtraction) look like a single 1-bit |
| 153 | * difference. |
| 154 | * * the base values were pseudorandom, all zero but one bit set, or |
| 155 | * all zero plus a counter that starts at zero. |
| 156 | * |
| 157 | * These constants passed: |
| 158 | * 14 11 25 16 4 14 24 |
| 159 | * 12 14 25 16 4 14 24 |
| 160 | * and these came close: |
| 161 | * 4 8 15 26 3 22 24 |
| 162 | * 10 8 15 26 3 22 24 |
| 163 | * 11 8 15 26 3 22 24 |
| 164 | */ |
| 165 | #define final(a,b,c) \ |
| 166 | { \ |
| 167 | c ^= b; c -= rot(b,14); \ |
| 168 | a ^= c; a -= rot(c,11); \ |
| 169 | b ^= a; b -= rot(a,25); \ |
| 170 | c ^= b; c -= rot(b,16); \ |
| 171 | a ^= c; a -= rot(c,4); \ |
| 172 | b ^= a; b -= rot(a,14); \ |
| 173 | c ^= b; c -= rot(b,24); \ |
| 174 | } |
| 175 | |
| 176 | /* |
| 177 | * k - the key, an array of uint32_t values |
| 178 | * length - the length of the key, in uint32_ts |
| 179 | * initval - the previous hash, or an arbitrary value |
| 180 | */ |
| 181 | static uint32_t __attribute__((unused)) hashword(const uint32_t *k, |
| 182 | size_t length, uint32_t initval) |
| 183 | { |
| 184 | uint32_t a, b, c; |
| 185 | |
| 186 | /* Set up the internal state */ |
| 187 | a = b = c = 0xdeadbeef + (((uint32_t) length) << 2) + initval; |
| 188 | |
| 189 | /*----------------------------------------- handle most of the key */ |
| 190 | while (length > 3) { |
| 191 | a += k[0]; |
| 192 | b += k[1]; |
| 193 | c += k[2]; |
| 194 | mix(a, b, c); |
| 195 | length -= 3; |
| 196 | k += 3; |
| 197 | } |
| 198 | |
| 199 | /*----------------------------------- handle the last 3 uint32_t's */ |
| 200 | switch (length) { /* all the case statements fall through */ |
| 201 | case 3: c += k[2]; |
| 202 | case 2: b += k[1]; |
| 203 | case 1: a += k[0]; |
| 204 | final(a, b, c); |
| 205 | case 0: /* case 0: nothing left to add */ |
| 206 | break; |
| 207 | } |
| 208 | /*---------------------------------------------- report the result */ |
| 209 | return c; |
| 210 | } |
| 211 | |
| 212 | |
| 213 | /* |
| 214 | * hashword2() -- same as hashword(), but take two seeds and return two 32-bit |
| 215 | * values. pc and pb must both be nonnull, and *pc and *pb must both be |
| 216 | * initialized with seeds. If you pass in (*pb)==0, the output (*pc) will be |
| 217 | * the same as the return value from hashword(). |
| 218 | */ |
| 219 | static void __attribute__((unused)) hashword2(const uint32_t *k, size_t length, |
| 220 | uint32_t *pc, uint32_t *pb) |
| 221 | { |
| 222 | uint32_t a, b, c; |
| 223 | |
| 224 | /* Set up the internal state */ |
| 225 | a = b = c = 0xdeadbeef + ((uint32_t) (length << 2)) + *pc; |
| 226 | c += *pb; |
| 227 | |
| 228 | while (length > 3) { |
| 229 | a += k[0]; |
| 230 | b += k[1]; |
| 231 | c += k[2]; |
| 232 | mix(a, b, c); |
| 233 | length -= 3; |
| 234 | k += 3; |
| 235 | } |
| 236 | |
| 237 | switch (length) { |
| 238 | case 3 : |
| 239 | c += k[2]; |
| 240 | case 2 : |
| 241 | b += k[1]; |
| 242 | case 1 : |
| 243 | a += k[0]; |
| 244 | final(a, b, c); |
| 245 | case 0: /* case 0: nothing left to add */ |
| 246 | break; |
| 247 | } |
| 248 | |
| 249 | *pc = c; |
| 250 | *pb = b; |
| 251 | } |
| 252 | |
| 253 | /* |
| 254 | * hashlittle() -- hash a variable-length key into a 32-bit value |
| 255 | * k : the key (the unaligned variable-length array of bytes) |
| 256 | * length : the length of the key, counting by bytes |
| 257 | * initval : can be any 4-byte value |
| 258 | * Returns a 32-bit value. Every bit of the key affects every bit of |
| 259 | * the return value. Two keys differing by one or two bits will have |
| 260 | * totally different hash values. |
| 261 | * |
| 262 | * The best hash table sizes are powers of 2. There is no need to do |
| 263 | * mod a prime (mod is sooo slow!). If you need less than 32 bits, |
| 264 | * use a bitmask. For example, if you need only 10 bits, do |
| 265 | * h = (h & hashmask(10)); |
| 266 | * In which case, the hash table should have hashsize(10) elements. |
| 267 | * |
| 268 | * If you are hashing n strings (uint8_t **)k, do it like this: |
| 269 | * for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h); |
| 270 | * |
| 271 | * By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this |
| 272 | * code any way you wish, private, educational, or commercial. It's free. |
| 273 | * |
| 274 | * Use for hash table lookup, or anything where one collision in 2^^32 is |
| 275 | * acceptable. Do NOT use for cryptographic purposes. |
| 276 | */ |
| 277 | static uint32_t __attribute__((unused)) hashlittle(const void *key, |
| 278 | size_t length, uint32_t initval) |
| 279 | { |
| 280 | uint32_t a,b,c; |
| 281 | union { |
| 282 | const void *ptr; |
| 283 | size_t i; |
| 284 | } u; /* needed for Mac Powerbook G4 */ |
| 285 | |
| 286 | /* Set up the internal state */ |
| 287 | a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; |
| 288 | |
| 289 | u.ptr = key; |
| 290 | if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
| 291 | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
| 292 | |
| 293 | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
| 294 | while (length > 12) { |
| 295 | a += k[0]; |
| 296 | b += k[1]; |
| 297 | c += k[2]; |
| 298 | mix(a,b,c); |
| 299 | length -= 12; |
| 300 | k += 3; |
| 301 | } |
| 302 | |
| 303 | /* |
| 304 | * "k[2]&0xffffff" actually reads beyond the end of the string, but |
| 305 | * then masks off the part it's not allowed to read. Because the |
| 306 | * string is aligned, the masked-off tail is in the same word as the |
| 307 | * rest of the string. Every machine with memory protection I've seen |
| 308 | * does it on word boundaries, so is OK with this. But VALGRIND will |
| 309 | * still catch it and complain. The masking trick does make the hash |
| 310 | * noticably faster for short strings (like English words). |
| 311 | */ |
| 312 | #ifndef VALGRIND |
| 313 | |
| 314 | switch (length) { |
| 315 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
| 316 | case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; |
| 317 | case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; |
| 318 | case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; |
| 319 | case 8 : b+=k[1]; a+=k[0]; break; |
| 320 | case 7 : b+=k[1]&0xffffff; a+=k[0]; break; |
| 321 | case 6 : b+=k[1]&0xffff; a+=k[0]; break; |
| 322 | case 5 : b+=k[1]&0xff; a+=k[0]; break; |
| 323 | case 4 : a+=k[0]; break; |
| 324 | case 3 : a+=k[0]&0xffffff; break; |
| 325 | case 2 : a+=k[0]&0xffff; break; |
| 326 | case 1 : a+=k[0]&0xff; break; |
| 327 | case 0 : return c; /* zero length strings require no mixing */ |
| 328 | } |
| 329 | #else /* make valgrind happy */ |
| 330 | const uint8_t *k8; |
| 331 | |
| 332 | k8 = (const uint8_t *)k; |
| 333 | switch (length) { |
| 334 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
| 335 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
| 336 | case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ |
| 337 | case 9 : c+=k8[8]; /* fall through */ |
| 338 | case 8 : b+=k[1]; a+=k[0]; break; |
| 339 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
| 340 | case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ |
| 341 | case 5 : b+=k8[4]; /* fall through */ |
| 342 | case 4 : a+=k[0]; break; |
| 343 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
| 344 | case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ |
| 345 | case 1 : a+=k8[0]; break; |
| 346 | case 0 : return c; |
| 347 | } |
| 348 | #endif /* !valgrind */ |
| 349 | } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { |
| 350 | const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
| 351 | const uint8_t *k8; |
| 352 | |
| 353 | /*--------------- all but last block: aligned reads and different mixing */ |
| 354 | while (length > 12) { |
| 355 | a += k[0] + (((uint32_t)k[1])<<16); |
| 356 | b += k[2] + (((uint32_t)k[3])<<16); |
| 357 | c += k[4] + (((uint32_t)k[5])<<16); |
| 358 | mix(a,b,c); |
| 359 | length -= 12; |
| 360 | k += 6; |
| 361 | } |
| 362 | |
| 363 | k8 = (const uint8_t *)k; |
| 364 | switch (length) { |
| 365 | case 12: |
| 366 | c+=k[4]+(((uint32_t)k[5])<<16); |
| 367 | b+=k[2]+(((uint32_t)k[3])<<16); |
| 368 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 369 | break; |
| 370 | case 11: |
| 371 | c+=((uint32_t)k8[10])<<16; /* fall through */ |
| 372 | case 10: |
| 373 | c+=k[4]; |
| 374 | b+=k[2]+(((uint32_t)k[3])<<16); |
| 375 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 376 | break; |
| 377 | case 9: |
| 378 | c+=k8[8]; /* fall through */ |
| 379 | case 8: |
| 380 | b+=k[2]+(((uint32_t)k[3])<<16); |
| 381 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 382 | break; |
| 383 | case 7: |
| 384 | b+=((uint32_t)k8[6])<<16; /* fall through */ |
| 385 | case 6: |
| 386 | b+=k[2]; |
| 387 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 388 | break; |
| 389 | case 5: |
| 390 | b+=k8[4]; /* fall through */ |
| 391 | case 4: |
| 392 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 393 | break; |
| 394 | case 3: |
| 395 | a+=((uint32_t)k8[2])<<16; /* fall through */ |
| 396 | case 2: |
| 397 | a+=k[0]; |
| 398 | break; |
| 399 | case 1: |
| 400 | a+=k8[0]; |
| 401 | break; |
| 402 | case 0: |
| 403 | return c; /* zero length requires no mixing */ |
| 404 | } |
| 405 | |
| 406 | } else { /* need to read the key one byte at a time */ |
| 407 | const uint8_t *k = (const uint8_t *)key; |
| 408 | |
| 409 | while (length > 12) { |
| 410 | a += k[0]; |
| 411 | a += ((uint32_t)k[1])<<8; |
| 412 | a += ((uint32_t)k[2])<<16; |
| 413 | a += ((uint32_t)k[3])<<24; |
| 414 | b += k[4]; |
| 415 | b += ((uint32_t)k[5])<<8; |
| 416 | b += ((uint32_t)k[6])<<16; |
| 417 | b += ((uint32_t)k[7])<<24; |
| 418 | c += k[8]; |
| 419 | c += ((uint32_t)k[9])<<8; |
| 420 | c += ((uint32_t)k[10])<<16; |
| 421 | c += ((uint32_t)k[11])<<24; |
| 422 | mix(a,b,c); |
| 423 | length -= 12; |
| 424 | k += 12; |
| 425 | } |
| 426 | |
| 427 | switch(length) { /* all the case statements fall through */ |
| 428 | case 12: c+=((uint32_t)k[11])<<24; |
| 429 | case 11: c+=((uint32_t)k[10])<<16; |
| 430 | case 10: c+=((uint32_t)k[9])<<8; |
| 431 | case 9: c+=k[8]; |
| 432 | case 8: b+=((uint32_t)k[7])<<24; |
| 433 | case 7: b+=((uint32_t)k[6])<<16; |
| 434 | case 6: b+=((uint32_t)k[5])<<8; |
| 435 | case 5: b+=k[4]; |
| 436 | case 4: a+=((uint32_t)k[3])<<24; |
| 437 | case 3: a+=((uint32_t)k[2])<<16; |
| 438 | case 2: a+=((uint32_t)k[1])<<8; |
| 439 | case 1: |
| 440 | a+=k[0]; |
| 441 | break; |
| 442 | case 0: |
| 443 | return c; |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | final(a,b,c); |
| 448 | return c; |
| 449 | } |
| 450 | |
| 451 | LTTNG_HIDDEN |
| 452 | unsigned long hash_key_u64(const void *_key, unsigned long seed) |
| 453 | { |
| 454 | union { |
| 455 | uint64_t v64; |
| 456 | uint32_t v32[2]; |
| 457 | } v; |
| 458 | union { |
| 459 | uint64_t v64; |
| 460 | uint32_t v32[2]; |
| 461 | } key; |
| 462 | |
| 463 | v.v64 = (uint64_t) seed; |
| 464 | key.v64 = *(const uint64_t *) _key; |
| 465 | hashword2(key.v32, 2, &v.v32[0], &v.v32[1]); |
| 466 | return v.v64; |
| 467 | } |
| 468 | |
| 469 | #if (CAA_BITS_PER_LONG == 64) |
| 470 | /* |
| 471 | * Hash function for number value. |
| 472 | * Pass the value itself as the key, not its address. |
| 473 | */ |
| 474 | LTTNG_HIDDEN |
| 475 | unsigned long hash_key_ulong(const void *_key, unsigned long seed) |
| 476 | { |
| 477 | uint64_t __key = (uint64_t) _key; |
| 478 | return (unsigned long) hash_key_u64(&__key, seed); |
| 479 | } |
| 480 | #else |
| 481 | /* |
| 482 | * Hash function for number value. |
| 483 | * Pass the value itself as the key, not its address. |
| 484 | */ |
| 485 | LTTNG_HIDDEN |
| 486 | unsigned long hash_key_ulong(const void *_key, unsigned long seed) |
| 487 | { |
| 488 | uint32_t key = (uint32_t) _key; |
| 489 | |
| 490 | return hashword(&key, 1, seed); |
| 491 | } |
| 492 | #endif /* CAA_BITS_PER_LONG */ |
| 493 | |
| 494 | /* |
| 495 | * Hash function for string. |
| 496 | */ |
| 497 | LTTNG_HIDDEN |
| 498 | unsigned long hash_key_str(const void *key, unsigned long seed) |
| 499 | { |
| 500 | return hashlittle(key, strlen((const char *) key), seed); |
| 501 | } |
| 502 | |
| 503 | /* |
| 504 | * Hash function for two uint64_t. |
| 505 | */ |
| 506 | LTTNG_HIDDEN |
| 507 | unsigned long hash_key_two_u64(const void *key, unsigned long seed) |
| 508 | { |
| 509 | const struct lttng_ht_two_u64 *k = |
| 510 | (const struct lttng_ht_two_u64 *) key; |
| 511 | |
| 512 | return hash_key_u64(&k->key1, seed) ^ hash_key_u64(&k->key2, seed); |
| 513 | } |
| 514 | |
| 515 | /* |
| 516 | * Hash function compare for number value. |
| 517 | */ |
| 518 | LTTNG_HIDDEN |
| 519 | int hash_match_key_ulong(const void *key1, const void *key2) |
| 520 | { |
| 521 | if (key1 == key2) { |
| 522 | return 1; |
| 523 | } |
| 524 | |
| 525 | return 0; |
| 526 | } |
| 527 | |
| 528 | /* |
| 529 | * Hash function compare for number value. |
| 530 | */ |
| 531 | LTTNG_HIDDEN |
| 532 | int hash_match_key_u64(const void *key1, const void *key2) |
| 533 | { |
| 534 | if (*(const uint64_t *) key1 == *(const uint64_t *) key2) { |
| 535 | return 1; |
| 536 | } |
| 537 | |
| 538 | return 0; |
| 539 | } |
| 540 | |
| 541 | /* |
| 542 | * Hash compare function for string. |
| 543 | */ |
| 544 | LTTNG_HIDDEN |
| 545 | int hash_match_key_str(const void *key1, const void *key2) |
| 546 | { |
| 547 | if (strcmp(key1, key2) == 0) { |
| 548 | return 1; |
| 549 | } |
| 550 | |
| 551 | return 0; |
| 552 | } |
| 553 | |
| 554 | /* |
| 555 | * Hash function compare two uint64_t. |
| 556 | */ |
| 557 | LTTNG_HIDDEN |
| 558 | int hash_match_key_two_u64(const void *key1, const void *key2) |
| 559 | { |
| 560 | const struct lttng_ht_two_u64 *k1 = |
| 561 | (const struct lttng_ht_two_u64 *) key1; |
| 562 | const struct lttng_ht_two_u64 *k2 = |
| 563 | (const struct lttng_ht_two_u64 *) key2; |
| 564 | |
| 565 | if (hash_match_key_u64(&k1->key1, &k2->key1) && |
| 566 | hash_match_key_u64(&k1->key2, &k2->key2)) { |
| 567 | return 1; |
| 568 | } |
| 569 | |
| 570 | return 0; |
| 571 | } |